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Abstract: In this report, corrections to the gravitational potential of a massive point particle
are computed for observers located in a brane-world scenario with intrinsic de Sitter (dS4) geometry
embedded in an Anti de Sitter (AdS5) bulk. The results are compared, using the AdS/CFT corre-
spondence, to a description in terms of four dimensional general relativity coupled to a conformal
field theory.

I. INTRODUCTION

In 1999, Randall and Sundrum proposed a geometric
mechanism to solve the hierarchy problem [1, 2]. In their
scenario, matter fields are confined in four dimensional
branes, embedded in a higher-dimensional Anti de Sitter
spacetime. By making the brane separation arbitrarily
large, they realized that even in the case of single brane
embedded in AdS5, something close to four dimensional
gravity can be recovered [2, 3], despite the presence of
an arbitrarily large extra dimension. Here we focus on
this particular scenario.

Our background geometry of interest consists of two
identical balls of AdS5 (B1 and B2) glued alongside their
dS4 boundaries. A useful tool to analyze the dynamics
of the spacetime in that setting is the gauge/gravity du-
ality, between supergravity in AdS5 (or in our case of
interest, the classical limit of it) and a conformal field
theory (CFT) living on its boundary. As stated in [4],
the duality can be also formulated for finite regions of
the AdS spacetime, which amounts to a UV cut-off in
the dual theory. The correspondence states that the par-
tition functions for both theories are related as (g4 is the
induced metric on the boundary)

Z[g4] =

∫
d[g]e−Sgrav [g] =

∫
d[φ]e−SCFT [φ;g4] = e−WCFT [g4].

(1)

The bulk path integral is taken over all the metrics g
that induce a conformal equivalence class of metrics g4
over the boundary, and φ are the degrees of freedom of
the CFT. The classical gravitational action for AdS5 is
divergent, but counterterms which depend on the geome-
try of the boundary can be introduced in order to render
it finite [5]. Using them, the gravitational action reads

Sgrav = SEH + SGH + S1 + S2 + S3, (2)

where SEH is the usual Einstein-Hilbert term with neg-
ative cosmological constant Λ = −6/l2, SGH is the
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Gibbons-Hawking boundary term, and the others are
given by (in Euclidean signature)

S1 =
3

8πG(5)l

∫
d4x
√
g4, S2 =

l

32πG(5)

∫
d4x
√
g4R,

S3 =
l3 ln(R/ρ)

64πG(5)

∫
d4x
√
g4
[
RµνR

µν − R2

3

]
. (3)

Here, G(5) is Newton’s constant in five dimensions.
The four dimensional integrals are to be taken over the
boundary, and so, the curvature tensors which appear
are the intrinsic ones. The R appearing in the logarithm
of the third term measures the radius of the boundary,
and ρ is a finite renormalization length scale.

Keeping this in mind, the action for the Randall-
Sundrum scenario is given by

SRS = SEH + SGH + 2S1 + SM = SG + 2S1 + SM , (4)

where 2S1 accounts for the action of a brane, located at
the boundary of the two balls B1 and B2, with tension
σ0 = 3/(4πG(5)l), and SM is the action for the matter
on the brane (later, we will take it to be the action for a
point particle plus a vacuum energy contribution in order
to sustain inflation of the brane). The partition function
is then given by:

ZRS [g4] =

∫
B1∪B2

d[g]e−SRS = e−2S1−SM

(∫
B1

d[g]e−SEH−SGH

)2

.

(5)

The second integral can be related via the AdS/CFT
correspondence to the generating functional of the dual
theory plus two of the counterterms. Thus, we obtain a
dual description in terms of the 4D action

S4D = −2S2 − 2S3 + SM + 2WCFT . (6)

The term S2 has exactly the form of Einstein-Hilbert
action for the 4D brane geometry, and S3 renormalizes
the generating functional WCFT . Thus, we can see that
studying corrections to the gravitational potential on the
brane in a 5D setting is analogous to a 4D analysis of the
gravitational potential in dS4 coupled to a CFT. In what
follows we do the bulk computation and compare it to
the boundary result which was found in [6].
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II. ACTION AND EQUATIONS OF MOTION

The gravitational action with a negative cosmological
constant reads

SG =
1

16πG(5)

