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ABSTRACT: Homocystinuria due to CBS deficiency (MIM#236200) is a rare 

autosomal recessive disorder characterized by elevated plasma levels of 

homocysteine (Hcy) and methionine (Met). Here we present the analysis of 22 

unrelated patients of different geographical origins, mainly Spanish and Argentinian. 

Twenty-two different mutations were found, ten of which were novel. Five new 

mutations were missense and five were deletions of different sizes, including a 794-

bp deletion (c.532-37_736+438del794) detected by Southern blot analysis. To assess 

the pathogenicity of these mutations, seven were expressed heterologously in E. coli 

and their enzyme activities were assayed in vitro, in the absence and presence of the 

CBS activators PLP and SAM. The presence of the mutant proteins was confirmed by 

Western-blotting. Mutations p.M173del, p.I278S, p.D281N and p.D321V showed null 

activity in all conditions tested, while mutations p.49L, p.P200L and p.A446S retained 

different degrees of activity and response to stimulation. Finally, a minigene strategy 

allowed us to demonstrate the pathogenicity of an 8-bp intronic deletion, which led 

to the skipping of exon 6. In general, frameshifting deletions correlated with a more 

severe phenotype, consistent with the concept that missense mutations may recover 

enzymatic activity under certain conditions.  

 

KEY WORDS: CBS mutations; homocystinuria; Southern blot; mini-gene; 

heterologous expression; enzyme activity 
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Introduction 

Homocysteine (Hcy) is a sulfur-containing amino acid that occupies a major 

regulatory branch point in methionine metabolism. Homocysteine may be either 

remethylated to methionine or catabolized to form cysteine through the 

transsulfuration pathway. The first step of transsulfuration involves the 

condensation of homocysteine with serine to form cystathionine, a reaction catalyzed 

by the enzyme cystathionine β-synthase (CBS; EC 4.2.1.22).  

Mutations in the CBS gene (MIM# 613381) cause classical homocystinuria (Hcu, 

MIM# 236200), an autosomal recessive disease characterized by severe 

hyperhomocysteinemia and homocystinuria, decreased plasma levels of cysteine 

and, often, hypermethioninemia. At the clinical level, classical homocystinuria 

mainly affects the eye, the skeleton, the vascular system and the central nervous 

system (CNS). Symptoms usually include ectopia lentis, osteoporosis, scoliosis, 

Marfanoid features, premature arteriosclerosis, thromboembolism and mental 

retardation (Mudd, et al., 1985). Age of onset and disease severity are highly variable, 

ranging from dramatically affected children to asymptomatic adults (Magner, et al., 

2011; Skovby, et al., 2010; Walter, et al., 1998; Yap and Naughten, 1998). Treatments 

that lower tHcy, such as B-vitamins, dietary methionine restriction, and betaine 

supplementation, can significantly reduce the incidence of vascular events (the main 

cause of death in these patients) and improve the neurological problems (Wilcken 

and Wilcken, 1997; Yap, et al., 2001; Yap and Naughten, 1998).  

Homocystinuria is a rare disease with variable incidence. While the worldwide 

incidence is estimated as 1/344000 born alive (Mudd, et al., 1995), in Qatar it is 

1/3124 (El-Said, et al., 2006) and in Japan 1/800 000 (Mudd, et al., 1995). In Northern 

Europe the incidence may be of 1/20500 to 1/6400, as estimated from the high 
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number of p.I278T mutation carriers found in some populations (Gaustadnes, et al., 

1999; Refsum, et al., 2004). 

To date, more than 150 different CBS mutations have been found worldwide, 

some of them common. Mutation p.I278T is considered panethnic and is particularly 

frequent in Northern Europe (Janosik, et al., 2001b; Kraus, et al., 1999; Moat, et al., 

2004). In Ireland, the p.G307S mutation accounts for 71% of the mutant alleles 

(Gallagher, et al., 1995), and in the Iberian Peninsula and Colombia, mutation 

p.T191M represents between 40% and 75% (Urreizti, et al., 2006a) of the mutant 

alleles. 

