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Abstract: Spherical crystals present properties that are quite different from two-dimensional
flat crystals. Due to curvature, they demand the presence of topological defects. In this paper, we
study the interplay of these defects on spherical shells, as well as their ground-state configurations,
and their out-of-equilibrium dynamics under mechanical deformation. To develop these studies, we
have perfomed computer simulations in which particles stay on the surface of a curved template
and interact between themselves with a pair-wise potential, either repulsive or attractive. We
finally study the mechanical response of these curved crystals when they are subject to cyclic load.
We have seen irreversible plastic deformation and the evolution of defects after some cycles of
deformation. This plastic behaviour is related to the motion of defects and their spatial distribution
and accumulation in the crystal.

I. INTRODUCTION

Crystals are structures with long-range order where
particles interact between themselves in such a way that
the potential energy of the lattice is minimised. Parti-
cles in a flat two-dimensional space almost always pack
in hexagonal lattices (or also called equilateral triangular
lattices). In this case, in the lowest energy state, particles
are six-fold coordinated; this means that every particle
has six closest neighbours. In a non-planar space, this
does not happen: not all particles can be six-fold coordi-
nated because they experiment geometrical frustration,
which is the impossibility of establishing a preferred lo-
cal order everywhere in the lattice [1]. These particles,
which are not six-fold coordinated in a hexagonal lat-
tice, are called topological defects, and provide mechan-
ical stability. In other words, a topological defect is a
place in the lattice where the ordered structure changes
from the usual organization. This means that there is
a defect where a particle has a different number of clos-
est neighbours from the number that it should have. In
practice, curved crystals are important because they are
found in nature, e.g., in the icosahedral protein shells of
virus [2], named capsids, or in synthetic structures, such
as colloidosomes, which work as delivery vehicles of some
type of cargo, like drugs or cosmetics.

The aim of this paper is to study defects in spherical
crystals both in equilibrium and non-equilibrium condi-
tions. In section II, we describe the kinds of topological
defects on spherical shells. In section III, we find the
ground-state configuration of these spherical crystals. In
section IV, we study the out-of-equilibrium dynamics of
these crystals under mechanical deformation. Finally, we
conclude summmarizing the most relevant properties of
these structures and we propose further studies about
non-equilibrium dynamics.
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II. TOPOLOGICAL DEFECTS IN A SPHERE

We demonstrate that a spherical crystal must have
topological defects in its ordered structure. In order to
develop this demonstration, we need to use the Euler
formula of topology. This formula says that the num-
ber of vertices (V ), minus the number of edges (E), plus
the number of faces (F ) of any given graph is a topo-
logical invariant and it only depends on the topology of
the space. This invariant is called Euler characteristic
(or Euler-Poincaré characteristic), and its value is 2 for
a sphere [3]. This formula is the following:

V − E + F = 2. (1)

We consider a sphere with a hexagonal lattice, where
the particles are situated on the vertices. We also divide
the lattice into triangles. Each face has three edges, so
the number of faces multiplied by three and then divided
by two is equal to the number of edges, since each edge is
shared by two faces and we are overcounting the number
of edges when we multiply by three the number of faces.

Hence, E =
3

2
F , and introducing this in the Eq. (1),

we obtain: V − E/3 = 2. We define the coordination
number Ci for each vertex or, equivalently, for each par-
ticle, as the number of closest neighbours of the particle
i, that is to say, the number of edges that converge in the
vertex i. In this case, for a hexagonal lattice, six edges
converge in each vertex and, therefore, the coordination
number is Ci = 6, and it is said that each point has six-
fold coordination. Now, using the previous equation, we
sum over all vertices in the sphere and, considering that
each edge is shared by two vertices, we can write the next

expression:
N∑
i=1

(1 − Ci/6) = 2. We multiply by six this

equation and, for a vertex i, we define 6−Ci as its topo-
logical charge. The following expression demonstrates
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that a sphere has necessarily topological defects:

N∑
i=1

(6− Ci) = 12. (2)

Therefore, according to Eq. (2), the total topological
charge of a spherical shell must be 12. Particles with six
closest neighbours (six-fold coordination) have zero topo-
logical charge; particles with seven closest neighbours
have charge −1 (seven-fold coordination), and those with
five have charge +1 (five-fold coordination). Although
initially there is no restriction on the type of coordination
of each particle, stable spherical crystals have usually six,
five- and seven-fold coordination, and rarely four- and
eight-fold coordination. Isolated particles with a coor-
dination number different from 6 are called disclinations
and they are the most important kind of topological de-
fect demanded in the presence of non-zero Gaussian cur-
vature. Summarizing this, a spherical crystal must have
at least 12 disclinations with topological charge +1; in
other words, it must have 12 five-fold coordinated par-
ticles. Nevertheless, spherical shells can also have more
disclinations, only if the total topological charge is equal
to 12. Other common kind of defect is a dislocation,
which is a five-fold coordinated particle next to a seven-
fold coordinated one. This pair has zero “disclination”
charge. Dislocations are also characterized by a topolog-
ical charge that is a vector, the so-called Burgers vector
[4]. The more dislocations, the more imperfect and disor-
dered the crystal is, but at the same time they are more
ductile.