[∫
d5x
√
−g
(

(5)R+
12

l2

)
+ 2

∫
d4x
√
−gK

]
,

(7)

where K is the extrinsic curvature scalar and the integral
of the Gibbons-Hawking boundary term is to performed
over the brane. For simplicity, we work in Gaussian nor-
mal coordinates (GNC) with respect to the brane,

ds2 = gMNdx
MdxN = dy2 + g4µνdx

µdxν . (8)

In what follows, we drop the 4 superscript on the induced
metric, as it is the only one appearing in our equations. It
is useful to express the five-dimensional curvature scalar
in terms of its four-dimensional counterpart and extra
terms related with the extrinsic curvature. In our sign
convention, the contraction of the Gauss-Codazzi rela-
tions reads:

(5)R = R−K2 −KµνK
µν − 2LnK. (9)

Here n is the normal vector to the brane. Using this
slicing and carefully integrating by parts, we obtain

SG ∼
∫
d5x
√
−g
(
R+

1

4
(gµν∂ygµν)2+

1

4
(∂ygµν) (∂yg

µν)+
12

l2

)
.

(10)

The action for the matter source on the brane is

2S1 + SM =

∫
d5xδ(y)

(
−σ
√
−g +

1

2
gµνT

µν

)
, (11)

where σ is the brane tension. The explicit form of Tµν for
a point particle will be discussed later. Imposing that the
variations of the total action vanish, we find the equation
of motion

Rµν − 1

2
gµνR− 6

l2
gµν +

1

4
∂2
yg
µν +

1

2
gµνgαβ∂2

ygαβ+

−1

4
gµαgνβ∂2

ygαβ +
1

4
gαβ(∂ygαβ)(∂yg

µν) +
3

8
gµν(∂yg

αβ)2+

+
1

8
(gαβ∂ygαβ)2gµν = δ(y)

[
1

2

(
∂yg

µν + gµνgαβ∂ygαβ
)

−8πG(5) (−σgµν + Tµν)

]
. (12)

Integrating the equation over a pill-box around y = 0
gives a condition on the normal derivative of the metric
at the brane.

III. BACKGROUND GEOMETRY

As we have stated in the introduction, we are inter-
ested in a geometry consisting of two balls of AdS5 glued
alongside its dS4 boundaries. For this purpose, consider
an ansatz of the form:

gµν = e2wγµν . (13)

The justification of this form is perhaps clearer in Eu-
clidean signature. The Euclidean version of dS4 is simply
a 4-sphere, and so, γµν would simply be the its metric.
In GNC, the fifth coordinate y is simply the physical dis-
tance between the spheres and the factor ew(y) accounts
for the change in the volume of the spheres. The Ricci
tensor for dS4 is proportional to the metric, with a factor
related to the dS4 length, or alternatively, to its Hubble
parameter,

Rµν = 3H2γµν . (14)

Using this ansatz, the differential equation for the warp
factor w(y) is:

w′′ + 2(w′)2 − 2

l2
−H2e−2w = δ(y)

(
w′ − 8

3
πG(5)σ

)
. (15)

The solution is given by (after imposing the boundary
conditions on the brane)

w(y) = ln

[
Hl sinh

(
y0 − |y|

l

)]
, (16)

and the different parameters are related via

σ =
3

4πG(5)l

√
1 +H2l2, H =

[
l sinh

(y0
l

)]−1

. (17)

The flat brane results [2] are recovered with H −→ 0, and
the normal coordinate ranges from y ∈ (−y0, y0).

IV. PERTURBATIONS

Studying general perturbations in this background be-
comes rather involved, as the brane would be moved from
y = 0 to somewhere else. For this matter, we introduce
the perturbations so that we are still working in GNC
with respect to the brane

ds2 = e2w(γµν + hµν)dxµdxν + dy2. (18)

In general, a linearised change of coordinates will
transform the metric as

hMN −→ hMN + e−2wLe2wξ(e
2wγMN )

= hMN + e2w
[
2∇(MξN) + 2w′(y)

(
γMNζ

y + 2δy(NξM)

)]
,

(19)

with γyy = e−2w, γyµ = 0 and ∇N the covariant deriva-
tive related to the metric γMN . We are interested in
studying the residual gauge freedom, keeping in mind
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that we want to restrict our study to normal coordinates
respect to the wall. The conditions that we obtain after
imposing the components hyM to be zero in every gauge
are

∂yξy = −3w′ξy, ∂yξµ = −∂µξy − 2w′ξµ. (20)