A truncated form of the human CBS enzyme lacking the C-terminal regulatory 

domain has been crystallized (Janosik, et al., 2001a; Meier, et al., 2001) and 

structurally characterized (Banerjee and Zou, 2005; Kabil, et al., 2001; Kery, et al., 

1999; Meier, et al., 2001; Taoka, et al., 2002). The active form of this cytoplasmic 

enzyme is a homotetramer of four 63-KDa subunits. Each subunit combines one 

heme group and one pyridoxal phosphate (PLP), the latter acting as a cofactor in the 

reaction. In addition, each subunit binds the allosteric activator S-Adenosil-

Methionine (S-AdoMet or SAM), an intermediate in the methionine cycle. 

Heterologous expression in E. coli has been widely used to test the functionality of 

the CBS mutant alleles independently from the patient’s genetic background (de 

Franchis, et al., 1994; Katsushima, et al., 2006; Maclean, et al., 2002). It has been 

proven to be a useful tool since the E. coli-expressed human CBS is indistinguishable 

from that obtained from cultured fibroblasts (Bukovska, et al., 1994; Kozich and 

Kraus, 1992). In addition, in vitro, its relative activity in response to PLP and SAM is 

comparable to that of the enzyme obtained from human tissues (Bukovska, et al., 

1994; Kozich and Kraus, 1992). 
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This study updates the CBS mutation spectrum of the homocystinuric patients 

from the Iberian Peninsula by presenting the analysis of 16 new cases. It also includes 

one Norwegian, one Indian and four Argentinian patients. In this cohort of 22 cases, 

22 mutations were found, ten of which were novel. The new mutations include a 

deletion of 794 bp (c.532-37_736+438del794) detected by Southern blot analysis and 

an intronic deletion that leads to the skipping of exon 6, which was characterized 

using a minigene strategy. The pathogenic role of seven of the changes was assessed 

by heterologous expression of these mutant proteins, and their stability and activity 

were analyzed. 

 

 

Materials And Methods 

Patients 

Twenty-six patients with classical homocystinuria from 22 unrelated pedigrees 

were involved in this study. Patients were initially diagnosed by their physicians on 

the basis of clinical manifestations suggestive of homozygous CBS deficiency. 

Biochemically, these patients presented with a combination of severe 

hyperhomocysteinemia (typically above 150 µmol/l), and hypermethioninemia 

(typically above 40 µmol/l). Thirteen Spanish, three Portuguese, one Norwegian, one 

Indian and four Argentinian patients were included in the study. Our research was 

conducted in accordance with the tenets of the Declaration of Helsinki. The nature 

and possible consequences of the study were first explained to all patients and/or 

their parents, before their informed consent for inclusion in the research project was 

obtained. 
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PCR amplification and DNA sequencing 

Genomic DNA was prepared from peripheral blood leukocytes, using a Wizard 

Genomic DNA Purification Kit (Promega, Madison, WI, USA). 

All 16 CBS coding exons (including exon 15) and their intronic flanking regions, 

were amplified by PCR and sequenced as described previously (Urreizti, et al., 

2006a) with some modifications. Briefly, PCR reactions were performed on a final 

volume of 50 µl with 50 ng gDNA, 0.2 mM of each dNTP, 0.4 mM of each primer, 

1.5–2.5 mM MgCl2 and 1.25 U of GoTaq
®
 Flexi DNA Polymerase (Promega, Madison, 

WI, USA). All mutations detected were confirmed by restriction analysis of the PCR 

products with the appropriate restriction enzyme, and the presence of all new 

mutations was assessed in 100 control chromosomes from Spanish anonymous 

donors. Primer sequences and PCR conditions have been described previously 

(Urreizti, et al., 2006a). MTHFR c.677C>T (rs1801133) was analyzed in all patients as 

described in Frosst et al. (Frosst, et al., 1995).  

