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The Younger Dryas (YD) climatic reversal (12.86 to 11.65  cal ky BP), especially the 

warming initiated at ~12.6 cal ky BP, and the associated vegetation changes have been 

proposed as past analogs to forecast the potential vegetation responses to future global 

warming. In this paper, we applied this model to highland and midland Neotropical 

localities. We used pollen analysis of lake sediments to record vegetation responses to 

YD climatic changes, which are reconstructed from independent paleoclimatic proxies 

such as the Mg/Ca ratio on foraminiferal tests and Eqilibrium Line Altitude (ELA) for 

paleotemperature, and grayscale density and Titanium content for paleoprecipitation. 

Paleoclimatic reconstructions at both highlands and midlands showed a clear YD signal 

with a conspicuous warming extending into the early Holocene. A small percentage of 

taxa resulted to be sensitive to these YD climate changes. Response lags were negligible 

at the resolution of the study. However, changes in the sensitive taxa were relevant 

enough to determine changes in biodiversity and taxonomic composition. Highland 

vegetation experienced mainly intra-community reorganizations, whereas midland 

vegetation underwent major changes leading to community substitutions. This was 

explained in terms of threshold-crossing non-linear responses in which the coupling of 

climatic and other forcings (fire) was proposed as the main driving mechanism. 

Paleoecology provides meaningful insights on the responses of highland and midland 

Neotropical vegetation to the YD climatic reversal. Biotic responses at both individual 

(species) and collective (assemblage) levels showed patterns and processes of 

vegetation change useful to understand its ecological dynamics, as well as the 

mechanisms and external drivers involved. The use of paleoecological methods to 

document the biotic responses to the YD climate shifts can be useful to help forecasting 

 2

This is an Accepted Manuscript of an article published in Quaternary Science Reviews on 28 March 2015, available online: 
http://dx.doi.org/10.1016/j.quascirev.2015.03.003



51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

the potential consequences of future global warming. Due to its quasi-global character, 

the YD reversal emerges as a well suited candidate for providing useful insights of 

global scope by analyzing the corresponding biotic responses virtually at any 

geographical and biological setting.  

 

Keywords: global warming; biotic responses; past analogs; Younger Dryas; 

paleoclimates; Neotropics 
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This paper uses the “ecological paleoecology” approach and aims to show to the general 

paleoecological audience the usefulness of this approach in ecology and conservation 

using selected case studies. When analyzed from an ecological perspective, 

paleoecological records provide unique evidence not available from short-term 

ecological observations. In this way, ecological hypotheses involving long-term 

processes can be tested with empirical data instead of unwarranted assumptions and 

extrapolations (Rull, 2012; Rull and Vegas-Vilarrúbia, 2011). This paleoecological 

approach has been called ecological paleoecology, by contrast with other 

paleoecological approaches providing only descriptive paleoclimatic and 

paleoenvironmental reconstructions (Seddon, 2012; Rull, 2014). The usefulness of 

ecological paleoecology in the study of ecological patterns and processes such as 

latitudinal diversity gradients, climate-vegetation equilibrium, community assembly, 

ecological succession or biodiversity conservation, among others, has been recently 

highlighted (e.g. Willis and Birks, 2006; Willis et al., 2007, 2010; Birks, 2008, 2013; 

Vegas-Vilarrúbia et al., 2011; Rull, 2012; Rull et al., 2013). Ecological paleoecology 

may significantly increase the usefulness of paleoecology in the study of relevant global 

warming and biodiversity conservation issues thus enhancing the contribution of our 

discipline in the search for a better future. 

 

Useful paleoecological information for ecological hypothesis testing is the empirical 

record of biotic responses to past climate changes, which can be used as analogs for 

improving predictions about the potential ecological responses to climatic change 

estimates for this century (Rull, 2012; Rull et al., 2013). Several potential past analogs 
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for the ongoing and near-future global warming have been proposed (Willis and 

MacDonald, 2011). Most of these analogs are of the same magnitude, in terms of 

temperature change, as those predicted for the end of this century, but they usually 

involve much more time thus failing to reproduce current warming rates. However, 

faster warming occurred between the Younger Dryas (YD) cooling and the beginning of 

the Holocene, which seem to have occurred at similar rates and time scales to present 

warming, and has been proposed as one of the best paleoanalogs available so far (Cole, 

2009; Vegas-Vilarrúbia et al., 2011; Willis & MacDonald, 2011). The YD cold reversal 

has been dated between 12.86 and 11.65 cal ky BP in the Greenland ice cores 

(Rasmussen et al., 2006), and was preceded by the Bølling/Allerød (B/A) interstadial, 

and followed by the Early Holocene Warming (EHW) (Fig. 1). Both B/A-YD and YD-

Holocene transitions occurred at centennial scales which in paleoclimatology, are 

usually considered as abrupt or rapid shifts (Alley et al., 2003). 

 

This paper uses the YD model as a past analog in the study of two Neotropical 

Venezuelan localities situated in the Andean highlands, around 4000 m elevation, and 

the Gran Sabana (GS) midlands, around 1000 m elevation. The study is focused on 

relevant ecological questions about: 1) the species that are sensitive or insensitive to YD 

climatic changes, 2) their response types and lags in relation to the drivers and 

ecological mechanisms involved, 3) potential changes in taxonomic composition and 

biodiversity due to climatic forcing, 4) eventual differential responses according to 

elevation, environmental setting  and vegetation types, 5) possible non-linear and 

threshold responses, and 6) the potential for future predictions and for the optimization 

of conservation strategies. These types of questions have been considered especially 

relevant when using paleoecological data in ecological hypothesis testing and model 
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validation (e.g., Davies and Bunting, 2010; Seddon et al., 2014), an approach that is 

gaining support in northern temperate areas but is still in its infancy in other regions, 

including the Neotropics. 
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Figure 1. Late Glacial climatic trends as recorded in the NGRIP Greenland ice core. LGM – Last Glacial 

Maximum, B/A – Bølling/Allerød interstadial, YD – Younger Dryas, EHW – Early Holocene Warming. 

