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Abstract: A model for the growth of martensitic domains during a structural phase transition
is studied by numerical simulation. As a consequence of the absence of retransformation mecha-
nism, the domains in the final microstructure show an effective dipole-dipole correlation, increasing
the probability of finding neighboring parallel domains. We have focused our attention on a two-
dimensional case in which two perpendicular symmetrically-related domains grow with, a priori,
equal probability. The attractive correlation is shown to decay logarithmically with the perpendic-
ular distance between parallel domains.

I. INTRODUCTION

Martensitic transformations are displacive (without
atomic diffusion) solid-solid first-order phase transitions
in which the symmetry of the crystalline lattice changes
due to a shear mechanism. This involves a displacement
of the atoms typically smaller than the interatomic dis-
tances [1, 2]. The high temperature phase is known as
austenite phase whereas the low temperature, less sym-
metric phase is called martensitic phase. This transfor-
mation is crystallographically reversible but with a cer-
tain hysteresis in the transition temperature [3]. When
cooling or stressing, the phase transition occurs by nu-
cleation of the martensitic phase in the austenite phase,
creating a certain microstructure. This microstructure is
determined by the natural tendency of systems to keep
their minimum energy state. In order to minimize the
elastic strain field, the martensite can grow in multiple
symmetry-related and energetically equivalents variants.
In the simplest example, starting from a square lattice
in 2D the system can transform to two different rectan-
gular martensitic domains rotated 90o. Due to the elas-
tic energy minimization process, the transformation of a
certain region can induce the transformation of their sur-
rounding atoms in an auto-accommodation process which
creates polydomain regions called twins (two equivalent
variant that grow one adjacent to another forming an
elongated martensite needle). This kind of process can
be easily understood: To balance the increment of the
elastic field energy in a region near a nucleation of a
martensitic domain, the closer atoms may transform to
another variant of martensitic domain [4, 5]. While the
domains are growing, coherent austenite/martensite in-
terfaces appear along planes which cannot be deformed
or rotated called invariant planes [6].

The final microstructure, when the phase transition
is completed, is structurally inhomogeneous and may be
quite complex. It consists of an apparently random com-
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bination of martensite needle shaped domains, that can
be single variants of martensite or twins, which have
grown from nucleation centers or from the boundaries
in an avalanche-like process. The growth dynamics of
this martensite-austenite interface movements has been
studied with high time resolution experiments such as
acoustic emission [7, 8] and high sensitivity calorime-
try [9]. When cooling rate is slow enough, the system
remains trapped in metastable states until free energy
barrier disappears. Then, it relaxes by creating a new
martensite needle, in a fast event called an avalanche.
After it, the system remains again in a silent period [10].
The martensite domains are exclusive regions since the
high elastic energy barriers prevent the needle plates from
retransforming, thus neither coalescing nor penetrating
each other [11].

FIG. 1: Experimental image of the nucleation and growth of
adaptive martensite in epitaxial layers of the shape memory
alloy Ni-Mn-Ga with an indentation [12].

FIG. 1 shows an example of the experimental growth
process of a microstructure of the shape memory alloy
Ni-Mn-Ga, whose martensitic phase has two tetragonal
variants that are favored due to the indentation in the
sample, which creates the horizontal and vertical plates
that can be easily distinguished from the darker austenite
phase. Strictly speaking, other directions of the needles
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can also be observed (for example, at the right top of the
image there are diagonal domains) because the studied
sample is tridimensional, and it may have other equiva-
lent variants.

Fourier analysis of the microstructures has revealed
that the distribution of the domain sizes tends to be fat
tailed (in the large size region)[7, 13]. This perfectly
agrees with the statistical properties of these avalanche-
like processes that tend to show absence of character-
istic scales in energies, durations, sizes, etc. It has also
been shown that this fat tailed distributions fits to power-
laws with characteristic exponents, which shows a weak
universality[10].