To characterize the deletion found in patient 87, genomic DNAs of the patient 

and her parents were PCR-amplified using primers 4F and 7R as described above 

with the addition of a final concentration of 5% DMSO. The PCR fragments were 

purified and sequenced. 

For naming the mutations the following reference sequences were used: 

Genomic, GenBank NG_008938.1; cDNA, ENST00000352178. Nucleotide numbering 

reflects cDNA numbering with +1 corresponding to the A of the ATG translation 

initiation codon in the reference sequence, according to journal guidelines 

(www.hgvs.org/mutnomen). The initiation codon is codon 1. 
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Southern blot 

A Southern blot to analyze a 36-kb fragment of the CBS genomic region (Fig. 1), 

between two DrdI sites, encompassing all 23 exons, plus 6 kb of the 5’ flanking region 

and 11.5 kb of the 3’ region, was performed as follows: 10 µg of patient and control 

gDNA were double digested by DrdI and AflII (NEBiolabs, Ipswich, MA, USA), 

electrophoresed on a 0.9% agarose gel, blotted onto Amersham HybondTM-N+ (GE 

Healthcare, Waukesha, WI, USA) membrane using standard protocols, and fixed by 

UV crosslinking. The DrdI/AflII double digestion of the 36 kb yields, in a wild-type 

setting, four fragments of around 15 kb, 10 kb, 8 kb and 3 kb, respectively (Fig. 1A). 

 

Probe design, preparation and hybridization  

Four probes were designed by selecting one unique sequence of approximately 

600 bp within each restriction fragment. The sequences were aligned to the whole 

genome by BLAST, to confirm their specificity. These four sequences were PCR-

amplified from total genomic DNA (as described above), cloned into pUC19 vector 

(Fermentas, Burlington, ON, Canada) and sequenced. Probes were obtained from the 

clones by using digoxigenin-dUTP and the “PCR DIG Probe Synthesis Kit” (Roche, 

Mannheim, Germany), according to the manufacturer’s instructions. Primer 

sequences for the probes are available on request. Labelled probes were subsequently 

purified using IllustraTM GFXTM PCR DNA and a Gel Band Purification Kit (GE 

Healthcare, Waukesha, WI, USA).  

All subsequent steps of the Southern protocol (prehybridization, hybridization 

and developing of the filters) were performed using reagents (Dig Easy Hyb) and 

protocols (Dig Application Manual) from Roche (Mannheim, Germany).  
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Site-directed mutagenesis, heterologous expression and in vitro enzyme activity 

assays of the CBS mutations 

All CBS mutant constructs were derived from the wild-type CBS expression 

plasmid pHCS3 (Kozich and Kraus, 1992), a gift from the authors of that study. Each 

mutation was introduced into the wild-type expression plasmid using a Quik 

Change II XL TM Site-Directed Mutagenesis Kit (Stratagene Cloning Systems, La Jolla, 

CA, USA) and expressed in XL-Gold E. coli cells as described in Urreizti et al. 

(Urreizti, et al., 2006b). Expression of pHCS3 was used as a positive control, and that 

of the empty vector pKK388.1 was included as a negative control. Protein extracts 

were obtained and CBS activity was measured as described in Kraus (Kraus, 1987) 

with some modifications (Urreizti, et al., 2006b). 

 

CBS protein analysis 

To assess the presence and relative amount of wild-type and mutant CBS 

proteins, Western blot analysis of the soluble fraction of the crude cell lysates was 

performed under denaturing conditions as described in Janosik et al. (Janosik, et al., 

2001b), with some modifications (Urreizti, et al., 2006b). 