Raw data from Rasmussen et al. (2006). 

 

2. YD climates in northern South America 

 

In northern South America, the YD climatic reversal has been documented, well dated 

and quantified in climatic terms, in lake sediments from the Andean highlands (Van der 

Hammen & Hooghiemstra, 1995; Van’t Veer et al., 2000; Groot, et al., 2011); Stansell 

et al., 2010) and in marine sediments from the Cariaco Basin (Fig. 3) (Hughen et al., 

2000; Haug et al., 2001; Lea et al., 2003). At both sites, the YD was characterized by 

cold and dry climates (Fig. 2), which coincides with speleothem paleoclimatic 

reconstructions from the Amazon Basin (Cheng et al., 2013) suggesting trends of more 

regional amplitude. 
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However, a closer look at the climatic trends reveals some differences between the 

Andean and the Cariaco records. The Cariaco trends are a better match to the changes 

recorded in the Greeland ice cores. Indeed, in Cariaco, both B/A-YD cooling and YD- 
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Figure 2. Summary of climatic trends during the YD in northern South America using selected records 

from the Cariaco Basin (cores PL07-39PC, PL07-58PC and ODP-1002) and the Mérida Andes (Lake 

Anteojos, core A3-3 B07). B/A – Bølling/Allerød, YD – Younger Dryas, EHW – Early Holocene 

Warming, NTCR – Northern Tropical Climatic Reversal, ELA – Equilibrium Line Altitude. 
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Holocene warming occurred in a few centuries, with an intermediate phase (~1000 

years) of stable cold climates covering most of the YD. Contrastingly, the Andean 

records show a different pattern consisting of a rapid cooling (but slightly less abrupt 

than in Cariaco) attaining a thermal minimum (3 ºC below than average present 

temperatures, as estimated by past ELA reconstructions by Stansell et al., 2010) around 

12.65 ky BP, followed by a more gradual warming of approximately 1000 years until 

the beginning of the Holocene (Fig. 2). Regarding precipitation and the 

precipitation/evaporation (P/E) balance, the Cariaco records show patterns similar to 

temperature, the only difference is that the Ti curve shows a more gradual precipitation 

increase than the grayscale record in the YD-Holocene transition. In contrast, the 

Andean records indicate that drier climates did not extend over the whole YD but only 

during the so called Northern Tropical Climate Reversal (NTCR) (Stansell et al., 2010), 

extending from ~12.9 to ~12.1 ky BP. A relatively abrupt P/E increase began around 12 

ky BP extending to the early Holocene. 

 

3. Study sites 

 

The study sites (Lake Anteojos in the highlands and Lake Chonita in the GS midlands) 

are located in Venezuela, in the northernmost part of South America, between the 

Caribbean Sea to the north and the Amazon Basin to the south (Fig. 3).  

 

3.1. Site description 

 

Lake Anteojos (8° 32′ 18″ N, 71° 4′ 25″ W; 3920 m elevation) is a high-mountain lake 

situated at the Mérida Andes, the northernmost part of the Andean range. The lake is 
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situated on a glacial cirque that is currently ice free (today, the snow line is abobe 4700 

m) but was covered by ice during the LGM. Mean annual temperatures are around 3 ºC 

with low seasonal variations of 1-2 ºC, but high daily oscillations up to 30 ºC. Freezing 

occurs about 50 days per year. There is also an altitudinal dependence of temperature, 

which decreases at an average rate of -0.6 ºC/100 m elevation. Total annual 

precipitation is of 1550 mm with a short dry season (<60 mm/month) between January 

and March. The lake is ~900 m above the upper forest limit (~3000 m) within páramo 

vegetation, the highest biome of the northern Andes. The páramo is an open vegetation 

type dominated by columnar rosettes of several Espeletia (Asteraceae) species, grasses 

and cushion plants. Some patches of Polylepis sericea (Rosaceae) dwarf forests occur 

around the lake, on protected sites (Stansell et al., 2010; Rull et al., 2010b). The aquatic 

vegetation of lake shores is called azonal, as it is related to local moisture conditions, 

rather than to the general vegetation features arranged in an altitudinal pattern (Berg & 

Succhi, 2001). Human activities such as agriculture and cattle raising are, and have been 

historically, hindered by climatic conditions but tourism is presently active at the lake 

catchment. 

 

Lake Chonita (4° 39′ 0” N, 61° 0′ 57” W; 884 m elevation) lies on the GS midlands of 

the Venezuelan Guayana region. The climate is warm and humid, with annual average 

temperatures of ~21 ºC and total annual precipitation values around 1600-1700 mm, 

with a weak dry season between December and March. The lake is on a floodplain 

characterized by extensive treeless savannas dominated by C4 grasses (mainly 

Trachypogon and Axonopus) intermingled with highly diverse gallery forests along 

water courses. A special type of vegetation called “morichal”, consisting of 

monospecific palm stands of Mauritia flexuosa, grow around the lake on water-
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saturated and flooded soils. At present, the savannas and savanna-forest ecotones are 

usually burnt by humans thus contributing to savanna expansion at the expense of 

forests. The available paleoecological evidence suggests that present-day fire practices 

began around 2000 years ago (Montoya et al., 2011a, b; Montoya & Rull, 2011). 

 

3.2. Regional climatic setting and vegetation dynamics 

 

In northern South America, the main climatic parameters considered in this study, 

namely temperature and precipitation, are controlled by a variety of atmospheric 

mechanisms. Indeed, while annual average temperatures show a significant negative 

correlation with elevation, precipitation is largely controlled by the seasonal migration 

of the Intertropical Convergent Zone (ITCZ) (Poveda et al., 2006). The ITCZ is a low-

pressure tropical belt of maximum cloudiness and rainfall, and its position is determined 

by insolation and the convergence of the northeast and southeast tropical trade winds 

(McGregor and Nieuwolt, 1998). During the austral summer (December to March), the 

ITCZ is located over the Amazon basin, around 15˚ S, whereas during the boreal 

summer (June to September), the ITCZ migrates to the north, reaching the southern 

Caribbean coasts, around 10˚ N (Fig. 3). As a result, two precipitation regimes exist: a 

continuous wet zone near the equator, and a zone with a dry season north of the equator. 