In this work we have studied a discrete 2D probabilistic
and geometrical model proposed by Geńıs Torrents et al.
[10] which assumes an elongated shape of the marten-
sitic domains that grows in the parent matrix and the
absence of retransformation events (the needles cannot
cross each other)[10]. The model was simulated and an-
alytically solved in a square system with two equivalents
growth directions of the needles: horizontal (1,0) and ver-
tical (0,1)[10]. The results revealed the existence of an
effective correlation in the final microstructure between
domains oriented in the same direction. We have first
reproduced some of the results in reference [10] in order
to check that our simulation code is correct. Secondly,
we have modified the model, including a prenucleated
horizontal domain in the center of the square lattice to
quantitatively characterize the correlation between the
transformed domains in the final microstructure.

II. MODEL AND SIMULATIONS

The proposed model is formulated on a 2D planar
square lattice of dimension L × L with lattice spacing a
and L = 210. Two equivalent growth directions are con-
sidered: horizontal (1,0) and vertical (0,1). The model
considers the lattice initially in the austenite phase. The
microstructure grows following these steps:

1. Using a random numbers generator (RCARIN) we
choose a site in the lattice with uniform probability.
If the site is already transformed, we choose another
one that will be used for the growth of a martensitic
domain.

2. With another random number we choose if the
domain grows vertically or horizontally with
equiprobability 1/2.

3. A linear domain is then grown in the chosen direc-
tion as far as hitting an already transformed site or
the lattice boundary.

4. This three steps are sequentially repeated until the
lattice is fully transformed.

At late states of the transformation, this simulation
algorithm becomes more and more slow due to the low

FIG. 2: Scheme of the construction of a martensitic mi-
crostructure with the proposed model which shows in purple
the horizontal (0,1) direction needles and in red the vertical
(1,0) ones. In each figure we can see respectively 1, 5 or 20
steps of the simulation, where we consider a step following
the 3 processes that creates a domain.

probability of finding an untransformed site in the lattice
just by choosing a random position. Consequently, after a
certain number of steps, the algorithm is slightly modified
by keeping a table of the untransformed sites and just
choosing the nucleation points randomly among these.
This procedure is not convenient in the beginning of the
simulation because the rearrangement of the list is slow,
specially for systems of large dimensions L. This code
runs on a Mackbook Pro with 2.3GHz dual-core Intel
Core i5 processor and needs 8.7 ± 0.8 cpu seconds for
fully transform a lattice of L = 210. When L is changed
the time scales approximately as L2.62.

FIG. 2 shows an example of the initial steps of the
construction of a microstructure following this algorithm,
and FIG. 3 shows an example of the fully transformed
lattice. Already in this FIG. 3 one can see that there is
an effective correlation between domains that have grown
in the same direction as black lines tend to be surrounded
by other parallel black lines.

To prove the correctness of our code we have computed
the domain size distribution for L = 210 and compared it
with the equivalent results obtained by Geńıs Torrents et
al.[10]. In the final microstructure we count how many
domains (H(δ)) have a linear size δ. Our data has been
normalized by the number of simulation runs (2 · 104) in
order to get good statistics. Our result is shown in FIG.
4 together with the results from reference [10] and the
exact power law. The agreement is perfect within error
bars.

In order to increase our understanding of the dipole-
dipole like correlations between parallel domains, the al-
gorithm has been slightly modified: In the center of the
original untransformed lattice, we have included a hori-
zontally prenucleated domain of size d. Then, the simula-
tion is run as explained in the original algorithm. In the
final microstructure, we measure the probability PH(x, y)
that a certain site at a generic position (x, y) is trans-
formed to an horizontal domain. This probability was
analyzed for different sizes of the prenucleated domain.
The attention focus of the study is the behavior near the
center of the lattice to avoid the finite sizes effects. In
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FIG. 3: Example of a final microstructure obtained with this
model in which we can identify the horizontal domains painted
in black and, in red, the vertical ones.
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FIG. 4: Average number of domains with length δ in a system
of L = 210. Purple dots show results from the current work,
green dots show results from the previous work et al. [10] and
the blue line the power-law behavior with exponent α = 2.882
computed analytically in et al.[10] at δ = L/2. Note that
our results also reproduce the delta function peak at δ = L
corresponding to domains of length equal to the system size.