 

Minigene construction and splicing assay 

Genomic DNA from patient 68a (heterozygote for mutation c.667-14_-7del8) 

was amplified using CBS primers 4F and 6R to obtain a fragment of 626 or 618 bp 

(from the last 29 bp of intron 3 to the first 103 bp of intron 6). This PCR product, 

containing both wild-type and mutant alleles, was purified using IllustraTM GFXTM 
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PCR DNA and a Gel Band Purification Kit (GE Healthcare, Waukesha, WI, USA) and 

cloned into the pGLB1 vector (Diaz-Font, et al., 2005). Plasmid pGLB1 is based on a 

pcDNA3.1 vector and contains exons 7, 8, and 9 and introns 7 and 8 of the GLB1 

gene, where intron 7 contains a PmeI restriction site, which was used to clone the CBS 

fragment. The resulting plasmids, named pGLB1-CBS_wt and pGLB1-CBS_mut, 

were confirmed by sequencing. 

The splicing assay was performed by transfecting 1 µg of each minigene 

plasmid with 5 µl of Lipofectamine 2000 Reagent (Life Technologies, Basel, 

Switzerland) into 90% confluent HeLa cells. Total RNAs were isolated 24 h after 

transfection using the QIAshredder and the RNeasy Mini Kit (QIAGEN, Hilden, 

Germany). RNA concentration was determined spectrophotometrically, integrity was 

verified by gel electrophoresis and RNA quality was assessed by OD 260/230 and 

260/280 ratios. 

Two µg of each RNA was reverse-transcribed in a final volume of 20 µl using a 

High Capacity cDNA Reverse Transcription Kit with RNase Inhibitor (Applied 

Biosystems, Foster City, CA, USA) according to the manufacturer’s instructions. 

PCR amplification of each cDNA product was performed using primers T7 and 

SP6 as previously described (Diaz-Font, et al., 2005; Santamaria, et al., 2008). The PCR 

products were electrophoresed and each band of interest was purified and analyzed 

by sequencing.  

 

Results  

Screening for CBS mutations  
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Twenty-two different mutations (Table 1), ten of them novel, were found in 22 

unrelated patients of different geographical origin (Table 2). Forty-two mutant alleles 

were identified through sequencing of coding exons and flanking intronic regions, 

while an additional mutant allele was discovered by Southern blot analysis (see 

below). Only one allele remained unidentified. Five of the new mutations were 

missense while five were deletions. 

After sequencing the complete CBS coding sequence, only mutation c.1566delG 

was found in heterozygosis in patient 87, which she inherited from her father. A 

Southern blot analysis of this patient and her mother, hybridized with a set of four 

probes covering the entire CBS genomic region (Fig. 1A), revealed the same pattern 

of bands observed in control samples but the relative intensities of fragments 2, 3 and 

4 were altered (Fig. 1B). Hybridization of the same membrane separately with each 

individual probe revealed an additional band of nearly 10 kb detected by probes B 

and C (Fig. 1C). This result was consistent with a deletion removing the DrdI site 

present in intron 5. To test this hypothesis, a PCR amplification from intron 3 to 

intron 7 was performed. As shown in Fig. 1D, a new band of 1176 bp was observed in 

the samples of the patient and her mother. Sequencing revealed a 796-bp deletion 

(c.532-37_736+438del794), which spans from the last 37 bp of intron 4 to the first 438 

bp of intron 6 (Fig. 1E). This deletion causes a frameshift starting from a valine to 

glycine substitution at position 178 and leading to a stop codon at residue 201 

(p.V178GfsX23).  

 

Analyses of pathogenicity of mutant CBS enzymes 

None of the new mutations found was present in 100 control chromosomes, 

ruling out the possibility of common polymorphisms. 
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We assessed the pathogenicity of all five new missense mutations and of the 

novel in-frame deletion p.M173del using an E. coli heterologous expression system 

followed by Western blot and in vitro enzyme activity analysis (Fig. 2). Mutation 

p.P49L, previously described by de Franchis et al. (de Franchis, et al., 1998) was also 

analyzed.  

All the proteins from the mutant alleles were found in amounts similar to those 

of the wild type (Fig. 2, upper panel). The activity of these mutant enzymes was 

assayed in vitro, either in the presence or absence of the cofactor PLP, or in the joint 

presence of PLP and SAM (Fig. 2, lower panel). As previously described (Kluijtmans, 

et al., 1996; Maclean, et al., 2002), we found that the wild-type CBS activity was 

strongly stimulated by both PLP and the combination of PLP and SAM. Mutations 

p.M173del, p.I278S, p.D281N and p.D321V showed null activity, either in the absence 

or presence of the activators. In contrast, mutations p.49L, p.P200L and p.A446S 

retained different amounts of activity and also the ability to be stimulated.  