The localities of this study lie in the northern area, where the dry season extends from 

December to March, when the ITCZ is in its southernmost position. 

 

Concerning vegetation dynamics, previous studies suggest that temperature (notably 

average annual temperature) was the main environmental driver in high-mountain areas, 

especially in the Andes. Moisture and CO2 atmospheric concentration (CO2
atm) have 
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also been suggested to be significant drivers of change (Bennett & Willis, 2000; Groot 

et al., 2011). Temperature controls the altitudinal distribution of plants and their 

communities, as well as their eventual vertical displacements over time (Rull et al., 

2005; Polissar et al., 2006; Rull, 2006). In the GS midlands, precipitation and available 

moisture, as expressed by the Precipitation/Evaporation (P/E) balance, have been 

proposed to have been more decisive than temperature for vegetation dynamics 

(Montoya et al., 2011a, b, c). The influence of human activities on vegetation dynamics 

seem to have been minimal in the Mérida Andes until the arrival of Europeans in the 

15th century (Rull, 2006). In the GS, on the contrary, human influence, especially fires, 

has been proposed as one of the main drivers of vegetation change during the last 2000 

years (Montoya and Rull, 2011; Montoya et al., 2011b).  
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Figure 3. A) Topographic map of Venezuela indicating the sites studied and the Cariaco Basin (CB), 

which paleoclimatic records are used as reference. B) Map of northern South America indicating the 

seasonal migration of the Intertropical convergent Zone (ITCZ), which determines the precipitation 

regimes (see text). Redrawn from Rull et al. (2010a). 

 

3. Methods 

 

Key selected paleoclimatic and paleoecological records from the sites described were 

used to assess ecological responses to YD climate shifts. Independent paleoclimatic and 

paleoecological proxies were selected in order to avoid circular reasoning. 

 

3.1. Paleotemperature proxies 

 

Paleotemperature proxies were based on the Mg/Ca ratios of foraminiferal tests from the 

Cariaco Basin and the estimates of and the Equilibrium Line Altitude (ELA) from the 

Mérida Andes. Paleoprecipitation proxies were grayscale density (Cariaco), the 

Titanium content of sediments (Cariaco and Mérida Andes) and the concentration of 

spores from the aquatic pteridophyte Isoëtes (Isoëtaceae). All of these records were 

rebuilt from raw data and reprocessed according to the specific purposes of this study. 

Raw data were obtained from our own databases (Andean and GS lake cores) or were 

downloaded from public databases (Cariaco marine cores) available at the NOAA 

National Climatic Data Center (http://www.ncdc.noaa.gov/paleo/). 264 

265 

266 

267 

268 

 

It has been demonstrated that the Mg/Ca relationship in foraminiferal tests is linked to 

temperature, as higher temperatures favor the incorporation of Mg while Ca remains 

relatively constant. Therefore, this ratio can be used as a paleotermometer when 
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properly calibrated (Lear et al., 2002). In Cariaco, previous calibrations using modern 

samples showed that Mg/Ca values in the shells of the foraminifer Globigerinoides 

ruber could be converted to average annual Sea Surface Temperatures (SST) with high 

statistical reliability, by means on a simple logarithmic expression [SST = 

ln(Mg/Ca/0.38)0.09] (Lea et al., 2003). The ELA is the altitude at which snow melting 

and accumulation are equal. This point varies according to average annual temperatures, 

as warmer climates determine lower ELAs than colder climates. Paleo-ELAs can be 

reconstructed and mapped from glacier geomorphology, which allows estimating 

paleotemperatures using the adiabatic lapse rate. In the Mérida Andes, the YD ELA was 

reconstructed using aerial photos and paleotemperatures were reconstructed using the 

present-day temperature decrease with altitude (-0.6ºC/100 m elevation) (Stansell et al., 

2010). In these highland environments, the Magnetic Susceptibility (MS) of lake 

sediments can also be used as an indirect climatic measure as it allows reconstruction of 

glacier advances, which is strongly linked with temperature drops. Indeed, increases in 

MS indicate higher input of clastic materials from the catchment into the lake, which is 

indicative of increased erosion by glacier advances (Stansell et al., 2010). 

 

In laminated sediments, individual seasonal laminae can be identified by means of 

image analysis using the 8-bit photographic scale of 256 gray tones (0-255) (Ortiz and 

O’Connell, 2004). In Cariaco, this procedure was especially useful because of the light-

dark alternation of seasonal layers. Trends towards darker grays imply the prevalence of 

terrigenous inorganic sediments transported from the continent, which is characteristic 

of wetter climates, when the ITCZ is located in the south; whereas lighter grays indicate 

greater contribution of in situ productivity, which occurs under rainy climates, when the 

ITCZ is over the site and upwelling is favored. The titanium record, for which the 
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continent is the main source, has a similar behavior. Higher Ti content (measured as 

percentage) is linked to higher terrigenous input and, therefore, wetter climates, while 

lower Ti values indicate low continental runoff and drier climates (Martínez et al., 

2007). In the Andean highlands, the Ti sedimentary content (measured as counts per 

second) is directly related to glacial erosion; hence, higher Ti values indicate increased 

catchment erosion due to glacier advance (Stansell et al., 2010). The amount of Isoëtes 

spores per cm3 of sediment (concentration) was used as a proxy for water level change 

in Lake Anteojos (Mérida Andes). This pteridophyte is frequent along Andean lake 

shores, where it lives submerged down to the depth of light penetration. The occurrence 

of Isoëtes is only dependent on the existence of inundated conditions and independent 

from the characteristics of surrounding vegetation. Therefore, its absence is indicative 

of non-flooded local environments due to dry climatic conditions characterized by low 

P/E ratios (Rull et al., 2010b). 