order to compute quantitative data, we will average over
the four quadrants of the lattice that are symmetrically
equivalent and the origin of the (x, y) coordinates will
be placed in the center of the prenucleated domain. The
fact of using an initially isolated prenucleated domain in
the center of the lattice has the advantage that we will
separate the dipole-dipole correlations from effects due to

boundary conditions. But one should notice that there
is a drawback because we are introducing a domain that
does not fulfill the defined growth rules since this domain
has stopped its growth without touching any transformed
domain, hence this may affect the points next to these
limits.

III. RESULTS

Simulations have been carried for prenucleated hori-
zontal domains of size d = 26, 27, 28, 29 in lattices of size
L = 210. For each case, 1.5 · 104 completed microstruc-
tures have been averaged. FIG. 5 shows an example of
the results corresponding to the probability PH(x, y) of
having a martensitic domain in the same direction as the
one which has been specifically introduced.

FIG. 5: Probability PH of having an horizontal martensitic
domain at site (x, y) averaged over 1.5 · 104 transformed mi-
crostructures of a lattice of L = 210 . The prenucleated do-
main have a size d = 28. The contour lines correspond to
equal probability lines. The line closer to the original domain
corresponds to PH = 0.6 and the rest of profiles decrease in
intervals of 0.02 until PH = 0.4.

As expected, in all cases it appears an excess of prob-
ability (PH > 0.5) in all the neighboring sites of the
prenucleated domain which attenuates as the distance
increases. It also becomes pretty clear that this effec-
tive dipole-dipole interaction has a larger range in the
perpendicular direction to the martensitic domain than
in the parallel direction. FIG. 6 shows the behavior of
the probability profile in the perpendicular direction for
a fixed position in the x axis. This probability decays
logarithmically as:

PH(y/a) = −β · ln(y/a) + PH1, (1)

This tendency diminishes drastically for perpendicular
profiles which do not cross the prenucleated domain (the
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probability is practically constant, and its value is de-
termined by the boundary effects of the walls). All the
profiles show a peak as we get closer to the limits of the
system (y/a = 512) due to the effects of the horizontal
walls.
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FIG. 6: Probability profiles PH(y/a) in the perpendicular
direction of the prenucleated domain for different fixed x/a
positions, shown every (∆x)/a = 30 sites starting at x/a = 0.
This system has L = 210 and a prenucleated domain of d = 28.
The inset map shows the averaged probability PH(x/a, y/a)
of the four symmetrically-equivalents quadrants. Setting the
origin at the center of the system, the plotted profiles start
at y/a = 1 and finish at the boundaries (as shows the red
arrow). Each profile corresponds to a vertical black line in
the inset map: the top one with a logarithmic decay is fixed
at x/a = 0, and as we move on the x axis they get lower. The
double arrow d/a shows the size of the prenucleated domain.
The blue line shows the logarithmic decay at x/a = 0 with
β = 0.0503 ± 0.0004.

FIG. 7 shows the behavior of the probability for the
parallel direction to the prenucleated needle for different
fixed y/a. This depicts qualitatively the drastic decay
of the probability for x/a positions which are not in the
range of the horizontal fixed martensitic domain.

FIG.8. And FIG. 9 show the β and PH1 values for
every fixed x/a perpendicular probability profile PH(y/a)
for four sizes of the prenucleated domain d. As it can be
observed, for bigger sizes the β value increases, as well
as the excess of probability in the neighboring sites PH1.
For all cases, the logarithmic tendency disappears for x/a
bigger than the prenucleated domain sizes.

