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ABSTRACT

Mitochondrial membrane lipid composition is a critical factor in non-alcoholic 

steatohepatitis (NASH). Exercise is the most prescribed therapeutic strategy against 

NASH and a potential modulator of lipid membrane. Thus, we aimed to analyze 

whether physical exercise exerted preventive (voluntary physical activity-VPA) and 

therapeutic (endurance training-ET) effect on NASH-induced mitochondrial 

membrane changes. Sprague-Dawley rats (n=36) were divided into standard-diet 

sedentary (SS, n=12), standard-diet VPA (SVPA, n=6), high-fat diet sedentary (HS, 

n=12) and high-fat diet VPA (HVPA, n=6). After 9 weeks of diet-specific feeding, 

half of SS and HS group were engaged in an ET program for 8 weeks/5d/week/1h/day 

(SET, HET). Liver mitochondria were isolated for oxygen consumption and 

transmembrane-electric potential (ΔΨ) assays. Mitochondrial phospholipid classes 

and fatty acids were quantified through thin layer chromatography and gas 

chromatography, respectively, while cardiolipin (CL), phosphatidylcholine (PC) 

phosphatidylethanolamine (PE) and phosphatidylinositol (PI) molecular profile was 

determined by electrospray mass spectrometry. In parallel with histological signs of 

NASH, high-fat diet decreased PI, CL and PC/PE ratio, whereas PE and phosphatidic 

acid content increased in sedentary animals (HS vs. SS). Moreover, a decrease in 

linolelaidic, monounsaturated fatty acids content and an increase in saturated fatty 

acids (SFAS) were observed. Along with phospholipidomic alterations, HS animals 

showed a decrease in respiratory control ratio (RCR), ΔΨ and FCCP-induced 

uncoupling respiration (HS vs. SS). Both phospholipidomic (PC/PE, SFAS) and 

mitochondrial respiratory alterations were counteracted by exercise interventions. 

Exercise used as preventive (VPA) or therapeutic (ET) strategies preserved liver 
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mitochondrial phospholipidomic profile and maintained mitochondrial function in a 

model of NASH.

Keywords: physical activity; membrane; phospholipids; fatty acids; NAFLD. 
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1. INTRODUCTION

Western lifestyle, characterized by fat-rich diets and physical inactivity, resulted in a

growing incidence of metabolic disorders such as obesity, diabetes and non-alcoholic 

fatty liver disease (NAFLD). In NAFLD spectrum, NASH is recognized as the most 

dangerous disease-stage since it is associated with increased risk of cirrhosis

development, and consequent liver-associated morbidity and mortality (Matteoni et 

al. , 1999). Although the pathogenesis of NASH is not completely understood, 

mitochondrial alterations are crucial for the development and progression of the 

disease (Grattagliano et al. , 2012). Recently, some authors suggested that the

perturbation of mitochondrial membrane lipid homeostasis influences mitochondrial 

function and induces liver damage (Aoun et al. , 2012a, Aoun et al. , 2012b, Arendt et 

al. , 2013, Li et al. , 2006). In fact, lipid-homeostasis has an essential role on 

mitochondrial physiological status due to its involvement in membrane structure and 

fluidity, cellular energy production and signaling (Modi and Katyare, 2009, Patil and 

Greenberg, 2013, Shi et al. , 2013). Among phospholipid classes, cardiolipin (CL) is

the “signature phospholipid” of mitochondria with a central role in organelle 

bioenergetics (Claypool and Koehler, 2012), whereas phosphatidylcholine (PC) and 

phosphatidylethanolamine (PE) amounts regulate membrane integrity (Li, Agellon, 

2006). Moreover, both CL and PE play a crucial role in mitochondrial morphology 

maintenance (Joshi et al. , 2012, Tasseva et al. , 2013). Aoun et al. (Aoun, Fouret, 

2012b), observed that rats fed a fish oil-rich diet containing 30% of fat have reduced 

liver CL content and increased PE content with a consequent decrease of

mitochondrial complex I activity. These results provide a novel insight regarding 

NASH-related mechanisms and therapeutic approaches. Actually, since no approved 

drugs exist for NASH treatment, lifestyle modifications are still the cornerstone 
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strategy. Therefore, physical activity has been considered as an important component 

of lifestyle interventions, with promising systemic (Promrat et al. , 2010), hepatic 

(Kistler et al. , 2011) and mitochondrial beneficial effects (Ascensao et al. , 2013, 

Goncalves et al. , 2013). In fact, voluntary exercise or high aerobic capacity improve

hepatic mitochondrial function at multiple levels, including the increase of 

cytochrome c content, increased fatty acid oxidation and mitochondrial enzyme 

activities, therefore preventing liver steatosis progression (Rector et al. , 2008, Rector 

et al. , 2011, Thyfault et al. , 2009). Moreover, Kalofoutis (Kalofoutis, 1984)

demonstrated that endurance training (ET) modulates liver mitochondrial 

phospholipid profile decreasing PE and increasing PC content. However, to the best 

of our knowledge, data regarding the effects of exercise on liver mitochondrial 

membrane characteristics in a NASH phenotype are so far unknown. 

Therefore, our hypothesis for the present work is that both ET and voluntary physical 

activity (VPA) used as therapeutic and preventive approaches, respectively, decrease

liver mitochondria phospholipidomic alterations induced by high-fat diet model of 

NASH, thus contributing to the maintenance of mitochondrial function. 
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2. METHODS

2.1. Animal and diet treatment

The local Institutional Ethics Committee approved this study, which was in 

compliance with the Guidelines for Care and Use of Laboratory Animals in research 

advised by the Federation of European Laboratory Animal Science Associations 

(FELASA). Male Sprague-Dawley rats (n=36) with 5-6 weeks old (125-150g) 

purchased from Charles River (L´Arbresele, France), were housed in individual cages 

under controlled environmental conditions (21-22 ºC; 50-60% humidity, with 

12light/dark cycles) and free access to water and food. Animals were then randomly 

assigned into six groups (n=6/group): standard-diet sedentary (SS), standard-diet 

voluntary physical activity (SVPA), standard-diet endurance-trained (SET), high-fat 

diet sedentary (HS), high-fat diet voluntary physical activity (HVPA) and high-fat diet 

endurance-trained (HET). As diets were liquid, in the first week of feeding protocol a 

standard diet was given to all animals to promote adaptation. Thereafter, considering 

the previously described groups, the animals were fed by a standard or high-fat diet 

for 17 weeks. The isocaloric standard (containing 35% energy from fat, 47% from 

carbohydrates, and 18% from protein) or high-fat diets (71% energy derived from fat, 

11% from carbohydrate, and 18% from protein) were purchased from Dyets Inc. 