III. THE GROUND STATE OF A SPHERICAL
CRYSTAL

In this section, we want to find the ground state of a
spherical crystal. It is observed that the most crystalline
and with the lowest energy configuration is that with the
minimum number of topological defects. This configura-
tion corresponds to a hexagonal lattice with 12 five-fold
disclinations, which are arranged with icosadeltahedral
symmetry, like the 12 pentagons on a soccer ball (Fig.
1, on the left). However, the total number of particles
in the crystal that fits in this symmetry is restricted.
According to the theory developed by Caspar and Klug
[5], there are “magic numbers” that allow the icosadelta-
hedral symmetry and place the system in a local min-
imum of the free energy. These “magics numbers” are
N = 10(k2 + kh + h2) + 2, where k and h are positive
integers. In our study, for all the simulations, we fix the
number of particles to N = 272 (k = h = 3).

To find the ground state corresponding to N = 272
particles on the surface of a sphere, we use a Metropolis
Monte Carlo algorithm [6]. This method is used to find
the equilibrium configuration of a system at a certain
temperature. To help the system to crystallise and min-
imise its potential energy, we use a temperature anneal-
ing algorithm, which consists in repeating the following

proces: we lower the temperature and then let the sys-
tem reach equilibrium. Before starting the algorithm, we
create an initial random arrangement on the surface of a
sphere. This configuration is not a crystal, since there is
no order in the lattice. Then, we start the Metropolis al-
gorithm: in every Monte Carlo step, we propose a small
change (a 10% of the main particle spacing) in the posi-
tion of one of the particles and we repeat this N times,
choosing randomly the particle every time. We calculate
the energy increase (∆E = Enew−Eold) between the new
and the old configuration. This change will be accepted if
minimises the system energy (∆E < 0); if not, it will only

be accepted if q < e
− ∆E

kBT , where q is a random number of
the uniform distribution U(0, 1). Nevertheless, using this
method is not the most efficient way to find the ground
state of a spherical shell because of the dependency on
the temperature, which provide the system an excess of
energy. Therefore, to achieve the lowest energy state it
is necessary to do many Monte Carlo steps.

FIG. 1: On the left, the spherical crystal in the ground state.
On the right, the results for a spherical crystal with N=272
particles and R/a ≈ 4.31. Black particles are seven-fold discli-
nations, and white ones are five-fold disclinations.

We use a repulsive interaction potential to ensure that
the particles will arrange uniformly on the spherical sur-
face. The interaction potential energy is U(~rij) = 1/|~rij |.
The exact power of the potential is not very important
due to the shape of the crystal depends very little on the
form of the interaction potential energy [7].

After lowering sufficiently the temperature and doing
as many steps as the system energy keeps constant, we
obtain a configuration with the needed 12 five-fold discli-
nations and 4 dislocations, 3 of them belonging to grain
boundary scars (Fig. 1, on the right). These scars are
made up of a chain of five-, seven- and five-fold coor-
dinated particles, with a total topological charge +1.
Although this configuration is not the perfect spherical
crystal that we wanted to find, it is very clean of topo-
logical defects: it only has 4 extra seven-fold coordinated
particles, accompanied by 4 extra five-fold coordinated
particles to conserve the total topological charge. De-
spite the fact that we repeat this process improving the
algorithm to reach the ground state, we always obtain a
crystal with some extra defects. This happens because
there are metastables states with similar energy to the
ground state.

It is known that isolated disclinations become much
more energetically costly if the radius of the spherical
shell increases. Thus, the 12 five-fold disclinations induce
too much strain, which can be reduced by introducing
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dislocations or grain boundaries scars, which is what we
have observed in our system. Theses scars only appear
for spherical crystals with

R/a >∼ 5, (3)

where a is the main interparticle distance, being calcu-

lated it in the following way: a =
√

(8πR2)/(
√

3(N − 2))

[7]. Moreover, the number of dislocations grows linearly
with the system size (Fig. 2). In our simulations, the
radius is R = 5l0, where l0 is the scaling length, and
R/a ≈ 4.31, which is in the limit according to Eq. (3).
To verify the condition that Eq. (3) imposes, we also find
the ground state of spherical shell with N = 72 (also a
Caspar and Klug number) and R = 2.4l0, which implies
R/a ≈ 2.20. The result is indeed a spherical shell with
only 12 five-fold disclinations and this agrees with what
we expected. Therefore, our simulations are in agree-
ment with the theoretical prediction, in Ref. [7], that the
threshold value for the formation of scars is (R/a)c ≈ 5.