Keeping the brane at y = 0, amounts to ξy = 0. Then,
the solution for the second condition is

ξµ = e−2wξ(0)µ (xν), (21)

and we are left with the usual (four dimensional) gauge
freedom

hµν −→ hµν + 2∇(µξ
(0)

ν) . (22)

Once we have justified the particular form of our per-
turbations, we can study its linearized equations of mo-
tion. For that matter, it is useful to introduce a new
coordinate orthogonal to the brane, ζ = e|y|/l. Under
this change, we are imposing symmetry under y −→ −y,
as we cannot study any other case with it. To first order
in hµν , the equations read

∇2hµν − 2∇ρ∇(µhν)ρ +∇µ∇νh+ 6H2hµν (23)

+Dζ

(
hµν +

1

2
γµνh

)
= −δ(ζ − 1)

8πG(5)

l
(2Tµν − γµνT ) ,

where ∇µ is the covariant derivative associated with the
induced metric in the brane γµν (traces are also with re-
gard to this metric). We have also introduced a derivative
operator in the bulk coordinate, given by

Dζ =
e2w

l2
[
ζ2∂2

ζ + (ζ + 4ζ2∂ζw)∂ζ + 2δ(ζ − 1)∂ζ
]
. (24)

At this point, it is necessary to introduce some coordi-
nates on the brane. For simplicity, we can study the dS4

geometry of the domain wall in terms of conformally flat
coordinates. These coordinates cover only half of the hy-
perboloid [7], but are suitable for our study as we are in-
terested in a local property, such as the gravitational po-
tential, and these coordinates can be constructed around
every point of dS4. They take the form of a flat FLRW
geometry, with scale factor a(η) = −1/(Hη),

ds2 = γµνdx
µdxν =

(
−1

Hη

)2

ηµνdx
µdxν . (25)

A. Decomposition

As dS4 is maximally symmetric, we can classify the
perturbations according to their behaviour under spatial
rotations of the spacetime. The different components of
the perturbations can transform either as a scalar, vector
or tensor. The metric decomposed in terms of the scalar
perturbations reads

hµν = a2
[
2δ0µδ

0
ν(ΦA + ΦH) + 2ηµνΦH + 2∇(µXν)

]
, (26)

where we have redefined a−2ζ
(0)
ν = Xν , as the generator

of gauge transformations. At linear order, the equations
for the different modes are decoupled, and so we need not
worry about the tensor and vector modes. Then, our four
variables of interest are the two Bardeen potentials ΦA,
ΦH and the two gauge variablesX, X0 (X is the potential
of the curl-free part of the gauge vector Xi = X,i + Si
with Si,i = 0).

B. Stress energy tensor

A point particle located at the origin has energy mo-
mentum tensor

Tµν = ma−1δ0µδ
0
νδ

(3)(x) = − 1

4π
ma−1δ0µδ

0
ν∆

(
1

r

)
, (27)

which has indeed the perfect fluid form with zero
solenoidal velocity. This justifies our omission of the vec-
tor modes. The energy momentum tensor satisfies the
appropriate conservation law.

V. SOLUTION FOR THE SCALAR PART

After decomposing the linearized version of Einstein’s
equation, four differential equations for the scalar modes
are found. As we are studying the gravitational poten-
tial of a point mass, we would like to search for a static
solution. The existence of one is clearer if we introduce
cosmological time and physical distances via

x̂i(t) = a(t)xi = eHtxi, P = −δkl ∂2

∂x̂k∂x̂l
. (28)

Then, the following equations are obtained:

2PΦH −
1

2
Dζ
(

6ΦH − 2PΞ− 6H2Ξ + 3HΞ̇− 3HΞ0

)
= δ(ζ − 1)

2G(5)m

l
P

1

r̂
,

2PΦA −
1

4
Dζ
(

6ΦA − 3Ξ̈ + 6H2Ξ + 3HΞ̇ + 3Ξ̇0 − 3HΞ0 + 4PΞ
)

= δ(ζ − 1)
2G(5)m

l
P

1

r̂
,

Dζ
(

6Φ̇H + 6HΦH + 6HΦA − P Ξ̇ + PΞ0 − 6H2Ξ0

)
= 0,

Dζ
(

4ΦH − 2ΦA + Ξ̈− 6H2Ξ +HΞ̇− Ξ̇0 −HΞ0

)
= 0.