In particular, mutation p.P49L displayed null activity in the absence of any of 

the activators, retained 71% of the wild-type activity in the presence of PLP and 

showed reduced activation by SAM. In contrast, in the absence of any of the 

activators, mutation p.P200L displayed around a third of the activity of the wild type 

(15% versus 43%) and retained the ability to be induced by PLP and SAM. SAM 

stimulation was 2-fold, comparable to that of the wild type. Finally, p.A446S 

displayed highly variable levels of activity in different tests, in the absence or 

presence of activators, but in general the values where in the range of the wild type 

or higher.  

 

Effect of a small intronic deletion on RNA splicing 
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The small deletion c.667-14_-7del8 involved intron 5 sequences within the 

acceptor site, without affecting the conserved AG dinucleotide. Since no RNA was 

available from patients with this mutation (68a and 68b), a minigene assay was 

performed to test the effect of this mutation on RNA splicing (Fig. 3A). The genomic 

region spanning from the 3’ part of intron 3 to the 5’ part of intron 6 of the CBS gene 

of the mutant and wild-type alleles was PCR-amplified and cloned within intron 7 of 

a construct containing several GLB1 exons (see Material and Methods for details). 

Wild-type and mutant constructs were transfected into HeLa cells and splicing was 

assayed by RT-PCR using the T7 and SP6 primers (Fig. 3B). The major band observed 

in the wild-type sample corresponds to the inclusion of all three CBS exons, whereas 

in the mutant, exon 6 was skipped, as assessed by sequencing of all the bands. 

 

Discussion 

Mutation p.T191M was identified in 21.8% of the alleles of the Spanish and 

Portuguese patients included in this study (Table 2). Taking into consideration all 50 

homocystinuric patients from the Iberian Peninsula included in this and in our 

previous studies (Urreizti, et al., 2003; 2006a), mutation p.T191M accounts for 44% of 

the mutant chromosomes. Mutation c.1566delG is the second most prevalent change 

(7% overall), and is particularly common in Portugal (21%). In the present study, we 

found the panethnic mutation p.I278T for the first time in two unrelated Spanish 

patients, both in the heterozygote state, and in a Norwegian patient, in homozygosis 

(Table 2). Missense mutations are the most common alterations in the CBS gene in 

the patients of the present study (73%). We also found six deletions of different sizes 

(1 bp to 794 bp), five of them novel.  
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Southern blot analysis allowed us to identify a large deletion of nearly 800 bp in 

the heterozygous state (c.532-37_736+438del794, p.V178GfsX23) in patient 87 and in 

her mother. Additionally, a qmfPCR assay was performed on the patient’s sample 

yielding a consistent result (C. Ged, personal communication). This patient, 

diagnosed through neonatal screening, presented with dramatically increased 

plasma methionine (700 µM) and total homocysteine (145 µM). She has been on a 

normal diet and treated with pyridoxal, folate and betaine since her birth. Currently 

aged 4 years, her plasma homocysteine and methionine levels are 76 µM and 302 µM, 

respectively, and she is clinically asymptomatic, highlighting the importance of an 

early diagnosis.  

An intronic 8-bp deletion (c.667-14_-7del8) was found in two siblings (#68a-

#68b, Table 2). Prediction algorithms indicated a subtle reduction in the score of the 

splicing acceptor site of intron 5. However, a mini-gene analysis clearly showed that 

it led to the skipping of exon 6, and produced a frameshift. This is consistent with the 

severity of the patients’ phenotypes. We also found a 5 bp deletion in exon 8 in 

patient #109, and a 1 bp deletion in exon 6 in patient #89, both in homozygosis (Table 

2). The severity of these genotypes is in accordance with the severe clinical 

presentation of both patients. In general, frameshift-generating deletions correlate 

with a more consistently severe phenotype, as expected.  