 

3.2. Paleoecological proxies 

 

Past vegetation reconstructions were based on pollen analysis. Since its discovery, more 

than a century ago, pollen analysis of sediments has been widely used to reconstruct 

past vegetation dynamics. At present, the degree of maturity attained by this discipline 

makes it one of the more robust tools for paleoecological purposes (Birks and Birks, 

1980; Faegri et al., 1989; Bennett and Willis, 2001). This study uses the raw pollen data 

from Rull et al. (2010b), from the same core of Stansell et al. (2010), for the Mérida 

Andes and Montoya et al., (2011a) for the Gran Sabana. In the GS, microscopic 

charcoal was used as proxy for fire incidence (frequency and/or intensity), but the origin 

of these fires, either natural or anthropogenic, is still a matter of discussion (Montoya 
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and Rull, 2011, Rull et al., 2013). Diversity indices followed Pielou (1969). The 

Shannon-Weaver index (H) was chosen because it considers both taxa richness (R) and 

equitability or evenness (E), estimated by the ratio H/Hmax, where Hmax is the 

hypothetical H for a sample with the same richness but all its components evenly 

distributed. Pollen diversity is not considered a reliable measure of actual plant diversity 

but their trends in time use to be consistent and comparable (van der Knaap, 2009). The 

software MVSP 3.13q (
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4. Results: vegetation responses 

 

4.1. Andean highlands 

 

In the Mérida Andes, pollen analysis of Lake Anteojos sediments revealed conspicuous 

changes in the composition of both montane forests and páramo vegetation, the biome 

situated between the Upper Forest Line (UFL) (~3200 m) and the snowline (~4700 m), 

as a response to the YD climatic reversal (Rull et al., 2010b). According to these 

previous results, the more sensitive taxa to the YD reversal were Poaceae, Astearaceae, 

Polylepis and Podocarpus (Rull et al., 2010b). It should be stressed that sensitivity to 

climate change is considered here in the specific context of the coring site, not in 

absolute terms. Poaceae, Asteraceae and Polylepis are elements typical of the páramo 

biomes, whereas Podocarpus grows in the uppermost layers of the montane forests 

close to the UFL, in the study area. The other 30 taxa showed remarkably smaller 

changes. All the sensitive taxa, except Asteraceae, reacted immediately (considering the 

average time resolution of the study, which is 170 years) to the B/A-YD cooling/drying, 
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Podocarpus and Polylepis showed an abrupt decrease while Poaceae rapidly increased 

(Fig. 4). Asteraceae did not respond until some centuries after, when minimum 

temperatures were attained. As stated before, the YD-Holocene warming was relatively 

gradual in the Andean highlands, whereas moisture increase was more abrupt and 

occurred before the YD-Holocene boundary, at the end of the NTCR. Polylepis 

paralleled the warming trend while Poaceae exhibited an inverse, but equally gradual 

response. Asteraceae abruptly decreased at the end of the NTCR and initiated a gradual 

increase during the EHW. Podocarpus did not react to either post-NTCR or the YD-

Holocene warming, remaining at its lower values attained during the YD temperature 

minimum and showing a conspicuous response asymmetry with respect to the YD 

climatic reversal. 
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Concerning diversity, H did not show any conspicuous change but it experienced a 

gentle decrease, attaining a minimum around the middle of the YD followed by a slight 

and sustained increase until the early Holocene (Fig. 4). The H minimum coincided with 

minima in Poaceae and maxima in Asteraceae and Podocarpus. During the YD, 

oscillations in R follow similar, though larger, variations as H: both increased when 

temperature started to increase and decreased to their minimal values with the ensuing 

moisture decline. Equitability (H/Hmax) followed somewhat opposing trends. 

 

4.2. Gran Sabana midlands 

 

In this case, the sensitive taxa were Poaceae, the dominant taxa of the GS savannas, and 

a group of tree/shrub taxa characteristic of GS shrublands (Miconia, Bonyunia, Myrsine,  
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Figure 4. Comparison of paleoclimatic trends, pollen percentages from sensitive taxa and pollen diversity 

indices in Lake Anteojos. 

 

Marcgraviaceae, Myrsine and Odontadenia). As in the case of the Andes, these taxa 

were found to be sensitive to the YD climatic shift. In the GS midlands, no independent 

paleoeclimatic records are available for comparison with the vegetation indicators. 

Instead, the Cariaco paleoclimatic trends, which are considered reliable expressions of 

regional climatic trends (Haug et al., 2001), were used as the paleoclimatic reference. 
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The studied sequence is barren of palynomoprhs until ca. 12.3 ky BP (Montoya et al., 

2011a), which hinders analysis of the vegetation response to the YD cooling. However, 

the period in which both magnitude and rates of climatic change seem to be similar to 

the projected global warming for this century are in the upper part, where palynological 

data are available. In this case, all taxa showed a rapid (average sample resolution 98 

years) and conspicuous reaction to the YD-Holocene warming; all of them except 

Poaceae decreased and most disappeared at the YD/Holocene boundary (Fig. 5). 

However, this fact cannot be attributed only to the temperature increase because fire 

incidence, represented by charcoal influx, shows a similar increase. A maximum in fire 

incidence was recorded at the end of the YD, when temperature was rising and moisture 

showed minimal values. The ensuing fire decrease did not produce any reaction in the 

taxa analyzed but another sudden and short maximum coincided with a similar Poaceae 

decline, during a minor temperature and moisture decrease. Among shrubs, Myrsine 

showed a slightly different behavior during the YD, as it increased and attained a 

maximum around 12 cal ky BP, whereas the other shrubs were already decreasing. 

From this point Myrsine followed the same trends than other shrubs. 