(Bethlehem, USA). 

2.2. Exercise protocol

Animals from voluntary exercised groups (SVPA and HVPA) were housed in

individual cages equipped with running wheels and a digital counter from which 

running distance was daily obtained between 08.00 and 10.00h. The access to VPA 

was given during the 17 weeks of the feeding protocol (preventive perspective), while 
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ET only began after 8 weeks, when metabolic-related disorders were already evident

(therapeutic perspective). In the first week of the exercise protocol, the animals (SET 

and HET) were adapted to the treadmill for 5 days at 15m/min and 0% grade until 

30min was achieved. Thereafter, endurance exercise was performed for 8 weeks,

5days/week, 60min/day at a starting speed of 15/min that was gradually increased 

until 25m/min was reached. In parallel, the sedentary groups (SS and HS) were placed 

on a non-moving treadmill in order to expose the animals to the same environmental

and handling conditions. 

2.3. Blood and Tissue preparation

Rats were anaesthetized (Ketamine 90mg/Kg and Xylazine 10 mg/Kg) after 17 weeks 

of diet and exercise. The blood of each animal was drawn from the heart, centrifuged 

(3000xg, for 10min at 4ºC) and stored for further analysis (-80ºC). Thereafter, the 

organs were perfused (0.9% NaCl) and the liver, heart, and visceral fat were excised 

and weighed. Liver right lobule was used for mitochondrial isolation and light and

electron microscopy. The adiposity index was calculated as (100·(sum of fat pad 

weights)/(body weight)) (Taylor and Phillips, 1996).

2.4. Histology

2.4.1. Light microscopy

Liver tissues were quickly removed after animal sacrifice and fixed with 4% buffered 

paraformaldehyde, processed routinely and embedded in paraffin. The embedded 

samples were then sectioned (5m), deparaffinized with xylene and re-hydrated with 

decreasing concentrations of ethanol. Finally, the samples were stained with 

haematoxylin and eosin and examined in a light microscope (Olympus BX61). The
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histological examination was blindly performed by two pathologists in three sections 

per slide based on NAFLD activity score (NAS score). In brief, the proposed NASH 

score was achieved by summing the scores of steatosis (0-3), lobular inflammation (0-

2) and hepatocellular ballooning (0-2).  A total score of 0-2 represents no 

steatohepatitis, 3-4 questionable and 5 or more, definite steatohepatitis (Kleiner et al. , 

2005). 

2.4.2. Electron microscopy

Liver tissues were immediately fixed in a 2.5% of glutaraldehyde solution, post-fixed

for 2 hours in 1% osmium tetroxide and dehydrated in graded ethanol. The dehydrated 

samples were then embedded in Epon resin blocks. Thereafter, specimen blocks were 

sectioned (50-60nm), collected on cooper grids and stained with uranyl acetate, lead

citrate. Finally, each grad was examined under a transmission electron microscope 

(JEM-1400) and the acquire images were blindly semi-quantified by a single subject, 

using a previously described criteria (Ahishali et al. , 2010). 

2.5. Liver Mitochondrial Isolation

Liver mitochondria were daily prepared by a conventional differential centrifugation 

method. The right liver lobule was harvested and minced in an ice-cold isolation 

buffer containing 250mM sucrose, 10mM Hepes, 1mM EGTA, pH 7.4 and 0.1% 

defatted BSA. Minced blood-free tissue was then mechanically homogenized with a 

glass Potter-Elvejhem in the presence of isolation medium (7g/50ml). The 

homogenate was centrifuged at 800xg for 10min at 4ºC and the resulting supernatant 

was centrifuged at 10,000xg for 10min at 4ºC. Mitochondrial pellet was ressuspended 

using a paintbrush and centrifuged twice at 10.000xg for 10min to obtain a final 
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mitochondrial suspension. Both EGTA and BSA were omitted from the medium 

(250mM sucrose, 10mM Hepes pH 7.4) in the two last centrifugations. After isolation

proceedings, mitochondrial protein was determined by the Biuret method (Van 

Norman, 1909) using BSA as standard. The fresh mitochondrial suspensions (≈40-

50mg protein/ml) were maintained in ice (0-4ºC) during the oxygen consumption and 

transmembrane electrical potential assays, which were carried out within 4h. 

2.6. Bioenergetics 

2.6.1. Mitochondrial oxygen consumption assays

Oxygen consumption of isolated mitochondria was determined polarographycally at 

25ºC with a Biological Oxygen Monitor System (Hansatech Instruments) and a Clark-

Type oxygen electrode (Model DW1, Hansatech). Liver mitochondria (0.8 mg) and

substrates for the different assays, namely glutamate-malate (5mM and 2.5mM) and 

succinate (5mM) were added into a reaction medium containing 130mM sucrose, 

50mM KCl, 2.5mM KH2PO4, 5mM HEPES, 2mM MgCl2 (pH 7.4) under constant 

stirring. For complex II-assays, succinate was added with rotenone (3M) to inhibit 

complex I.  The respiratory parameters included: state 3 determined after adding ADP 

(156 nmol/mg) and state 4 measured as the rate of oxygen consumption after ADP 

phosphorylation. The state 4 with complex II substrates was also measured in the 

presence of oligomycin (2g) and carbonylcyanide-p-trifluromethoxyphenylhydrazon 

– (FCCP, 0.5M). Mitochondrial inner membrane integrity was estimated as the ratio 

between uncoupled respiration induced by FCCP addition and the respiratory rate in 

the presence of oligomycin (FCCP/oligomycin).  The respiratory control ratio (RCR) 

was calculated as the ratio between state 3/state 4, while the ADP/O was calculated as

the number of nmol ADP phosphorylated by natom O2 consumed (Estabrook, 1967). 
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2.6.2. Mitochondrial transmembrane electrical potential assays