Seven mutations (six missense and a 3-bp deletion) were expressed in E. coli 

and analyzed by Western blot under denaturing conditions (Fig. 2, upper panel). 

Their presence in amounts similar to those of the wild-type CBS suggests that the 

mutations do not affect protein integrity. Alternatively, they may affect the catalytic 

core, proper protein folding or the ability to form tetramers. In this regard, several 

authors have studied the involvement of certain chaperones in the rescue of missense 
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CBS mutants, and demonstrated that the regulation of these chaperones could lead to 

almost complete recovery of the mutant protein activity (Kopecka, et al., 2010; 

Majtan, et al., 2010; Singh, et al., 2007; Singh, et al., 2010).  

Four mutations showed null activity, which supports their pathogenic 

character. These mutations, p.D281N, p.I278S, p.D321V and p.M173del, were found 

in four unrelated patients, #82a (and his siblings), #94, #90, and #55, respectively. No 

correlation between their null activity and the phenotypes of the patients could be 

established since all but patient #94 presented with mild disease. 

The other three mutations, displaying different degrees of enzyme activity, 

were p.P49L, p.P200L and p.A446S, present in patients #80, #79 and #90, 

respectively, all in the heterozygous state. In these cases, a correlation between their 

residual activity and the mild phenotype of the patients was observed. 

We found the activity of p.P49L to be 75% of that in the wild type. While our 

work was ongoing, Kozich et al. (Kozich, et al., 2010) published an analysis of 

mutation p.P49L expressed in E. coli. They found it to be an active enzyme, 

indistinguishable from the wild type. Mutation p.P49L was found in two siblings, 

one with adult onset and the other asymptomatic. Genetic analysis of the proband 

(#80a in Table 2 and subject II.1 in Fig. 4), showed compound heterozygosity for 

p.P49L and p.R125Q (Table 2). Genotyping of his siblings revealed an asymptomatic 

sister also carrying both mutations (#80b; II.3 in Fig. 4). The proband had suffered a 

myocardial infarction at age 53. Blood testing revealed moderate 

hyperhomocysteinemia and hypermethioninemia (58 and 655 µM, respectively) and 

he responded well to PLP (tHcy: 28 µM after treatment). On the other hand, his 

asymptomatic sister, aged 54, presented with severe hyperhomocysteinemia (543 

µM) and hypermethioninemia (1723 µM) but had no clinical sign of classical 
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homocystinuria and had given birth to three healthy offspring without 

complications. As the two CBS mutations were inherited separately by the offspring, 

we know that they were not in cis in the mother or in his affected brother. Mutation 

p.R125Q, the other mutation in family #80, was originally described as a null activity 

mutation (Sebastio, et al., 1995). In their recent publications, Kozich et al. (Kozich, et 

al., 2010) and Majtan et al. (Majtan, et al., 2010) expressed it in E. coli. In both studies 

the reduced activity was improved under permissive conditions or in the presence of 

chaperones. Taken together, these new results on p.P49L and p.R125Q help explain 

the mild or null affectation of patients #80a and #80b. In addition, the MTHFR 

677C>T polymorphism may act as a phenotype modifier in this family. However, the 

discrepancy between the blood markers and the phenotype of patient #80b remains 

unexplained. 

Mutation p.P200L was identified as the sole mutation in patient #79. The 

patient’s symptoms are limited to hypertension and severe hyperhomocysteinemia 

(183 µM), which does not respond to vitamin B6 and folate treatment. A second CBS 

mutation may be deep intronic, located in a regulatory region far from the gene, or 

involved in a complex rearrangement not detected by our screening methods. 

Mutation p.A446S was found in a mildly affected patient (#90, Table 2), in compound 

heterozygosis with the null mutation p.D321V (Fig. 2). The activity of p.A446S was 

very similar to that of the wild type and this correlates with the mild phenotype of 

the patient, who only presented with lens dislocation at 45 years, despite a high tHcy 

level (105 µM, which was reduced to 40 µM after two months of treatment with folic 

acid and vitamins B6 and B12).  