 

H also decreased during the YD-Holocene warming (Fig. 5). In contrast with the Andes, 

this decrease is more related to E than to R. Indeed, R was relatively high until about 11 

ky BP, where the sudden fire increase mentioned before took place, at the same time 

that temperature and moisture increased. From this point, R initiated a fluctuating trend. 
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Figure 5. Comparison of paleoclimatic trends for Cariaco basin, pollen percentages from sensitive taxa 

and pollen diversity indices in Lake Chonita. SST and Ti curves according to Lea et al. (2003) and Haug 

et al. (2001), respectively. 
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5.1. Sensitive species 

 

A general observation is that neither Andean nor GS vegetation responded collectively 

to the YD-Holocene climatic trends, only a small percentage of taxa (10-15%) proved to 

be sensitive to climate change. Ideally, sensitive taxa should be identified at species 

level but this is not always possible using only pollen. Fortunately, local and regional 

studies documenting in detail the flora and vegetation of both regions are available thus 

contributing to strengthening taxonomic resolution. Indeed, these studies have 

contributed to identify a number of species by their pollen, which otherwise could only 

be identified at genus or family level. 

 

In the Laguna Anteojos area, the genus Podocarpus is represented by P. oleifolius, 

which dominates the uppermost forest ecotone up to 3200 m elevation (Berg and Suchi, 

2001). Polylepis sericea, the only species of this genus living in the Venezuelan Andes, 

dominates in small and discontinuous forest patches within the páramo belt between 

about 3500 and 4300 m elevation, growing mostly on rocky debris (Monasterio, 1980). 

Concerning Poaceae and Asteraceae, despite some worthy attempts (Salgado-Labouriau, 

1982; Salgado-Labouriau and Rinaldi, 1990), pollen identification at genus or species 

levels is still problematic. However, comparisons with the local flora of the study area 

may provide more detailed information. The more abundant grasses around the 

Anteojos lakes are Aciachne acicularis in the páramo and Festuca tolucensis in the 

superpáramo. Therefore, it would be expected that most of the Poaceae pollen found in 

the sediments correspond to these two species. However, the high dispersion power of 
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grass pollen, in general, suggests that other species from the current regional flora could 

be present, as well. In the case of Asteraceae, usually pollinated by insects, the 

dispersion power of their pollen is lower and it can be assumed that most of the pollen 

recorded in lake sediments correspond to local species growing around the lake. The 

more characteristic elements of the páramo landscape are the columnar rosettes of the 

Compositae genera Espeletia and Coespeletia (Berg and Suchi, 2001). 

 

Bonyunia minor is a shrub or a small tree living on savannas, shrublands and forest 

edges from 100 to 1450 m elevation (Grant, 2009). In the GS, this species dominates 

peculiar type of shrublands growing on ferrugineous soils restricted to the study area of 

this paper. Miconia ciliata is a minor element in the same shrub formations but another 

species of the same genus, M. stephananthera, also occurs in palm savannas growing on 

lake shores and along water courses (Huber, 1994, 1995). Concerning Odontadenia, the 

only reported species for the GS region is O. puncticulosa, a liana from evergreen 

forests, sometimes in secondary growth and forest edges (Hansen, 1995). Myrsine is a 

genus of small trees or shrubs with several species widespread across the GS (Pipoly 

and Ricketson, 2001). Marcgraviaceae is a family of climbing shrubs or woody vines, 

whose species are common in the GS montane rainforests (Dressler, 2001). As in the 

Andes, it is expected that grass pollen may have a significant regional signal but it could 

be assumed that most of this pollen in sediments is produced by the two major savanna 

dominants, namely Trachypogon plumosus and Axonopus pruinosus (Huber, 1995). 

 

These observations contribute to improve taxonomic resolution but, in the future, it 

would be desirable to incorporate more specific proxies as for example DNA 

characterization -not only from pollen cytoplasm but also from bulk sedimentary 
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organic matter- and chemical biomarkers, two approaches that have developed 

spectacularly in the recent decades (Jansen et al., 2013; Hofreiter et al., 2008). Previous 

experiences on aquatic sediments demonstrate that most of the sedimentary DNA is 

extracellular and that the analysis of this material is useful to identify species and to 

record their relative abundance (Bisset et al., 2005; Boere et al., 2009, 2011; Coolen et 

al., 2009). 

 

5.2. Response types, drivers and potential ecological mechanisms 

 

The fact that most of the taxa represented in the pollen diagrams analyzed proved to be 

insensitive to the YD and early Holocene climatic shifts may suggest that these 

environmental changes were insufficient to overcome the range of climatic tolerance of 

the taxa involved. In other words, these taxa would be considered tolerant to YD-

Holocene climatic variability. The time period involved is too short to account for 

evolutionary changes leading to adaption (Vegas-Vilarrúbia et al., 2011). Most sensitive 

species displayed a decreasing trend during the YD-Holocene transition, especially in 

the GS. The scarcity of species with positive responses is remarkable (Table 1). 

Exceptions to this rule are the increases in Polylepis and Asteraceae in the Andean site, 

and Poaceae in the GS site. 

 

The immediate decrease of Podocarpus coeval with the B/A-YD cooling is likely due to 

its intolerance to extreme cold conditions. Podocarpus oleifolius, the species living in 

the study area, is a common tree of the upper Andean forest, where it forms dense 

forests up to the UFL (Berg and Suchi, 2001). This species does not reach higher 

elevations due to its inability to support freezing conditions (Cavieres et al., 2000), 
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which explains the absence of P. oleifolius in páramo vegetation where freezing 

temperatures are present every night (Azócar and Monasterio, 1980). Another important  
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Table 1. Responses of sensitive species to the environmental drivers considered. 