Mitochondrial transmembrane electric potential () was indirectly monitored based 

on the activity of the lipophilic cation tetraphenylphosphonium (TPP+), using a TPP+ -

selective electrode prepared in our laboratory as described by Kamo et al. (Kamo et 

al. , 1979) in combination with a silver chloride reference electrode (Tacussel, Model 

MI 402, France). The TPP+ and the reference electrode were inserted in an open 

chamber, connected to a pH meter (Jenway, Model 30505, UK). The obtained signals 

were fed to a potentiometric recorder (Kipp & Zonen, Model BD 112, Holland).

was estimated as indicated by Kamo et al. (1979) through the equation:  = 59xlog 

(/V) – 59xlog (10 E/59-1), where , V, and ΔE stand for mitochondrial volume, 

volume of the incubation medium, and deflection of the electrode potential from the 

baseline, respectively. A matrix volume of 1.1 l/mg of protein was assumed and no 

correction was made for the “passive” binding to the mitochondrial membranes, since 

the purpose of the experiments was to show relative changes in  rather than 

absolute values. Liver mitochondria (0.8mg) were incubated in a reaction medium

containing 130mM sucrose, 50mM KCl, 2.5mM KH2PO4, 5mM HEPES, 2mM MgCl2

(pH 7.4), supplemented with TPP+ (3M). The measurement of  with complex-I

and complex II-linked substrates energization was performed with glutamate-malate 

(5mM and 2.5mM, respectively) or succinate (5mM) plus rotenone (3M) and

depolarization was achieved by adding ADP (156nmol/mg). 

2.7. Lipid extraction

The lipids were extracted from mitochondrial polls through Bligh and Dyer method 

(Bligh and Dyer, 1959). In brief, 3.75 mL chloroform–methanol 1:2 (v/v) was added 

to each sample, vortexed, and incubated on ice for 30 min. Follow the incubation 
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period, 1.25 ml of chloroform plus 1.25ml of doubly distillated water were added, and

the samples were vortexed and centrifuged at 153xg for 5 min at 22ºC to obtain a two-

phase system (aqueous top phase and organic bottom phase). The lipid extracts, 

recovered from the bottom phase, were dried using a nitrogen flow and stored at 

−20 °C. 

2.7.1. Mitochondrial phospholipid separation

The different classes of phospholipids present in mitochondrial lipid extracts were 

separated by thin layer chromatography (TLC). Silica gel plates (Merck 2.5 x 20 cm) 

were washed with chloroform/methanol (1:1) and sprayed with 2.3% of boric acid. 

The lipid extracts (30ug) were applied in the TLC plates, which were developed with 

chloroform–ethanol–water–triethylamine (30:35:7:35 (v/v)) as mobile phase. In order 

to observe lipid spots, TLC plates were sprayed with primuline and exposed to 

ultraviolet light. The different phospholipid classes were identified by comparison 

with lipid standards. Finally, the spots were scraped from the TLC plates and lipid 

classes were extracted for further assays (Ferreira et al. , 2013).

2.7.2.Quantification of mitochondrial membrane phospholipids

To evaluate the phospholipid content of silica-gel scrapings from TLC plates, the 

phosphorus assay was performed by a method described elsewhere (Fuchs et al. , 

2011). Briefly, perchloric acid (70%) was added to phosphate standards and samples, 

which were then incubated for 1 h at 180 °C. Thereafter, doubly distillated water, 

ammonium molybdate, and ascorbic acid were added to the standards and samples, 

which were then incubated for 5 min at 100 °C. The samples were centrifuged for 5 

min at 2451xg to separate phospholipids from silica. Finally, the standards and sample 
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solutions were measured at 800 nm in a plate reader. 

2.7.3. Characterization of phospholipids profile

Characterization of individual molecular species of PE, PC and CL classes were 

achieved through mass spectrometry (MS) using a linear ion trap (LXQ; Thermo 

Finnigan, San Jose, CA, USA). The MS analysis was performed after separation of 

CL by TLC (point 2.7.1) and after separation of PE and PC by liquid chromatography 

(LC). HPLC system (Waters Alliance 2690) was used with a Ascentis®Si column 

(15 cm × 1 mm, 3 μm) and a precolumn split (Acurate, LC Packings, USA) in order to 

obtain a flow rate of 30 μL min−1. The solvent system consisted in two mobile phases 

as follows: mobile phase A (acetonitrile:methanol:water; 50:25:25 (v/v/v) with 1 mM 

ammonium acetate) and mobile phase B (acetonitrile:methanol 60:40 (v/v) with 1 mM 

ammonium acetate). Initially, 0% mobile phase A was held isocratically for 8 min 

followed by linear increase to 60% of A within 7 min and maintained for 22 min. The 

phospholipids were separated by HPLC, which was coupled to a linear ion trap (LXQ; 

Thermo Finnigan, San Jose, CA, USA) mass spectrometer. The LXQ were operated in 

negative (electrospray voltage −4.7 kV) with 275 ºC capillary temperature and the 

sheath gas flow of 8 U. Normalized collision energy™ (CE) varied between 20 and 

27 (arbitrary units) for MS/MS. Data acquisition was carried out on an Xcalibur data 

system (V2.0) (Ferreira, Guerra, 2013). Relative quantitation of individual 

phospholipid species were determined by the ratio between the area of reconstructed 

ion chromatogram of a given m/z value against the area of the reconstructed ion 

chromatogram of the internal standard of the respective class (dimyristoyl-

phosphatidylethanolamine, dimyristoylphosphatidylcholine, dimyristoyl-

phosphatidylserine, all phospholipid standard were purchased from Avanti Polar 
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Lipids).