FIG. 2: Excess dislocations as a function of size system. The
linear predctions given by theory is shown as a solid red line.
Image from Ref. [7].

IV. DEFORMATION CYCLES OF A
SPHERICAL CRYSTAL

A. Model

In this part, our aim is to study the out-of-equilibrium
evolution of topological defects when we deform mechani-
cally a spherical shell in a cyclical manner, always beyond
the elastic limit of the crystal. This deformation con-
sists in changing gradually the surface of the shell into
an ellipsoid and then returning it to the initial spherical
shape. It is important to deform slowly so that the sys-
tem can relax (quasi-static conditions). We repeat this
process cyclically and observe how defects are created
and annihilated. For this situation, we use a pair-wise
Lennard-Jones potential, which is a short-range potential
that combines an attractive part with another repulsive
part for very close distances. The attractive part allows
the crystal to eventually fracture if the stress exceeds
the plastic regime. We consider the model presented in
Ref. [8] for doing the computer simulations. We solve

the equations of motion for every particle using molec-
ular dynamics, which is appropriate for non-equilibrium
situations. In this model, N = 272 particles are con-
fined on a spherical surface and they interact with the
Lennard-Jones potential: VLJ = 4ε

[
(σ/r)12 − (σ/r)6

]
,

where ε and σ = 2−
1
6

√
(8πR2)/(

√
3(N − 2)) are charac-

teristic energy and length scales, respectively [9]. We

impose a constraining force field, with the form ~F =
−K(d(t) − R)(~r/d(t)), where K is the spring constant,
to bind the particles to the shell, with radius R, d =√

(x2 + y2)/a2 + z2/c2, and t is the number of steps,
which plays the role of time. a(t) and c(t) are the prin-
cipals semiaxes of the ellipsoid, both normalized to the
radius R. c(t) decreases in time with a deformation veloc-
ity v and a(t) varies, so that the volume of the spheroid
is conserved.

To perform the simulations, we start with the ground
state of a spherical crystal, considering the interparticle

equilibrium distance: rmin = 2
1
6σ, which is the minimum

of the interaction potential. Once we have started the
deformation process, we calculate the deformation rate,
in part per unit, with the formula γ = ∆c/c0 = vt/R,
where ∆c is the variation of the semiaixis length, v is the
deformation velocity and t is the number of steps. As we
said previously, the deformation velocity must be slow to
allow the system to relax. For all the simulations, we use
v = 0.01.

B. Results

Macroscopic, bulk materials, when they are subject to
cyclic load, suffer a phenomenon called fatigue, whereby
materials become weaker and more fragile until they
break because of the accumulation of defects in the lat-
tice. Although these defects allow the plastic deforma-
tion, the more defects in the lattice, the more fragile the
material is. In this section, we are interested in studying
the fatigue of curved crystals. The deformation that we
introduce to the system is always in a slow manner, so
that crystal can relax. However, we have not observed
fatigue in our simulations. As shown in Fig. 3, the num-
ber of topological defects fluctuates around a fixed value,
but eventually, in the last cycles, the system reaches a
metastable configuration, in which the number of defects
is periodic with the deformation in every cycle. In other
words, the shell is not experimenting fatigue because it
is not accumulating more defects. This behaviour is dif-
ferent from what happens in bulk materials, where the
number of defects grows as the number of loading cycles
increases. A plausible argument to explain these results is
that the number, together with the spatial arrangement,
of the defects accumulated after the very first few cycles
could be enough to accomodate the extra bending stress
induced by the redistribution of Gaussian curvature in
the shell. This curvature increases towards the edge of
the ellipsoid. To confirm this hypothesis, we should study

Treball de Fi de Grau 3 Barcelona, June 2018



Topological defects in spherical crystals Ismael Gallego Cócera

these crystals increasing the system size (keeping the par-
ticle surface density constant) in order to observe if the
shell is able to stabilize the number of defects.

FIG. 3: Evolution of the number of topological defects as
a function of the number of steps. Vertical lines separate
every cycle from each other. The maximum deformation is
∆c/c0 = 0.3.

FIG. 4: Stress trace, in simulation units, as a function of the
deformation rate for the two first loading cycles.