 

 Temperature and 

moisture decrease

Temperature and 

moisture increase

Fire increase 

Abundance 

increase 

Poaceae (Andes) 

 

Polylepis 

Asteraceae 

Poaceae (GS) 

Poaceae (GS) 

Abundance 

decrease 

Polylepis 

Podocarpus 

Poaceae (Andes) 

Miconia 

Bonyunia 

Odontadenia 

Marcgraviaceae 

Myrsine 

Miconia 

Bonyunia 

Odontadenia 

Marcgraviaceae 

Myrsine 

No response Asteraceae Podocarpus - 

490 

491 

492 

493 

494 

495 

496 

497 

 

 

requirement for P. oleifolius is high environmental moisture which, at the Andean UFL, 

is furnished by dense and frequent mists (Cavieres et al., 2000). The continuous 

presence of a background signal (~10%) of Podocarpus pollen is likely due to the 

contribution of long-distance sources. The high buoyancy of this pollen allows transport 

over long distances reaching the highest peaks (Rull, 2006). The lack of apparent 

response of Podocarpus to the YD-Holocene warming is surprising because both 
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temperature and moisture conditions were presumably suitable for its development and 

an increase to values like those recorded for the B/A may be expected. A similar 

situation was observed in another locality from the Venezuelan Andes, where the pollen 

of Podocarpus, together with the spores of other UFL elements (tree ferns of the family 

Cyatheaceae), experienced a significant decrease at the beginning of the YD and did not 

get back to their B/A values anymore throughout the Holocene (Rull et al., 2005). This 

was interpreted in terms of the changing intensity of upslope winds but this remains 

unproved, so far. Poaceae also displayed a decreasing trend during the YD-Holocene 

warming. Aciachne and Festuca species might be expected to be present in the pollen 

assemblage but it is also possible that the grass composition of the YD páramos were 

different from today due to the influence of CO2
atm variations on the altitudinal 

distribution of C4 plants. Working in the Colombian Andes, Boom et al. (2001, 2002) 

showed that the reduced CO2
atm during the last LGM favored the dominance of C4 

Poaceae and Cyperaceae over the modern C3 taxa in the páramos. During the Younger 

Dryas, CO2
atm was intermediate between LGM and present levels (Skinner et al., 2014) 

and, therefore, the proportion of C3 and C4 plants would have been different from both 

LGM and present times. In this framework, the maintained decrease of Poaceae pollen 

during the YD-Holocene transition would be attributed to a decline of C4 grasses, which 

is consistent with the continual increase of CO2
atm (Skinner et al., 2014). 

 

As stated above, Polylepis sericea dwarf forests are restricted to favorable 

microenvironments commonly associated with rocky substrates and water bodies, which 

provide warmer and wetter environments than those available in the surroundings thus 

alleviating periglacial effects (Monasterio, 1980). Owing to its low dispersion power, 

the pollen of Polylepis has been considered a good indicator of the local presence of 
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dwarf forests dominated by this species (Rull, 2006). The absence of Polylepis pollen 

around Lake Anteojos during most of the YD and its recovery around 12 cal ky BP 

could be explained by a combination of temperature and moisture shifts. Some authors 

have proposed that, in the Venezuelan Andes, a critical phase for Polylepis sericea 

establishment is the seedling to sapling transition, which is constrained by the frequency 

of extreme low temperatures during freezing nights (Hoch and Körner, 2005; Rada et 

al., 2009). It has been documented experimentally that freezing temperatures induce 

irreversible cell damage by ice crystal formation in saplings, whereas adult trees are 

capable of resisting ground temperatures around -6ºC (Goldstein et al., 1994; Azócar et 

al., 2007). Extreme below-zero temperatures would have been much more frequent 

during the YD than today and this could have hampered the establishment of P. sericea 

forests. However, temperature alone cannot explain why these forests did not establish 

after 12.6 cal ky BP, when temperatures began to rise. Indeed, Polylepis did not recover 

until ca. 12 cal ky BP when moisture conditions returned to pre-YD values thus 

suggesting a significant role for moisture in the re-colonization of Lake Anteojos 

catchment by Polylepis. During the early Holocene, however, a pronounced and abrupt 

moisture decrease peaking around 11 cal ky BP did not result in a Polylepis decline but, 

on the contrary, in an increase parallel to the rising temperature trend. It is possible that, 

once established, Polylepis forests were less susceptible to further temperature and 

moisture changes due to a buffering action of canopy, which may be supported by 

present-day observations showing that the frequency of nights with freezing soil 

temperatures is significantly higher in the open páramos than in the Polylepis 

understory (Rada et al., 2009). Rather than a simplistic response to either temperature or 

moisture variations, the dynamics of Polylepis forests seem to be linked to complex 
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interactions between these two climatic parameters, possibly influenced by the 

successional stage, as well.  

 

In the case of Asteraceae pollen, mostly representing Espeletia, the YD-Holocene 

increase also follows the temperature trends but, in this case, the intra-YD patterns were 

remarkably different. Contrarily to Polylepis, this pollen conspicuously increased during 

the YD, peaking around the middle of this reversal and sharply declined coinciding with 

the sudden 12 cal ky BP moisture increase. This pattern would suggest that Asteraceae 

pollen represents a species or a group of species favored by cold and dry climates, 

which is contradictory with the early Holocene trend, in which this pollen increases 

with temperature and is apparently unaffected by moisture changes. As the distinction 

of Espeletia species by means of pollen morphology is not possible, the occurrence of 

two or more of these species within the same pollen curve, with the YD species being a 

representative of the cold and dry periglacial zone, should not be dismissed. The 

vegetation of these extreme environments has been called superpáramo or desert 

páramo and is dominated by several species of the Espeletia complex (Monasterio, 

1980). In the study area, Coespeletia moritziana and C. timotensis are characteristic of 

the superpáramo and have special adaptations to low temperatures and environmental 

dryness, such as succulent leaves totally covered by a dense network of cotton-like 

trichomes and a complex apical bud in which the growth meristem is protected from 

environmental variability by a dense “dome” of leaf primordia (Monasterio, 1979). At 

present, these species and the associated superpáramo vegetation grow at approximately 

400-500 m above Lake Anteojos but paleoecological studies suggest that the lake was 

surrounded by superpáramo vegetation during the YD (Rull et al., 2010b). 
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The case of GS is different from the Andes as it involves an additional factor: fire. 