2.7.4. Fatty acid analysis

The fatty acid content of the total lipid extract was evaluated by measuring the fatty 

acid methyl esters through gas chromatography (GC), according to a previously 

described method (Aued-Pimentel et al. , 2004). Briefly, a methanolic solution of 

potassium hydroxide (2M) and a saturated solution of NaCl were added to lipid 

extracts (60μg), vortexed and centrifuged for 5min at 613xg to obtain a two-phase 

system. The fatty acid methyl esters recovered from the bottom phase were dried 

using a nitrogen flow and ressuspended in hexane. The C17 (7.5μg) fatty methyl ester 

was used as internal standard. The GC injection port was programmed at 523.15 K 

and the detector at 543.15 K. Oven temperature was programmed as follows: initially 

stayed 3 min at 323.15 K, raised to 453.15 K (25K.min-1), held isothermal for 6 min, 

with a subsequent increase to 533.15 K (40K.min-1) and maintained there for 3 min, 

resulting in a total of 19 minutes. The carrier gas was hydrogen flowing at 1.7ml.min-1. 

The gas chromatograph (Clarus 400, PerkinElmer, Inc. USA) was equipped with DB-

1 column with 30m lengths, 0.25mm internal diameter and 0.15μm film thickness 

(J&W Scientific, Agilent Technologies, Folsom, CA, USA) and a flame ionization 

detector.

3. STATISTICAL ANALYSIS

The results were expressed as means and standard error means (mean±SEM) for each 

experimental group. 2-way ANOVA independent-measures test followed by 

Bonferroni post hoc test was used for comparisons between groups and differences 
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were considered significant at p < 0.05. Statistical Package for Social Sciences (SPSS 

Inc, version 20) was used for all comparisons.
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4. RESULTS

4.1. Animal characteristics

Seventeen weeks of high-fat diet treatment significantly increased adiposity index

(AI) and HDL and decreased VLDL and TG serum levels (Figure 1 and 2) in 

sedentary animals (HS vs. SS). Both exercise regiments improved all anatomic 

measures (body weight, heart/body weight and AI) and TG levels, in standard diet

groups. The anatomic alterations were also observed in high-fat diet groups for ET, 

while VPA only diminished AI. No alterations were observed in ALT serum levels 

and energy intake per group. 

***Insert Figure 1 and 2***

4.2. Histological Analysis

The histological analysis of liver tissue (Panel D, E, F) showed an accumulation of 

microvesicular and macrovesicular lipid droplets and hepatocyte ballooning (Figure 

3) in the high-fat diet groups. Moreover, the NAFLD activity scoring (NAS) system

revealed that both HS and HV animals developed a NASH typical phenotype (Table 

1). These histological features were attenuated in ET group being the score 

classification of “definitive NASH” downgraded to “questionable NASH”.  

***Insert Table 1 and Figure 3***

Ultrastructural analysis performed in liver tissue demonstrated that high-fat feeding in 

sedentary and voluntary-exercised animals (HS vs. SS and HVPA vs. SVPA)

increased the number of abnormal mitochondria, with loss of cristae and 
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intramitochondrial granules, rarefied matrix and swelling. These mitochondrial 

alterations were clearly prevented by ET (Figure 4, Panel F). 

***Insert Figure 4***

4.3. Mitochondrial phospholipid class content

Following the characterization of mitochondrial structural features, we next aimed to 

measure the content of mitochondrial phospholipids. High-fat diet treatment increased 

the relative amount of phosphatidylethanolamine (PE) and phosphatidic acid (PA)

whereas phosphatidylinositol (PI), cardiolipin (CL) and PC/PE ratio were reduced in 

sedentary animals (Table 2). Both exercise regimens increased PC relative content 

and thus PC/PE ratio in high-fat diet group. Moreover, VPA increased the amount of 

PI and decreased PA and PE in high-fat fed animals. 

To determine the profile of major classes of phospholipids, analysis of the total lipid 

extracts were performed by LC-MS and MS/MS and off- line TLC-MS and MS/MS. 

Data obtained from LC-MS allowed us to determine the relative abundance of each 

molecular species within each class. The PE and PC molecular profiles were affected 

by diet and/or exercise treatment or their interactions. As shown in Figure 5, the 

molecular species bearing linoleic acid (PE (16:0/18:2) and PC (16:0/18:2)) increased 

in HET group. The diet affected the abundances of the molecular species PE 

(16:0/20:4) and PC (16:0/18:1), inducing a decrease of these species for all high-fat 

fed animals. However, VPA and ET decreased the species PE (16:0/22:6 and 

18:0/22:6) and PC (16:0/20:4 and 16:0/22:6) in both diets. No differences were 

observed in PC (18:0/22:6) molecular specie as well as in PE (16:0/18:1) molecular 
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specie for all treatments. Regarding PI, one major specie (m/z 885, PI (18:0/20:4)) 

was observed and no differences were found between groups (data not shown).

In the ESI-MS spectra obtained from CL extract of control animals, previously 

separated by TLC (the first three spectra of Figure 6), two major [M-H]- ions at m/z 

1449.7 attributed to the (CL (C18:1) (C18:2)3) and at m/z 1451.7 attributed to the (CL

(C18:1)2 (C18:2)2) were observed. Both correspond to the most abundant CL 

molecular species in mitochondria and no changes were observed among the 3 groups. 

However, alterations in liver mitochondrial CL molecular profile were observed in the 

extracts of animals fed the high-fat diet. In the ESI-MS spectra obtained from HS rats,

a small decrease of m/z 1451.7 ionic species (CL (C18:1)2 (C18:2)2) compared with 

ion at m/z 1449.7(CL (C18:1) (C18:2)3) was found. This tendency was even more

evident in HT animals (Figure 5).

***Insert Table 2 and Figure 5 and 6***

4.3.1. Mitochondrial fatty acid content

As shown in Table 3, liver mitochondrial contents of saturated fatty acids (SFAs)

(C18:0) and linoleic acid (C18:2n6c) were increased after high-fat diet treatment, 

while linolelaidic acid (C18:2n6t) and monounsaturated fatty acids (MUFAs)

(C18:1n9c) were diminished (HS vs. SS). ET was able to reduce SFAS (C16:0 and 

C18:0) and increase polyunsaturated fatty acids (PUFAs) (C18:2n6c) in high-fat diet 

group, whereas VPA only decreased SFAs (C16:0). 

***Insert Table 3***



Page 18 of 44

Acc
ep

te
d 

M
an

us
cr

ip
t

18

4.4. Liver mitochondrial bioenergetics

Following the characterization of mitochondrial lipid membrane components, we next 

evaluated mitochondrial bioenergetics. Figure 7 shows that RCR and maximal ΔΨ 

with glutamate-malate were significantly diminished by high-fat diet feeding (HS vs. 