IV. CONCLUSIONS

We have studied a model for the growth of linear
martensitic domains on a 2D lattice. The domains can
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FIG. 7: Probability profiles PH(x/a) in the parallel direc-
tion of the prenucleated domain for different fixed y/a po-
sitions, shown every (∆y)/a = 20 sites starting at y/a = 0
and ending at y/a = 120. This system has L = 210 size and
a prenucleated domain of d = 28. The inset map shows the
averaged probability PH(x/a, y/a) of the four symmetrically-
equivalents quadrants. Setting the origin at the center of the
system, the plotted profiles start at x/a = 1 and finish at
the boundaries (as shows the red arrow). Each profile corre-
sponds to a horizontal black line in the inset map: the top
one with a sudden decay (when the prenucleated needle ends)
is the y/a = 0 profile, and as we move on the y axis they get
lower. The double arrow d/a shows the size of the prenucle-
ated domain. Lines are guides to the eye.

grow in two symmetrically related directions: vertical
and horizontal. We have reproduced with our simulation
algorithm the results in ref. [10] in order to check the
correctness of our algorithm.

The novelty of this work is that we have placed a hor-
izontal prenucleated domain in the center of the lattice
in order to study the effective dipole-dipole correlations
in the final microstructures. The conclusions are:

• In the neighborhood of a horizontal domain there
is an excess probability (PH > 0.5) of a site being
occupied by a parallel (horizontal) domain.

• This probability decays logarithmically with the
perpendicular distance to the prenucleated domain
as PH(y/a) = −β · ln(y/a) + PH1.

• This tendency disappears drastically for the pro-
files with a x/a position which does not contain
the prenucleated needle.

• Both β and PH1 values increase as the prenucleated
domain gets bigger.
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−0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  100  200  300  400  500  600

β
(x

/a
)

x/a

d = 2
6

d = 2
7

d = 2
8

d = 2
9

FIG. 8: Value of β(x/a) value of the logarithmic decay for
each perpendicular probability profile depending on the fixed
position x/a. The plotted data corresponds to the four dif-
ferent d size prenucleated domains studied.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  100  200  300  400  500  600

P
H

1
(x

/a
)

x/a

d = 2
6

d = 2
7

d = 2
8

d = 2
9

FIG. 9: Value of PH1(x/a) value of the logarithmic decay
for each perpendicular probability profile depending on the
fixed position x/a. The plotted data corresponds to the four
different d size prenucleated domains studied.

To obtain the full dependence of PH(x, y) with x, y
and d will require further simulations. In the future we
plan to study a three-dimensional model as this may
give a more realistic approach to the real behavior of
this effective dipole-dipole correlation.

Acknowledgments

I would like to express my deep gratitude to Dr. Ed-
uard Vives, my research supervisor, for his guidance, his
advice and for generously giving his time during all the
development of this research work. I would also like to
extend my thanks to my family and colleges for their
support.

[1] Shape Memory Materials, editet by K. Otsuka and C.
M. Wayman, Cambridge University Press (Cambridge,
1998).

[2] J. W. Chritsian,The theory of transformations in metals
and alloys, 2nd ed., Pergamon Press (Oxford, 1975).

[3] K. Bhattacharya, Microstructure of the Martensite: why
it forms and how it gives rise to the shape-memory effect,
Oxford University Press (New York, 2003).

[4] A. G. Kachaturyan, Theory of Structural Transforma-
tions in Solids (Dover, New York, 2008).

[5] F. J. P. Reche, Experimentos y modelos en sistemas
que presentan transiciones de fase de primer orden con
dinámica de avalanchas,Tesis Doctoral por la Universi-
dad de Barcelona (Barcelona, 15 de marzo 2005).

[6] Z. Nishiyama, Martensitic Transformations, Academic
Press (London, 1978).

[7] A. A. Likhachev, J. Pons, E. Cesari, A. Yu. Pasko, and
V. I. Kolomytsev, Src. Mater. 43, 765 (2000).
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