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Detecting ecological patterns along environmental gradients: alpine treeline ecotones  

Hannah L. Buckley, Bradley S. Case, Ronny Vallejos, J. Julio Camarero, Emilia Gutiérrez, 

Eryuan Liang, Yafeng Wang, Aaron M. Ellison 

Everyone is familiar with that age-old adage: “a picture is worth a thousand words”. Among 

ecologists, the word “picture” easily could be replaced with the word “pattern”, although the 

significance remains the same: the pattern we observe in a single snapshot more than sums up 

what could be expressed if we tried to describe all the original events that led to the pattern. One 

particular class of patterns, spatial patterns, are the backbone of much contemporary ecological 

research. We often see recognizable and measurable structure in spatial patterns that tell a story 

about organisms and their histories: how interactions among individuals of the same or other 

species and between organisms and their environments have played out over time. An ongoing 

and challenging goal in ecology is determining how to adequately describe, visualize, and model 

such spatial patterns of organisms, their environments, and their inter-relationships (or 

covariances) so that we can make inferences about the types of processes that generated those 

patterns.  

One of the main difficulties in pursuing this goal is dealing with the reality that the 

processes structuring spatial patterns in nature are complex. For example, trees in an unmanaged 

forest rarely are distributed at random (Figure 1a). Such spatial point patterns of individual 

trees and their attributes (such as height or diameter) may often be either ‘over-dispersed’ 

(Figure 1b) or clustered (Figure 1c) to varying degrees and in different ways depending on the 

spatial scale at which we measure them. Over-dispersion, or regularity, in tree spacing can occur 

due to processes such as competition for soil nutrients or shading effects. Alternately, we often 

observe clustered patterns where juvenile trees are found displaced from mature trees because 

the former are shaded out by the latter. As a result, seedlings and saplings often grow together in 

clusters within light gaps created when one or more mature trees die. In the forest stand 

illustrated in Figure 1c, the sizes of trees in each cluster are very similar: they display positive 

spatial autocorrelation.   
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Figure 1. Forests with different structure in their spatial point patterns: (a) random; (b) over-

dispersed; (c) clustered. 

 

One common way to describe spatial autocorrelation is with a variogram. A variogram 

illustrates the amount of variation in a measured attribute, such as size or age, as a function of the 

distance (or “lag”) between all possible pairs of individuals in an area. The end result is a graph 

from which we can read the distance at which the spatial autocorrelation levels off (Figure 2). 

The variogram in Figure 2 illustrates that the spatial autocorrelation in tree density levels off at a 

distance of about 160 meters; thus, individuals are clustered at distances less than 160 m from 

each other, but become spatially independent from one another at larger lags. 
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Figure 2. The variation in the spatial pattern of white pine trees within a large forest plot (500 × 
700 m) can be visually represented as (a) a spatial point pattern showing tree locations and their 
diameter at breast height (DBH) or (b) the number of trees (No. trees) within 20 × 20-m sub-
plots. The variogram (c) shows the change in variance with distance of the number of trees 
within the sub-plots. The variogram shows that variance in the abundance of white pines 
between pairs of sub-plots increases with increasing inter-plot distances (also known as lags) up 
until ≈160 m, where it begins to level off (horizontal dotted line). We conclude from the 
variogram that once sub-plots are separated by more than 160 m that there is no meaningful 
increase in the correlation in the abundance of white pines between the sub-plots. 

 

A central assumption of a variogram is that the spatial pattern is isotropic: the estimated 

variance depends only on the distance between two measured objects, not the direction from one 

to another. However, in many situations, the processes that generate spatial patterns change in 

strength or character across an area. Such directional, or anisotropic, processes complicate the 

analysis of spatial patterns using variograms and other common methods (Bivand et al. 2008). A 

familiar example is a treeline: the transition from trees to alpine plants that we observe when 

walking up a mountain (Figure 3a). Below the treeline, trees are over-dispersed because they 

compete with one another for light and nutrients in the soil. But toward the treeline, the 

environment becomes much more stressful so that stunted trees, shrubs, and smaller plants tend 

to be clustered because there are fewer places that plants can grow successfully (Figure 3b).  

 

Figure 3.  (a) The alpine treeline ecotone on the West Coast of New Zealand’s South Island. As 
we move uphill, we witness a typical transition from tall, dense forest to increasingly sparse, 
shorter trees and shrubs, and eventually to grassland. Toward the treeline (b) growing conditions 
become increasingly stressful and the few remaining trees are shorter and clustered in more 
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favorable microhabitats. Because environmental conditions change with increasing elevation, 
spatial relationships between multiple variables are likely to be anisotropic. For example, 
competition in the more favorable growing conditions at lower elevations results in spatial 
separation between adult trees (dark green) and juvenile trees (light green), whereas in the more 
stressful growing conditions at higher elevations, all the trees, regardless of their size, are 
clustered in “safe sites” where seedlings survive only where they are protected by mature trees 
(c).  