SS), however only RCR was improved by exercise regiments. No changes were 

observed with substrates for complex II-driven respiration (data not shown). 

As expected, high-fat diet decreased FCCP-uncoupling respiration in sedentary 

animals (HS vs. SS), however no changes were observed in the presence of 

oligomycin or in FCCP/Oligomycin ratio (Table 4). ET and VPA improved FCCP-

uncoupling respiration and FCCP/Oligomycin ratio in high-fat diet groups.

Nevertheless, in standard diet groups these alterations were only observed for VPA

(SVPA vs. SS). 

***Insert Figure 7***

***Insert Table 4***

5. DISCUSSION

5.1. Overview of findings

High-fat rich diets and sedentary behaviours are the major risk factors for metabolic 

diseases, among which NAFLD is the most common hepatic disorder. In this sense,

dietary modifications and physical activity has been described as the “golden

standard” preventive and/or therapeutic strategy against NAFLD/NASH. However, 

few studies have addressed the effect of exercise on NASH-related mechanisms, 

namely those involving mitochondria. To our knowledge, this is the first study 

analysing the preventive (VPA) and therapeutic (ET) effect of physical exercise on 
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NASH-induced liver mitochondrial phospholipidomic alterations. The major findings 

of this study suggest that both ET and VPA were able to modulate mitochondrial 

membrane integrity and fluidity, through the modulation of PC/PE ratio, which may 

have contributed to preserve bioenergetic function (RCR and FCCP-uncoupling 

respiration and FCCP/oligomycin ratio). Despite both exercises mitigated NASH-

induced liver mitochondrial membrane and bioenergetic disruption, ET was more 

efficient in the modulation of anatomic and histological measures. 

5.2. Characterization of the animal model

Studies suggest that patients with normal weight but high levels of visceral adiposity 

have a great risk to develop NAFLD (Chen et al. , 2006, Kim et al. , 2004). In 

accordance with previous data (Lieber et al. , 2004, Wang et al. , 2009, Wang et al. , 

2008), in the present study no changes were observed in body weight, while adiposity 

was significantly increased in the HS animals. In parallel with the anatomical

alterations, high-fat feeding induced a decrease in VLDL levels, which is suggestive 

of hepatic damage. This suspicion was confirmed by light microscopic data, which 

shown that HS animals developed the typical histopathological features of NASH 

(Abdelmegeed et al. , 2011, Lieber, Leo, 2004, Wang, Ausman, 2009, Wang, Ausman, 

2008). Although exercise has been proposed as a promising strategy against obesity 

and NASH (Ascensao, Martins, 2013, Goncalves, Oliveira, 2013), only ET was able 

to mitigate all the obesity-related measures and the NASH-related histological 

variables in high-fat diet animals. The distinct effects of the exercise preventive and 

therapeutic approaches may be explained, at least in part, by the high intensity 

achieved in ET programs compared to that accomplished during voluntary physical 

activity. In fact, previous studies in obese patients showed evidences for more 
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favorable effects obtained with high- than moderate-intensity exercise on body weight 

or fat mass loss (for references see De Feo, 2013). Furthermore, the positive effect of 

ET on the structural features corroborates the study of Kistler et al. (Kistler, Brunt, 

2011), which shown that vigorous, but not moderate exercise, nor total duration or 

volume is related to the decreased odds of having NASH.

5.3. Exercise prevented NASH-induced phospholipidomic alterations in 

mitochondrial membranes and mitochondrial bioenergetics dysfunction

Mitochondrial phospholipid composition varies little among cells, suggesting that 

major changes are unsustainable and result in several disorders (Monteiro et al. , 

2013a, Osman et al. , 2011). In accordance with a previous report (Aoun, Fouret, 

2012b), we observed that CL was reduced, while PE content was improved in the HS 

group. Moreover, as expected (Arendt, Ma, 2013, Li, Agellon, 2006), PC/PE ratio, a 

key regulator of membrane integrity/fluidity, was significantly decreased in HS

animals.

Studies suggest that membranes rich in PE are less fluid than membranes rich in PC, 

due to PE smaller head group, lower hydration and reactivity with other phospholipid

(Fajardo et al. , 2011). Kalofoutis (Kalofoutis, 1984), showed that ET increased liver 

mitochondria membrane PC and decreased PE. These membrane structural alterations

were also observed in high-fat exercised groups (HVPA and HET). Hypothetically, an

increased activity of phosphatidylethanolamine N-methyltransferase pathway, by 

which PE is converted to PC (Sundler and Akesson, 1975), would be responsible for 

the observed increase in PC content; however no changes were found in the species 

composition of these phospholipid classes.
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Diminished CL content represents another possible consequence of NASH (Aoun, 

Fouret, 2012b, Petrosillo et al. , 2007), as this phospholipid exerts a key role in the 

control of mitochondrial inner membrane proteins involved in oxidative 

phosphorylation (Paradies et al. , 2009). In fact, along with CL depletion HS animals 

showed a decrease in RCR, ΔΨ and uncoupled-respiration, suggesting electron 

transport chain and respiratory coupling impairments in substrate oxidation. Given 

that the RCR is the best general measure of mitochondrial dysfunction (Brand and 

Nicholls, 2011), it is clear that both VPA and ET had a positive impact on 

mitochondrial bioenergetics. These results corroborate the recent study of Flectcher et 

al. (2013), which shown that both voluntary wheel running and forced treadmill 

exercise positively modulate hepatic mitochondrial respiration. 

Nevertheless, no alterations were observed in CL content of exercised animals, which 

is in contrast to the increased CL content previously reported in skeletal muscle and 

cardiac tissues (Chicco et al. , 2008, Menshikova et al. , 2007). These contradictory 

data may be due to tissue-specific mitochondrial physiological diversity in the control 

of oxidative phosphorylation (OXPHOS) (Benard et al. , 2006). Exercise-induced

protective functional phenotype was also confirmed by the increase of FCCP-

uncoupled respiration and FCCP/oligomycin ratio. The observed improvement of 

inner membrane integrity (FCCP/oligomycin) was probably a result of phospholipid 

changes (PC/PE ratio) described previously. In fact, this ratio can affect membrane 

properties including membrane curvature elastic energy and fluidity and can modulate 

protein assembly and function, including enzymes involved in phospholipids 

biosynthesis (Dymond et al. , 2013), thus influencing mitochondrial function.  