Today, anthropogenic fires are a common element in the GS ecological dynamics. Fires 

mainly start in savanna landscapes but they usually reach the forest-savanna ecotones 

resulting in a net savanna expansion at the expense of forest. The same pattern seems to 

have been occurring for the last two millennia during which the modern GS landscape 

has been shaped (Montoya and Rull, 2011; Rull et al., 2013). The charcoal record of the 

GS during YD-Early Holocene times is similar to the last two millennia and is among 

the first fire records obtained so far in the Neotropics, however, no evidence of human 

cultures exists for this period in the GS region, so far (Gassón, 2002). These fires started 

during the YD and peaked slightly before the YD-Holocene transition, coinciding with 

the driest climates of the period studied, at the beginning of the YD-Holocene warming. 

Whatever the origin of fire, such a climate would have favored vegetation ignitability 

and, hence, fire propagation. The coeval dramatic increase in Poaceae pollen suggests a 

phase of savanna expansion linked to fire increase, as occurs today. So far, this is the 

first record of savanna vegetation for the GS region (Montoya et al., 2011a). During the 

early Holocene, grasses maintained their values with some oscillations roughly parallel 

to the charcoal curve, independently of the climatic trends, which supports a potential 

role for humans in fire ignition and expansion. Therefore, the response of GS Poaceae 

to YD-Holocene climatic shifts was likely mediated by fire incidence that, in turn, was 

exacerbated by YD climates and, possibly, by early-Holocene human practices. 

 

Besides Poaceae, all the other GS taxa significantly declined during the YD-Holocene 

warming. As stated above, all these taxa are characteristic of today’s GS shrublands 

and/or forests, and a negative effect of either temperature or moisture (or both) increase 

on them would be hard to understand. In spite of the scarcity of autoecological studies 
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on these taxa, some data suggest that increased moisture characteristic of the YD-

Holocene warming would be favorable for their development and population expansion. 

For example, field observations reveal that Miconia ciliata is relatively drought-

intolerant, as experimental irrigation improved photosynthetic rates and caused 

flowering and fruiting during the dry season thus spreading reproductive activity across 

the whole year, thus contributing to population growth (Fortini et al., 2003; Aragão et 

al., 2005). As in the case of Poaceae, with the available evidence, fire is the more 

plausible explanation. In this case, however, the first fire event that occurred at the end 

of the YD was enough to virtually remove these taxa from the Lake Chonita catchment, 

around which grassland savannas established and endured until the present (Montoya et 

al., 2011a, b). The ensuing Holocene fire events would have maintained or expanded the 

savanna vegetation by precluding forest recolonization (Montoya and Rull, 2011). 

 

5.3. Response lags 

 

Remarkably, response lags of sensitive taxa to temperature and moisture shifts were 

below sampling resolution. However, the time resolution of this study is not enough to 

know the actual response lags of the species involved. We now know that this lag is 

below 170 years in Lake Anteojos (Andes) and 98 years in Lake Chonita (GS) but a 

higher resolution study is required to attain more precision. High-resolution 

palynological studies for the time period considered here are absent in the Neotropics. 

Studies from northern Europe show that vegetation responded to YD climatic shifts 

without apparent lags (sampling resolution: 8-30 years) (Ammann et al., 2000). In the 

Cariaco basin, studies on other time intervals showing abrupt climatic changes 

(Heinrich events H3 to H6, ca. 70 to 30 ky BP), indicated also rapid vegetation 
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responses, although exact time lags were not quantified (González et al., 2008). Also in 

Cariaco, a high-resolution study using plant biomarkers (alkanes from the cuticular leaf 

waxes) as proxies for vegetation change reported a lag of ~50 years between climate 

changes around the YD and vegetation responses (Hughen et al., 2004). A parallel high-

resolution study of Cariaco YD sediments using pollen is worth conducting for 

comparison. According to the results of these studies, the minimum resolution required 

to estimate biotic responses to YD climatic shifts in Lake Anteojos should be of less 

than 50 years per sampling interval. 

 

5.4. Changes in taxonomic composition 

 

In the Andean locality under study, pollen assemblage change was measured using a 

dissimilarity index (Euclidean distance) between a surface sample representing the 

present and Lateglacial samples (Rull et al., 2010b). This index was low during B/A and 

EHW times and displayed its maximum values during the YD, peaking at 12.6 cal ky 

BP, coinciding with minimum temperatures. Sensitive taxa, notably Podocarpus, 

Polylepis and Poaceae, were primarily responsible for these changes in taxonomic 

composition likely due to altitudinal reorganizations of these taxa (Rull et al., 2010b). 

Therefore, YD páramos around Lake Anteojos were different –i.e., more grassy and, 

possibly, with a higher proportion of C4 plants (Boom et al. (2002)- and devoid of dwarf 

forests- from the present ones. In other words, the YD climatic reversal did not caused a 

vegetation replacement but the reorganization of the existing vegetation components 

leading to a different state of the same community. The YD páramos came back to their 

former composition when the climatic drivers returned to their former values thus 

showing reversible character of this community shift. A recent study developed in the 
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Colombian Andes covering the same time interval shows similar results in terms of 

transient community changes owing to climatically-driven individual upslope and 

downslope migrations (Velásquez and Hooghiemstra, 2013). In the GS, vegetation 

changes were more drastic as the ligneous vegetation that dominated during the YD was 

totally replaced by a treeless savanna (Montoya et al., 2011a), likely by the combined 

action of climate and fire. However, it should be highlighted that the YD shrublands 

were different in composition from any other GS shrubland known today. Indeed, these  

ligneous communities have elements from different extant GS shrubland types but in a 

unique combination not occurring today (Montoya et al., 2011a). Therefore, in this 

study, two types of non-analog plant assemblages with respect to the present ones have 

been documented, one in which the same elements vary their relative abundances 

(Andes) and another that is physiognomically similar to present-day shrublands but is 

composed by a different taxonomic combination (GS region). 