(29)

Overdots denote derivatives with regard to cosmological
time, and we have redefined the gauge variables as Ξ =
a2X and Ξ0 = aX0. As there is no explicit dependence
on time, both in the equation and in the source, we can
search for a static solution. After some algebra, we can
write the equations as
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DζΣ = (P − 6H2)

[
Σ− δ(ζ − 1)

2G(5)m

lr̂

]
, (30)

Dζ∆ = 2H2(Σ−∆)− 3H2δ(ζ − 1)
2G(5)m

lr̂
,

DζΞ =
1

3
(Σ + 2∆), DζΞ0 = −6HΣ + 6Hδ(ζ − 1)

2G(5)m

lr̂
,

where Σ = ΦA + ΦH and ∆ = ΦA − 2ΦH are simply
combinations of the Bardeen potentials.

A. Expansion in H2

Despite the simple form of the equation for the scalar
modes, and the fact that we will need only the first three
to solve for the Bardeen potentials, obtaining an exact
solution is a challenging task.

One possible alternative is to expand the solution in
powers of H2, and try to find a perturbative result. At
first order, we would expect to recover the flat brane re-
sults [8], and the second order would introduce the first
corrections due to the intrinsic geometry of the domain
wall. This expansion will enable us to solve the differ-
ential equations, but will unfortunately complicate the
task of imposing the appropriate boundary conditions.
At order 0, the equations read

D
(0)
ζ Σ(0) = P

[
Σ(0) − δ(ζ − 1)

2G(5)m

lr̂

]
, D

(0)
ζ ∆(0) = 0,

D
(0)
ζ Ξ(0) =

1

3
(Σ(0) + 2∆(0)), D

(0)
ζ Ξ

(0)
0 = 0, (31)

with the differential operator D
(0)
ζ given by

D
(0)
ζ =

1

l2ζ2
[
ζ2∂2

ζ − 3ζ∂ζ + 2δ(ζ − 1)∂ζ
]
. (32)

The delta terms enforce discontinuity of the derivative of
the metric (in this particular case, of a combination of the
scalar modes appearing in the metric). This amounts to
one of the boundary conditions needed to solve the linear
second order differential equation. The second one can be
obtained by imposing that the horizons remain regular.
At order zero (H = 0) the horizons are located at infinite
coordinate distance ζ −→∞, and so, the second condition
amounts to cancelling all the divergent terms (terms that
diverge including the exponential of the warp factor e2w

appearing on the metric) as ζ −→∞. The solution is then
(with Kn a modified Bessel function of the second kind)

Σ(0) =

√
PG(5)mζ

2K2(
√
Plζ)

K1(l
√
P )r̂

, ∆(0) = −
G(5)m

lr̂
. (33)

To solve the equation for ∆(0) we need to solve the
equation at order zero for the gauge function Ξ(0). This
is due to the fact that the second boundary condition

(regularity at the horizon) was not applicable, as it was
already regular. The third equation in (31) does depend
in ∆(0), and both boundary conditions apply to Ξ(0).
Luckily, imposing the boundary conditions for the latter
case, determines the form of ∆(0). Having cleared the
first order, we can move on to the second order.

If H 6= 0, the horizon is at finite coordinate distance.
In terms of the old coordinate, we must now impose reg-
ularity at y0. Using Eq. (17), we can see that in terms
of the new coordinate, it is located at

ζ0 =
1

Hl

[
1 +

√
1 +H2l2

]
. (34)

Problems arise right here. In our expansion in H2, Σ =
Σ(0) +H2Σ(1) + ..., the Σ(i) at every order do not depend
in H. Trying to impose regularity (at every order) at a
point whose location depends on H, would be inconsistent
with the expansion. But, it is interesting to recall that
we are considering the first order where H 6= 0 but it is
arbitrarily small. Thus, we should impose regularity at a
point at finite distance, but arbitrarily far away. Keeping
this in mind, the relevant second order in H2 differential
equations are

(
D

(0)
ζ − P

)
Σ(1) = −D(1)

ζ Σ(0) − 6Σ(0) + 6δ(ζ − 1)
2G(5)m

lr̂
,

D
(0)
ζ ∆(1) = −D(1)

ζ ∆(0) − 2∆(0) + 2Σ(0) − 3δ(ζ − 1)
2G(5)m

lr̂
,

D
(0)
ζ Ξ(1) = −D(1)

ζ Ξ(0) +
1

3

(
Σ(1) + 2∆(1)

)
, (35)

where the RHS are strictly source terms. The derivative

operator D
(1)
ζ can be obtained by expanding in H2

Eq.(24) (as we have done for one of the combinations

of the Bardeen potentials, we keep the terms D
(1)
ζ

independent of H in the expansion).