Although increased mitochondrial proton leak has been proposed as a protective 

mechanism against NASH-induced fat accumulation (Serviddio et al. , 2008), no 
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alterations were observed in mitochondrial respiration rates after oligomycin addition. 

This unexpected result could be explained by the higher amount of linoleic acid in 

membrane composition, which has been negatively correlated with proton leak 

(Brookes et al. , 1998, Porter et al. , 1996). Despite the present and previously 

reported evidences (Monteiro et al. , 2013b, Monteiro et al. , 2013c) showing that 

mitochondrial function is affected by membrane lipid composition, is important to

highlight that under physiological temperatures (37ºC) this interaction is not observed 

(Lemieux et al. , 2008). 

Besides phospholipid classes’, fatty acid composition of biological membranes have 

also a strong influence on its properties. Among fatty acid categories, PUFAs have

been described as important components of membrane due to its role on membrane 

fluidity and thus protein function and trafficking (Schmitz and Ecker, 2008). Studies 

showed that dietary fat composition significantly influences the incorporation of fatty 

acids into membranes (Innis and Clandinin, 1981, Tahin et al. , 1981). Our results 

agree with these data, as higher levels of linoleic acid present in the high-fat diet

(C18:2nc) resulted into a higher expression of this fatty acid in mitochondrial 

membranes (HS vs. SS). This effect was even evident in CL molecular species, 

whereas CL molecular species containing more oleic acid [CL (C18:1)2 (C18:2)2]

showed a diminished incorporation level in comparison with CL (C18:1) (C18:2)3.

The increase of linoleic cis configuration and decrease linoleic trans configuration

(C18:2nt) observed in HS group seems to be a condition that increases membrane 

fluidity (Roach et al. , 2004). In turn, the increase in saturated fatty acids (SFAS) and 

decreased in unsaturated fatty acids (MUFAs) present in membranes, may had an

opposite effect on HS membrane properties.
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The effect of exercise on fatty acid membrane composition is also controversial; with 

studies suggesting either increased PUFAs (Fiebig et al. , 2002, Quiles et al. , 1999) or 

unchanged profile (Fiebig et al. , 1998). In the present study, ET increased PUFAS 

(linoleic cis configuration) and decreased SFAS (C16:0 and C18:0), which may have

contributed to increase membrane fluidity. Interestingly, the results from fatty acid 

analysis were in agreement with the results from phospholipid profile analysis by LC-

MS, where an increase of PC and PE species bearing linoleic acid (PC) were seen in 

HET group. In contrast, it seems that VPA was unable to modulate membrane

characteristics, as some of SFAs decreased (C16:0) while others increased (C18:0). 

6. CONCLUSIONS

In summary, our results suggest that both ET and VPA counteracted NASH-induced 

membrane structural changes, which may contribute to improved mitochondrial

function. This protective mechanism allows mitochondria to increase substrate 

oxidation, which in turn limit fat accumulation and thus decrease histological and 

ultrastructural signs of NASH. However, only ET was able to modulate these 

morphological parameters, which emphasize the major role of exercise intensity

against NASH deleterious effects. 
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Figure 1. Animal anatomic characteristics and food intake. 

Values are means  SEM, (n = 6). Different letter indicates significant differences between groups: SS 

– standard diet sedentary; SVPA – standard diet voluntary physical activity; SET – standard diet 

endurance trained; HS – high-fat diet sedentary; HVPA - high-fat diet voluntary physical activity; 

HET – high-fat diet endurance trained.

a  vs. SS, b vs. HS, c vs. SVPA, d vs. SET, e vs. HVPA (p < 0.05)

1 Significant (p < 0.05) main effect of diet treatment (DT), exercise treatment (ET) and their interaction 

(DT x ET) or the absence of differences (NS) is shown.

Figure 2. Serum biochemical analysis at 17 weeks of diet and exercise treatment. 

Values are means  SEM, (n = 6). Different letter indicates significant differences between groups: SS 

– standard diet sedentary; SVPA – standard diet voluntary physical activity; SET – standard diet 

endurance trained; HS – high-fat diet sedentary; HVPA - high-fat diet voluntary physical activity; 

HET – high-fat diet endurance trained.

a  vs. SS, b vs. SVPA, c vs. SET, d vs. HVPA (p < 0.05)

1 Significant (p<0.05) main effect of diet treatment (DT), exercise treatment (ET) and their interaction 

(DT x ET) or the absence of differences (NS) is shown. 

Figure 3. Representative light photographs (x100) of liver tissue from all groups: (A), SS; (B) SVPA; 

(C) SET; (D) HS; (E) HVPA and (F) HET. The presence of ballooning (asterisk), macro (white arrows) 

and microvesicular (black arrows) lipid droplets in high-fat diet groups. 

Figure 4. Semi-quantitative analysis of liver mitochondrial structural damage (based on Ahishali et al. 

(Ahishali, Demir, 2010)) and representative electron micrographs from all groups: SS (Panel A, 

x25,000); SVPA (Panel B, x30,000); SET (Panel C, x20,000); HS (Panel D, x50,000); HVPA (Panel E, 

x30,000) and HET (Panel F, 30,000). 

Values are means  SEM, (n = 6). Different letter indicates significant differences between groups: SS –

standard diet sedentary; SVPA – standard diet voluntary physical activity; SET – standard diet 

endurance trained; HS – high-fat diet sedentary; HVPA - high-fat diet voluntary physical activity; HET 

– high-fat diet endurance trained. 



Page 30 of 44

Acc
ep

te
d 

M
an

us
cr

ip
t

30

a vs. SS, b vs. HS c vs., SVPA, (p < 0.05).

1 Significant (p < 0.05) main effect of diet treatment (DT), exercise treatment (ET) their interaction (DT 

x ET) or the absence of differences (NS) is shown. 