 

5.5. Biodiversity trends 

 

In the Andes, diversity does not seem to have been significantly affected by the YD 

climatic reversal as shown by the hammock-like curve of the H index. Perhaps the more 

interesting observation is the opposite trend of R and E curves, indicating that the more 

taxa rich an assemblage is the less equitable are the relative abundances of these taxa. 

For example, a maximum of R occurred around the 12.6 cal ky BP temperature 

minimum but H was minimal because the assemblage was dominated by grasses 

(coinciding with the maximum dissimilarity with respect to modern páramo 

communities) causing an E decline. The situation is radically different shortly after, 

when the increases of Asteraceae and Polylepis heightened E but H did not recover 
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because of a minimum in R. These changes are not linked to any evident climatic signal 

and their causes remain unknown. The subsequent warming determined a general 

ascending trend in H, R and E reaching their maximum values during the early 

Holocene. Therefore, the YD-Holocene warming stimulated both the taxonomic 

enrichment of the páramos and the equitability of their relative abundances thus 

increasing the ecological diversity. In the GS, the situation is different as the H trends 

run parallel to E variations. These two parameters exhibit a dramatic decline coinciding 

with the same trend in the ligneous elements and the YD charcoal increase. R remained 

at high values indicating that the removed shrubland taxa were replaced by others from 

savanna vegetation thus retaining the total number of taxa present. The decline in E was 

due to the absolute dominance of Poaceae once the treeless savannas replaced the 

former shrublands. R did not decline until ca. 11 cal ky BP when the fires commenced. 

 

5.6. Responses according to elevation and vegetation types 

 

Whether highland Andean páramos and midland GS shrublands and savannas 

responded in a different fashion to similar climatic shifts is the main question here. This 

issue can be only analyzed for the YD-Holocene warming because of the lack of 

palynological record in the GS during the B/A and the first part of the YD. As it has 

been noted previously, sensitive highland taxa reacted to temperature shifts but were 

poorly responsive to moisture variations (but see González-Carranza et al., 2011 for a 

contrasting situation in the Colombian Andes). In the GS, on the contrary, the coupled 

action of warming and drying seem to have been decisive for fire exacerbation thus 

causing larger vegetation changes involving community replacement. In addition, in the 

GS, a potential role for human disturbance through fire should not be dismissed. In the 
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Venezuelan Andes, on the contrary, human disturbance has been considered to be low 

until the European contact. Indeed, indigenous pre-Columbian populations seem to have 

been small, marginal and, as a consequence, of reduced ecological significance 

(Wagner, 1979). Therefore, the same climatic shifts have determined different biotic 

responses due to disparities in the biomes involved and also in eventual anthropogenic 

factors. 

 

5.7. Non-linear and threshold responses 

 

As noted before, intra-community reorganizations have been the main changes observed 

in the Andean site studied here as a consequence of the climatic shifts occurring around 

the YD reversal. Therefore, no threshold-crossing processes seem to have occurred 

during that time. In the GS region, however, the significant and relatively rapid 

replacement of shrublands by savannas could be a potential candidate for an ecological 

process involving positive feedbacks leading to thresholds beyond which changes are 

irreversible. This confirms previous observations by Rull et al. (2013), who consider the 

progressive savannization of the GS region as a process of this nature, with moisture 

and fire as the main drivers, and grassy biomass accumulation and soil degradation as 

the more likely thresholds. According to the results summarized by these authors, the 

coupling of aridity and anthropogenic fires determine the progressive reduction of 

forests and the expansion of savannas. Due to the high flammability of savanna 

vegetation, a positive feedback soon develops exacerbating landscape burning by fuel 

(i.e., flammable grasses) accumulation. Present-day ecological studies carried out in the 

GS have demonstrated that the savannization triggers an irreversible degradation 

process leading to nutrient-poor soils with the accumulation of toxic aluminum and low 
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water-retention capacity, on which only savannas grow (Dezzeo et al., 2004; Dezzeo 

and Chacón, 2005). As a result, forest recovery becomes impossible. It is possible that 

the same process occurred in the YD shrublands, which is supported by the total 

disappearance of these communities in the early Holocene and its absence during the 

whole Holocene, even in the absence of fire (Montoya et al., 2011, a, b). 

 

5.8. Future response predictions and potential conservation strategies 

 

The results obtained in the present paper could be useful as past analogs available for an 

informed forecast on the potential future biotic responses of highland and midland 

vegetation in the studied regions. Overall, most of the taxa present would be able to 

tolerate the warming projected for the end of this century, except for a small number of 

sensitive taxa that have been identified. We also demonstrated that vegetation responses 

to the same climatic factors vary according to the biome and the peculiarities of the 

region under study, therefore, no any survey may be generalized. Special care should be 

taken in the midlands (extending to the lowlands) with climatic drivers that, acting 

alone or coupled, may favor fire exacerbation. In the highlands, the main climatic driver 

is temperature, whose principal effect is the upward migration of sensitive species. 

Although it has not been recorded in this work, the main threat of upslope migration in 

mountain region is extinction by habitat loss, a possibility that should be seriously 

considered here and in other Neotropical mountains (Rull and Vegas-Vilarrúbia, 2006; 

Nogué et al., 2009; Rull et al., 2010a). Another lesson from this study is that 

communities different from those we know today should be expected to occur in both 

highlands and midlands. As a consequence, we should be prepared for changes not only 

in relative abundances but also in taxonomic composition. Our results provide some 
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insights into the range of possibilities to be expected but eventual surprises should not 

be disregarded (Williams and Jackson, 2007; Williams et al., 2007). In light of the 

results obtained, a corollary is that conservation plans for the highlands and midlands 

studied here should focus on individual species (the sensitive species), rather than 

communities or biomes (Vegas-Vilarrúbia et al., 2011; Rull et al., 2013). 
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