The solution to the first of the three equations is a lin-
ear combination of two modified Bessel functions (both
resemble exponentials, one decaying and the other grow-
ing) plus some terms which are solution of the inhomo-
geneous part, which decay as we move away from the
brane. Taking a combination of the two solutions so that
regularity is achieved at the horizon (which for our pur-
poses, can be taken as far away as we desire), would give
exponentially suppressed corrections to the result in the
brane. For that reason, we take the coefficient of the
growing mode to be zero and impose the brane condition
on the second one. Using again the equation for one of
the gauge potentials, as the equation for ∆(1) is uncon-
strained by fall-off conditions, we obtain the second order
solution. In order to analyze the behaviour on the brane,
we take ζ = 1:

Σ(0) =

√
PG(5)m

K1

(
l
√
P
)
r̂
K2

(√
Pl
)
, ∆(0) = −

G(5)m

lr̂
,
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Σ(1) =
[
l2P + 15

] lG(5)m

6r̂

−
G(5)lm

6r̂

[
(12 + l2P )K2/K1 − (24 + 3l2P )

1

l
√
P

]
K2/K1,

∆(1) = 2
G(5)m√
P r̂

K2/K1 −
(4 + l2P )

P

G(5)m

lr̂
, (36)

where K2/K1 is the ratio of Bessel functions evaluated
at the same point as in the order 0 solution. In order to
obtain the solution, we still need to eliminate the Lapla-
cians appearing in the expression and recombine Σ and
∆ into the Bardeen potentials. Expanding for small

√
Pl

Σ(0) =
G(5)m

lr̂

[
1− Pl2

[
γ + ln

(
l
√
P

2

)]]
, ∆(0) = −

G(5)m

lr̂
,

Σ(1) =
G(5)ml

r̂

[
17

6
+ 4γ + 4 ln

(
l
√
P

2

)]
,

∆(1) = −
G(5)ml

r̂

[
1 + 2γ + 2 ln

(
l
√
P

2

)]
, (37)

where γ is Euler’s constant, which appears in the expan-
sion of the ratio of Bessel functions for small arguments.
The result contains no negative powers of the Laplacian,
as they would introduce non-local terms in our analysis.
In order to get rid of the Laplacians it is useful to recall
two results:

ln
√
P

1

r̂
= − ln r̂ + γ

r̂
, P

ln r̂

r̂
=

1

r̂3
. (38)

Which leads to the final expression

ΦA =
G(5)m

lr̂

[
1 +

2l2

3r̂2
+H2l2

[
14

9
+ 2 ln

(
l

2r̂

)]]
,

ΦH =
G(5)m

lr̂

[
1 +

l2

3r̂2
+H2l2

[
23

18
+ 2 ln

(
l

2r̂

)]]
. (39)

VI. DISCUSSION

The order zero in H2 results agree from those in [8].
This is what we expected, as H = 0 is simply the flat

brane case studied by Garriga and Tanaka. The second
order result can checked with those of [6] if we take into
account the relation between the constants appearing in
the two cases:

G(5) = lG(4), l2 = 64πbl2PL. (40)

G(4) is the four dimensional gravitational constant (with

Planck length lPL =
√

~G(4)/c3) and b is the central
charge of the CFT, related to the number of free fields as

b =
N0 + 6N1/2 + 12N1

1920π2
, (41)

where N0 is the number of conformally coupled scalar
fields, N1/2 massless spinor fields and N1 vectors. Their
analysis was based in computing first the gravitational
potential of a test mass in dS4, then studying the back
reaction to it from the non-zero expected value of the
energy momentum tensor of conformal fields in the new
geometry.

Our first order results coincide with [6], but there is
some discrepancy involving the second order solution.
From our point of view, there are two possible reasons
for this difference, either the term S3 in the four dimen-
sional action plays a role that we have not considered, or
our assumptions over the second order boundary condi-
tions are wrong. This is left for further research.

Acknowledgments

I would like to thank my advisor Dr. Jaume Garriga for
a patient and very involved guidance, and Dr. Markus
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