Figure 5. ESI-MS spectra obtained in negative mode of CL extracts from animals fed a control diet 

(SS - standard diet sedentary, SVPA - standard diet voluntary physical activity and ST - standard diet 

endurance trained) and for extracts from animals fed high-fat diet (HS - high-fat diet sedentary, HVPA 

- high-fat diet voluntary physical activity and HT - high-fat diet endurance trained).  In the inset, the 

CL species corresponding to each [M-H]- ion are presented. 

Figure 6. Phosphatidylethanolamine (PE) (A) and phosphatidylcholine (PC) (B) molecular species relative 

composition. Values are means  SEM, (n = 6) expressed as the percentage of species per class. For the different 

groups: SS – standard diet sedentary; SVPA – standard diet voluntary physical activity; SET – standard diet 

endurance trained; HS – high-fat diet sedentary; HVPA - high-fat diet voluntary physical activity; HET – high-fat 

diet endurance trained a vs. SS, b vs. HS, c vs. SVPA, d vs. SET, e vs. HVPA (p < 0.05).

1 Significant (p<0.05) main effect of diet treatment (DT), exercise treatment (ET) their interaction (DT x ET) or the 

absence of differences (NS) is shown.

Figure 7. Respiratory control ratio (RCR) and maximal membrane potential (ΔΨ) of glutamate-malate 

energized mitochondria. 

Values are means  SEM, (n = 6) expressed in percentage of control (SS) values. Different letter 

superscript indicates significant differences between groups: SS – standard diet sedentary; SVPA –

standard diet voluntary physical activity; SET – standard diet endurance trained; HS – high-fat diet 

sedentary; HVPA - high-fat diet voluntary physical activity; HET – high-fat diet endurance trained.

a vs. SS, b vs. HS  (p < 0.05).

1 Significant (p < 0.05) main effect of diet treatment (DT), exercise treatment (ET) their interaction (DT 

x ET) or the absence of differences (NS) is shown.
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Table 1. NAS scores recorded from livers of all experimental 

groups, observed blindly under light microscopy.

NAS scores: 0-2 No NASH; 3-4 Questionable NASH; > 5 

Definitive NASH (according to Kleiner et al.  (2005))

Diet treatment Exercise type NAS score P value1

Sedentary 1.5±0.5

Voluntary 2.1±0.5Standard diet

Trained 2.2±0.3

Sedentary 6.3±0.4a

Voluntary 6.1±0.3cHigh fat diet

Trained 4.0±0.7b

DT x ET

Values are means ± SEM (n = 6). Different letter superscript 

indicates significant differences between groups: standard diet 

sedentary – SS; standard diet voluntary physical activity – SVPA; 

standard diet endurance trained –SET; high-fat diet sedentary –

HS; high-fat diet voluntary physical activity – HVPA; high-fat 

diet endurance trained – HET. 

a vs. SS, b vs. HS, c vs. SVPA (p < 0.05)

1Significant (p < 0.05) main effect of diet treatment (DT), exercise 

treatment (ET) and their interaction (DT x ET) or the absences of 

differences (NS) are shown
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Table 2. The effect of diet and exercise on liver mitochondria phospholipid classes composition. 

SS SVPA SET HS HVPA HET P value1

% LPC 11.360.05 10.960.18 12.553.57 11.641.70 9.040.31 9.220.75 NS

% PC 33.861.32 33.351.85 31.821.06 32.722.72 39.670.85b,c 40.272.52b,d DT x ET

% PI 12.610.81 19.172.42a,d 12.031.76 7.821.37a 15.660.63b 11.230.97 DT, ET

% PE 20.471.03 14.850.37 19.081.36 32.023.06a 17.262.36b 21.802.46 DT, ET

% PA 3.520.39 6.000.54 3.870.35 9.172.37a 4.170.49b 7.030.69d DT x ET

% CL 18.181.36 15.682.49 20.664.06 10.331.90a 14.461.21 10.440.54d DT

PC/PE 1.670.10 2.260.15 1.700.16 1.060.16a 2.410.28b 1.920.25b ET

Values are means  SEM, (n = 6) expressed as the percentage of phospholipid per class. Different letter superscript indicates significant 

differences between groups: SS – standard diet sedentary; SVPA – standard diet voluntary physical activity; SET – standard diet 

endurance trained; HS – high-fat diet sedentary; HVPA - high-fat diet voluntary physical activity; HET – high-fat diet endurance trained. 

Legend: LPC – lysophosphatidylcholine; PC – phosphatidylcholine; PI-phosphatidylinositol; PE-phosphatidylethanolamine; PA-

phosphatidic acid and CL – cardiolipin. 

a vs. SS, b vs. HS, c vs. SVPA, d vs. SET (p < 0.05).

1 Significant (p<0.05) main effect of diet treatment (DT), exercise treatment (ET) their interaction (DT x ET) or the absence of 

differences (NS) is shown.
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Table 3. The effect of diet and exercise treatments on liver mitochondria fatty acid content.

SS SVPA SET HS HVPA HET P value1

C16:0 18.220.46 19.360.07 15.740.43a 18.140.34 16.530.23b 15.540.36b DT x ET

C18:2n6c 12.030.19 12.060.17 13.280.08a 12.580.22a 11.920.08 17.460.25b DT x ET

C18:2n6t 6.490.11 6.450.14 6.510.08 4.590.08a 4.370.05c 4.270.07d DT

C18:1n9c 3.820.08 4.300.08 a 3.560.07 2.470.11a 2.200.05c 2.370.06d DT x ET

C18:0 28.830.32 27.700.23a,d 29.080.18 31.090.21a 33.100.24b,c 29.670.06b DT x ET

C20:4n6 30.531.16 30.020.52 31.580.81 31.710.26 31.920.27 30.450.34 NS

Values are means  SEM, (n = 6), expressed as the percentage of total fatty acid content. Different letter superscript indicates significant 

differences between groups: SS – standard diet sedentary; SVPA – standard diet voluntary physical activity; SET – standard diet 

endurance trained; HS – high-fat diet sedentary; HVPA - high-fat diet voluntary physical activity; HET – high-fat diet endurance trained.

a vs. SS, b vs. HS, c vs. SVPA, d vs. SET (p < 0.05).