 

Codispersion analysis (Rukhin and Vallejos 2008; Buckley et al. 2016) is a useful 

method to measure and visualize the covariation in spatial patterns between two variables, such 

as the position or sizes of adult and juvenile trees growing across an environmental gradient. 

Codispersion, which ranges from –1 to +1, not only describes the correlation between two 

variables at different lags, but also accounts for the directions between them. As a result, 

codispersion can be used to evaluate anisotropy in the bivariate pattern, which is especially 

useful for analysing ecological gradients where we expect that species interactions or species-

environment relationships may change in their strength or other characteristics. For instance, the 

spatial pattern of adult trees and smaller seedlings and saplings may shift with elevation from a 

segregated, clustered pattern below treeline to an aggregated, clustered pattern near or above the 

treeline (Figure 3c). 

To illustrate how codispersion analysis can be used to detect and visualize anisotropic 

covariation between two ecological variables, we first simulated four distinct bivariate spatial 

patterns that ecologists commonly encounter in the field, such as the abundances or sizes of two 

species along a gradient (Figure 4). The codispersion of each pair of two patterns at different 

spatial lags and directions are plotted as codispersion graphs (far right panels in Figure 4). As in 

a variogram, codispersion values are plotted for a range of spatial lags, but now these values are 

plotted in multiple directions. When we observe a change in the strength of the codispersion 

(illustrated with different colors) from one side of the graph to another, we interpret it as 

evidence for the presence of an anisotropic relationship between the two patterns.          

In the first two simulation examples (Figures 4a and 4b), at least one of the spatial 

patterns is random. Thus, there is little-to-no covariation between the two patterns and the 

codispersion between them is very low. In contrast, if both of the simulated patterns are 
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distributed as gradients in the same direction, there is positive and strong covariation at all lags 

and directions (Figure 4c). However, the alignment of the two patterns in the same direction 

means that the covariation between the variables is not anisotropic, and therefore we see no 

substantial directional change in codispersion across the graph. Finally, if the two patterns vary 

in different directions, the codispersion graph captures the expected anisotropy (Figure 4d). 

There is a clear change from strong negative codispersion (blue) at all lags in the positive 

horizontal (X) and vertical (Y) directions to a strong positive codispersion (red) in the negative 

horizontal and positive vertical directions. We interpret this latter result as a positive relationship 

at lags from about 0 to 50 m between the two patterns looking “northwest” from the bottom 

center of the plot.     

  

Figure 4. Simulations of bivariate spatial patterns and their resultant codispersion graphs: (a) two 
completely spatially random (CSR) patterns; (b) a CSR pattern and a directional pattern; (c) two 
directional patterns changing in the same direction; (d) two patterns changing in different 
directions.   

 

a. 

b.

c.

d.
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Simulations can tell us how we expect codispersion to change for contrived, albeit 

familiar, patterns, and so can help guide our interpretation of codispersion plots of real data. To 

illustrate this, we examined codispersion at treeline of diameters of mature and juvenile 

mountain pine trees (Pinus uncinata) in a 3,000 m2 plot located in the Spanish Pyrenees (Figure 

5a,b), and of tree age and height of larch trees (Larix potaninii var. macrocarpa) in a 8,100 m2 

plot located in the southeastern Tibetan Plateau (Figure 5c,d). An interesting feature of both of 

these treeline plots is that there has been an increase in establishment of young trees at treeline as 

a result of recent increases in temperature associated with climatic change (Camarero & 

Gutiérrez, 2004; Liang et al., 2011). We therefore expect to detect anisotropic patterns of trees 

and their attributes, and the relationships between them, as we move from lower elevations to the 

edge of the treeline.  

 

Figure 5: Photographs and maps showing tree spatial patterns of (a, b) mountain pine trees 
(Pinus uncinata) in a 30 × 100-m treeline plot in the Spanish Pyrenees and (c, d) larch trees 
(Larix potaninii var. macrocarpa) in a 30 × 270-m treeline plot in the southeastern Tibetan 
Plateau. The symbols in the map of the pine trees denote growth stages (adult versus juvenile) 
and tree diameters (sizes of symbol), whereas the map of the larch trees shows tree ages (colors) 
and heights (sizes of symbols). Note that both the photographs and the maps are oriented with 
the slope gradient along the x-axis, with the downhill forest on the right of the map and the uphill 
treeline at the left. In both cases, treeline is at the edge of the graph (at 0 m on the x-axis). 