It is also important to emphasise the irreversibility of
these plastic deformations. Although in every cycle the
shell recovers the spherical shape, not all the new topo-
logical defects created in the compressing process can be
annihilated. This fact can be seen in Fig. 3, where, once
we have deformed the shell, the number of defects never
returns to the ground-state configuration. Furthermore,
the system presents hysteresis. As shown in Fig. 4, where
the stress trace is plotted as a function of the deforma-
tion, the curves by which the shell is deformed into an
ellipsoid (curves 1 and 3 in Fig. 4) differ from the curves
by which the shell recovers the spherical shape (curves 2
and 4 in Fig. 4) because of the variation of the number
of defects is different in every cycle. In spite of that, the

hysteresis is quite small, since the curves are close to each
other. In addition, in the last cycles, when the number of
defects is periodic in every cycle, the stress trace is also
periodic.

FIG. 5: On the left, the curved crystal ∆c/c0 = 0.3. On the
right, the fractured shell with ∆c/c0 = 0.4. The fracture is
nucleated where the curvature is greater.

Despite the fact that we have not observed the fatigue
of the crystal, for a deformation of 40% the shell frac-
tures. Due to the short-range attractive interaction po-
tential, if any particle moves too far away from its neigh-
bours during the deformation process, it will not feel the
interaction and a crack line will be nucleated. Thus, the
crystal ends the plastic regime and fails (Fig. 5).

C. Defect motion

In this subsection, it is interesting to emphasise how
defects move in the small crystals. Microscopically, plas-
tic deformation induces the creation and annihilation
of topological defects and their migration to the more
curved places on the spherical shell. The motion of these
defects is not continuous during the deformation process,
it is intermittent, as shown in Fig. 6. Creating isolated
disclinations is energetically costly and they cannot move
without the assistance of dislocations, whose creation in
pairs of opposite Burgers vectors (dislocation dipole) re-
quires less energy. Dislocations can glide easily in the
direction of the Burgers vector, which is perpendicular
to the axis that connects the five- and seven-fold defects
of the dislocation. When dislocations glide, they can find
an isolated five-fold disclination and then the seven-fold
defect of the dislocation and this disclination can annihi-
late mutually. After this annihilation, the five-fold defect
of the dislocation stays isolated and the global result is
that the disclination has moved one position in the lat-
tice. This motion is not effective because it requires the
nucleation of dislocations. Thus, the motion is intermit-
tent, since these nucleations are repeated throughout the
crystal over time. As a result, this motion produces the
intermittent signal in Fig. 6. Summarizing, the principal
microscopic mechacism through which disclinations move
is by the assistance of dislocations, which glide easily over
the lattice, as shown in Fig. 7.
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FIG. 6: Main velocity of the particles as a function of the
number of steps. This illustrates the intermittent motion of
topological defects.

FIG. 7: Schematical process in which an isolated disclination
moves one position in the lattice by the assistance of a dis-
location. Black balls represent seven-fold defects, and white
ones represent five-fold defects.

V. CONCLUSIONS

The physics of spherical crystals is dominated by topo-
logical defects. These defects, required by geometry, de-
termine the energy level of the crystals and allow them
to deform plastically. In these crystalline structures, we
can find two main types of topological defects: discli-
nations and dislocations. Disclinations are isolated and
energetically costly defects. Curved crystals must have
12 five-fold disclinations. On the other hand, disloca-
tions are pairs of a five- and seven-fold defects, and they
require less energy to be created than disclinations.

In equilibrium, the ground state of a spherical shell is

characterized by 12 five-fold disclinations arranged with
an icosadeltahedral symmetry. However, as the system
size increases, grain boundary scars can appear to reduce
the strain caused by the isolated disclinations.

We have also studied the out-of-equilibrium dynam-
ics of spherical shells under controlled mechanical defor-
mation. We wanted to investigate whether these small
curved crystals show any sign of fatigue, as in more con-
ventional macroscopic crystals. Nevertheless, in our sim-
ulations, after some cycles, the number of defects attains
a steady periodic value with deformation. This means
that, with this number and spatial disposition, the shell
can adapt to the bending stress produced by the redistri-
bution of curvature. It will be convenient to further study
the role of the system size in this process. Indeed, we be-
lieve system size could be quite relevant. We have also ob-
served that the loading cycles give rise to an irreversible
process that exhibits mild hysteresis. Furthermore, the
creation and annihilation of topological defects allows the
material to deform plastically. Microscopically, plastic-
ity is due to the movement of the dislocations, which
can glide easily over the lattice in order to help discli-
nations to migrate to regions where curvature is greater.
However, plasticity has a limit: for a deformation rate of
40%, the shell does not support the stress and eventually
fractures.

In summary, since these structures are present in bio-
logical research and also in the development of new tech-
nology, it would be important to provide further insight
by extending these studies. In applications, most of these
structures are subject to external forces or deformations;
thus it is crucial to characterize its mechanical response
in out-of-equilibrium conditions.
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