The poor genotype–phenotype correlation widely observed by us and others 

among the homocystinuric patients and the demonstration that some patients 
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carrying two CBS mutant alleles are asymptomatic, call for environmental and 

genetic modifiers involved in the pathophysiology of the disease. Some of these 

genetic factors may be involved in the folding and degradation of the mutant 

proteins.  
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Figure Legends: 

Figure 1. Southern Blot analysis of the CBS gene. A: scheme of the human CBS gene. 

The DrdI (D) and AflII (A) restriction sites and the corresponding restriction 

fragments (F1 to F4) are indicated below the scheme. The positions of the probes (A 

to D) are indicated above. B: Southern Blot analysis of patient #87 and her mother 

(#87m) hybridized with the whole set of probes. Two wild-type DNAs were included 

in the analysis. M: Molecular weight marker. C: Southern Blot analysis hybridized 

with probe B. The arrow indicates the new band found in the patient and her mother. 

D: PCR amplification of the fragment from intron 3 to intron 7. An extra band of 

reduced size was found in patient 87 and her mother, corresponding to a 794-bp 

deletion. The asterisk indicates the heteroduplex. E: Chromatogram of patient 87 

showing the deletion boundaries.  

 

Figure 2. Heterologous expression and activity of seven CBS mutations. A: SDS-

PAGE followed by Western blot immunodetection of wild-type and mutant CBS 
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proteins expressed in E. coli XL Gold. Ten µg of total protein extract was loaded in 

each lane. Six replicates were performed for each mutation. pKK: Empty vector used 

as negative control. B: In vitro enzyme activity of wild-type and mutant CBS alleles 

from E. coli XL Gold extracts in the absence of both PLP and SAM (black boxes), in 

the presence of PLP (grey boxes), and in the presence of both PLP and SAM (white 

boxes). Wild-type CBS activity in the presence of PLP was taken as the reference 

value (100%). Activity values greater than 4% are indicated in the figure. Values are 

the means of six replicates. Error bars represent SD.  

 

Figure 3. Splicing analysis of mutation c.667-14_-7del8 included in a minigene 

construction. A: scheme of the minigene: grey boxes represent GLB1 exons and white 

boxes are CBS exons. The thick horizontal line represents the CBS introns and the 

thin line the GLB1 introns. PCMV: CMV promoter; BGHpA: BGH polyadenylation 

site. Wild-type and mutant splicing patterns are indicated above and below the gene 

respectively. The dot indicates the position of the mutation. The wild-type and 

mutant constructs were transiently transfected into HeLa cells. Total RNA was 

extracted 24 h after transfection, reverse-transcribed and PCR-amplified with primers 

T7 and SP6 (indicated by arrows). B: PCR amplification of the wild-type (1) mutant 

(2) and the minigene construct without the CBS exons (3). The asterisk points to a 

minor band lacking exon 4 observed in the wild-type construct. C: Diagrams 

showing the three main PCR products.  

Figure 4. Pedigree of family 80. Patient 80a (II.1), the proband, is marked with an 

arrow. Patient 80b is member II.3. CBS genotypes are indicated below the pedigree 

symbols; the MTHFR c.677C>T genotypes are also included in brackets. Total plasma 

homocysteine levels (µMol/L) are indicated when available. NA: not available. 
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Table 1. List Of The 22 Different Mutations Found In This Cohort. 

DNA 
Deduced 

Protein Change 

Exon-

Intron 
Alleles 

Restr. 