 



7 
 

When we look at the codispersion plots, we can observe an anisotropic relationship 

between the sizes of adult and juvenile trees at the Pyrenees plot (Figure 6a). There, codispersion 

values are low-to-negative at all spatial lags and directions in the right half of the graph (blue to 

white), but become increasingly positive (red) towards the top-left side of the graph (toward the 

treeline) at lag distances of about 20 meters. The negative codispersion in adult versus juvenile 

mean tree size at many lags, and particularly in the downhill direction (toward the forest on the 

right), probably reflects competitive processes, where the sizes of young trees are reduced when 

they are near to mature trees. As we move left toward the treeline, however, the younger trees are 

recruiting into gaps away from adults and are experiencing good growth conditions. This leads to 

a positive codispersion in sizes of adult and juvenile trees.  

 

Figure 6. Codispersion graphs showing covariation between: (a) mean tree basal diameters of 
adult and juvenile mountain pine trees in the Spanish Pyrenees and (b) heights and ages of larch 
trees on the Tibetan Plateau. Graphs (c) and (d) show whether the codisperson coefficient at each 
lag and direction is statistically significant (red; P < 0.05) or not (blue; P > 0.05) in the Pyrenees 
and Tibetan plots, respectively. Significance is determined by comparing each observed 
codispersion value to that from 199 realizations of a random labeling null model, in which the 
attributes of one of the patterns in each plot were randomly assigned to trees for each iteration of 
the simulation. 

 

The relationship between the heights and ages of larch trees on the Tibetan Plateau also is 

anisotropic. In its codispersion graph (Figure 6b), the covariance between tree age and height is 

a. b.
 

c. d. 
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positive and strong across the entire plot (the codispersion coefficient ranges from ≈ 0.8 to 0.93), 

and as for pines in the Pyrenees, strengthens towards treeline. We interpret this result as 

reflecting better, open-growth conditions near treeline that result in trees whose growth in height 

has not been stunted by competition.  

Codispersion graphs illustrate relationships between two observed patterns and so we 

need a way to assess how expected or unexpected these observed relationships are. One way we 

can do this is to use null models (Gotelli, this issue). For example, one null modeling procedure 

keeps one of the two observed patterns constant while randomizing either the locations or 

attributes of the other pattern. Following each randomization, we recalculate the codispersion. If 

we repeat this randomization and recalculation procedure many times, we obtain a distribution of 

codispersion values for each lag and direction. We then compare each observed codispersion 

value to the distribution of null model-derived codispersion values to assess its significance.  

Figures 6c and 6d show the results of this null-model significance test for the 

codispersion graphs of the Pyrenees and Himalayan plots, respectively. In both cases, we used a 

“random labelling” null model, in which the attributes of one of the patterns in each plot were 

randomly assigned to trees. By reassigning attributes, this null model breaks any existing 

relationship between tree attributes, such as basal diameters, heights, or ages, while maintaining 

the underlying spatial pattern of tree locations. The results show that codispersion between 

diameters of adult and juvenile pine trees in the Pyrenees is statistically significant only at a few 

lags and directions, including at the treeline. For the majority of lags and directions, however, 

codispersion between adult and juvenile tree sizes is not different from what would be expected 

if the diameters of juvenile trees were assigned randomly to the given set of juvenile tree 

positions. This result might be explained by the fact that juvenile trees at this plot are quite 

similarly-sized, and thus randomizing their sizes relative to adult trees does not generate much 

significant variation in the adult-juvenile codispersion relationship. In contrast, for larch trees in 

the Tibetan Plateau, the codispersion of heights and ages is significantly different from random 

expectation in all lags and directions, reflecting the strong, intrinsic relationship between tree age 

and height. In this example, the random labelling null model has the effect of assigning a range 

of height values to both old and young trees, thus truly randomizing the relationship between 

height and age, causing highly significant departures from the strong observed codispersion 
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between these two variables. These examples highlight how the choice of null model determines 

the types of interpretations that can be made using the codispersion analysis, and that multiple 

null models often need to be explored. 

In conclusion, codispersion analysis allows us to detect and describe relatively subtle 

changes in bivariate relationships across environmental gradients, which is something that has 

traditionally been hard to tackle with spatial pattern analysis. When combined with null models, 

we can test how unexpected these observed patterns are. Our ongoing research is exploring how 

codispersion applies to a wide range of spatial patterns and null models, and how to use this 

information to improve models for spatial analysis and forecasting. 
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