1 Significant (p < 0.05) main effect of diet treatment (DT), exercise treatment (ET) their interaction (DT x ET) or the absence of 

differences is (NS) are shown. 
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Table 4.  Respiratory rates with oligomycin and FCCP of succinate energized liver mitochondria and FCCP/oligomycin ratio.

SS SVPA SET HS HVPA
HET P value1

Oligomycin (% SS) 100.02.9 96.34.9 96.33.0 98.23.5 92.54.7 90.94.3 NS

FCCP (% SS) 100.01.7 120.43.2a 103.51.7c 89.61.2a 112.93.4b 102.92.6b,d DT, ET

FCCP/oligomycin (%SS) 100.003.8 125.03.7a 107.34.0 91.64.8 122.13.4b 113.83.1b ET

Values are means  SE, (n = 6) expressed in percentage of control values (SS). Different symbols indicates significant differences between groups: SS – standard diet sedentary; 

SVPA – standard diet voluntary physical activity; SET – standard diet endurance trained; HS – high-fat diet sedentary; HVPA - high-fat diet voluntary physical activity; HET – high-

fat diet endurance trained.

a vs. SS, b vs. HS, c vs. SVPA, d vs. HVPA  (p < 0.05). 

1 Significant (p<0.05) main effect of diet treatment (DT), exercise treatment (ET) their interaction (DT x ET) or the absence of 
differences (NS) is shown.<ABS-P>
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Table 2. The effect of diet and exercise on liver mitochondria phospholipid classes composition.  

 SS SVPA SET HS HVPA HET P value1 

% LPC 11.360.05 10.960.18 12.553.57 11.641.70 9.040.31 9.220.75 NS 

% PC 33.861.32 33.351.85 31.821.06 32.722.72 39.670.85b,c 40.272.52b,d DT x ET 

% PI 12.610.81 19.172.42a,d 12.031.76 7.821.37a 15.660.63b 11.230.97 DT, ET 

% PE  20.471.03 14.850.37 19.081.36 32.023.06a 17.262.36b 21.802.46 DT, ET 

% PA 3.520.39 6.000.54 3.870.35 9.172.37a 4.170.49b 7.030.69d DT x ET 

% CL 18.181.36 15.682.49 20.664.06 10.331.90a 14.461.21 10.440.54d DT 

PC/PE 1.670.10 2.260.15 1.700.16 1.060.16a 2.410.28b 1.920.25b ET 

Values are means  SEM, (n = 6) expressed as the percentage of phospholipid per class. Different letter superscript indicates significant 

differences between groups: SS – standard diet sedentary; SVPA – standard diet voluntary physical activity; SET – standard diet 

endurance trained; HS – high-fat diet sedentary; HVPA - high-fat diet voluntary physical activity; HET – high-fat diet endurance trained.  

Legend: LPC – lysophosphatidylcholine; PC – phosphatidylcholine; PI-phosphatidylinositol; PE-phosphatidylethanolamine; PA- 

phosphatidic acid and CL – cardiolipin.  

a vs. SS, b vs. HS, c vs. SVPA, d vs. SET (p < 0.05). 

1 Significant (p<0.05) main effect of diet treatment (DT), exercise treatment (ET) their interaction (DT x ET) or the absence of 

differences (NS) is shown. 

 

 

 

 

 

 



Page 36 of 44

Acc
ep

te
d 

M
an

us
cr

ip
t

 33 

Table 3. The effect of diet and exercise treatments on liver mitochondria fatty acid content. 

 SS SVPA SET HS HVPA HET P value1 

C16:0 18.220.46 19.360.07 15.740.43a 18.140.34 16.530.23b 15.540.36b DT x ET 

C18:2n6c 12.030.19 12.060.17 13.280.08a 12.580.22a 11.920.08 17.460.25b DT x ET 

C18:2n6t  6.490.11 6.450.14 6.510.08 4.590.08a 4.370.05c 4.270.07d DT 

C18:1n9c 3.820.08 4.300.08 a 3.560.07 2.470.11a 2.200.05c 2.370.06d DT x ET 

C18:0 28.830.32 27.700.23a,d 29.080.18 31.090.21a 33.100.24b,c 29.670.06b DT x ET 

C20:4n6 30.531.16 30.020.52 31.580.81 31.710.26 31.920.27 30.450.34 NS 

Values are means  SEM, (n = 6), expressed as the percentage of total fatty acid content. Different letter superscript indicates significant 

differences between groups: SS – standard diet sedentary; SVPA – standard diet voluntary physical activity; SET – standard diet 

endurance trained; HS – high-fat diet sedentary; HVPA - high-fat diet voluntary physical activity; HET – high-fat diet endurance trained. 

a  vs. SS, b vs. HS, c vs. SVPA, d vs. SET (p  < 0.05). 

1 Significant (p < 0.05) main effect of diet treatment (DT), exercise treatment (ET) their interaction (DT x ET) or the absence of 

differences is (NS) are shown.  
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 Table 4.  Respiratory rates with oligomycin and FCCP of succinate energized liver mitochondria and FCCP/oligomycin ratio. 

 
SS SVPA SET HS HVPA 

HET P value1 

Oligomycin (% SS) 100.02.9 96.34.9 96.33.0 98.23.5 92.54.7 90.94.3 NS 

FCCP (% SS) 100.01.7 120.43.2a 103.51.7c 89.61.2a 112.93.4b 102.92.6b,d DT, ET 

FCCP/oligomycin (%SS) 100.003.8 125.03.7a 107.34.0 91.64.8 122.13.4b 113.83.1b ET 

Values are means  SE, (n = 6) expressed in percentage of control values (SS). Different symbols indicates significant differences between groups: SS – standard diet sedentary; 

SVPA – standard diet voluntary physical activity; SET – standard diet endurance trained; HS – high-fat diet sedentary; HVPA - high-fat diet voluntary physical activity; HET – high-

fat diet endurance trained.  

a vs. SS, b vs. HS, c vs. SVPA, d vs. HVPA  (p < 0.05).  

1 Significant (p<0.05) main effect of diet treatment (DT), exercise treatment (ET) their interaction (DT x ET) or the absence of differences (NS) is shown.  
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http://ees.elsevier.com/bc/download.aspx?id=256336&guid=d369e4e5-01d0-4c4d-a71d-d16823a33711&scheme=1
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