Enz.
1
 

References 

c.146C>T p.P49L Ex 1 1  de Franchis et al., 1998 

c.253G>A p.G85R Ex 2 1  Maclean et al., 2002 

c.361C>T p.R121C Ex 3 1  Katsushima et al., 2006 

c.374G>A p.R125Q Ex 3 1  Marble et al., 1994 

c.518delTGA p.M173del Ex 4 2  This study 

c.532-37_736+438del794 p.V178GfsX23 In 4-In 6 1  This study 

c.572C>T p.T191M Ex 5 7  Urreizti et al., 2003 

c.599C>T p.P200L Ex 5 1 MspI- This study 

c.667-14_667-7del8 p.Y223GfsX23 In 5 1  This study 

c.676G>A p.A226T Ex 6 2  Shan et al., 1998 

c.689delT p.L230RfsX39 Ex 6 1 MspI+ This study 

c.824G>A p.C275Y Ex 7 1  Urreizti et al., 2003 

c.833T>G p.I278S Ex 8 1 TspRi+ This study 

c.833T>C p.I278T Ex 8 4  Kozich et al., 1992 

c.841C>T p.D281N Ex 8 1 BamHI- This study 

c.862_866del5 p.E289GfsX39 Ex 8 2  This study 

c.962A>T p.D321V Ex 9 1 Hpy8I- This study 

c.1085C>T p.T353M Ex 10 2  Dawson et al., 1997 

c.1136G>A p.R379Q Ex 10 1  Urreizti et al., 2003 

c.1330G>A p.D444N Ex 12 4  Kluijtmans et al., 1996 

c.1336G>T p.A446S Ex 12 1 BstNI+ This study 

c.1566delG p.K523SfsX18 Ex 16 5  Castro et al., 1999 

Mutations not previously described are indicated in bold 
1
Novel missense mutations were checked in control chromosomes using the indicated enzyme. +: the 

mutation creates a new site; -: the mutation destroys a site. 

Reference Sequences: Genomic, GenBank NG_008938.1; cDNA, ENST00000352178. Nucleotide 

numbering reflects cDNA numbering with +1 corresponding to the A of the ATG translation initiation 

codon in the reference sequence, according to journal guidelines (www.hgvs.org/mutnomen). The 

initiation codon is codon 1. 
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Table 2. Patients, CBS And MTHFR C.667C>T Genotypes, Disease Severity And Geographical 

Origin 

Patient Genotype 

MTHF

R 

(c.677

C>T) Severity Country 

74 p.[T353M]+[D444N] TT Severe Spain 

79 p.[P200L]+[?] CT Asymptomatic Spain 

80a p.[R125Q]+[P49L] TT Mild Spain 

80b p.[R125Q]+[P49L] CT Asymptomatic  

82a p.[T191M]+[D281N] CC Mild Spain 

82b p.[T191M]+[D281N] CC Mild  

82c p.[T191M]+[D281N] CC Mild  

83 p.[T353M]+[D444N] TT Mild Spain 

84 p.[I278T]+[R121C] CT Mild Spain 

88 p.[D444N]+[D444N] CT Mild Spain 

92 p.[T191M]+[T191M] CT Mild Spain 

93 p.[T191M]+[T191M] CT Severe  Spain 

94 p.[T191M]+[I278S] CT Severe Spain 

100 p.[T191M]+[R379Q] CT Mild Spain 

107 c.[1566delG]+[1566delG] CT NA Spain 

108 p.[I278T]+[C275Y] TT Mild Spain 

81 c.[1566delG]+[1566delG] TT Severe Portugal 

87 c.[1566delG]+[532-37_736+438del794] CC neonatal screening 

(asymptomatic) 

Portugal 

109 p.[E289GfsX39]+[E289GfsX39] CT Severe Portugal 

68a p.[G85R]+c.[667-14_667-7del8] CT Severe Argentina 

68b p.[G85R]+c.[667-14_667-7del8] CT Severe  

89 c.[689delT]+[689delT] CT Severe Argentina 

90 p.[D321V]+[A446S] CT Mild Argentina 

91 p.[A226T]+[A226T] CT Severe Argentina 

105 p.[I278T]+[I278T] ND NA Norway 

55 p.[M173del]+[M173del] ND Mild Indian 

ND: Not Determined. 

NA: Not Available. 
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