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Abstract: Complex quantum networks will be essential in the future either for the distribution
of quantum information (telecommunications) or for studying complex quantical linked systems
among others. Complex networks have a wide variety of properties that will help us understand
how complex quantum networks behave. Here we will study how this complex networks perform
using local quantum transformations at the nodes. We will focus specifically on the Internet network
and we will study its behaviour from a current and quantum perspective.

I. INTRODUCTION

A large part of the current systems, such as the Inter-
net network, neural network or social networks amongst
many others, can be modeled with graph theory, where
the system is described by a set of N nodes and L edges,
each one of these links one node to another. Within com-
plex networks we can find both symmetric and antisym-
metric networks, i.e. a square network is a totally ran-
dom network and a scientist connections lattice is totally
antisymmetric. Due to the great variety of systems that
can be described through a complex network, a line of
research has been generated, which includes from math-
ematical to theoretical physical models in order to reveal
the principles that govern these lattices. Knowing the
properties of these networks allows us to know how the
system will behave; for instance, if we study the internet
network we can see how it will behave in case of a global
internet repeaters failure.

In the future, we hope to develop communication sys-
tems based on quantum physics, such as the quantum
internet[1]. Quantum networks offer new possibilities and
phenomena, which we can compare with their classical
equivalent. One of the new advantages is that complex
quantum network offers us the possibility of sending en-
crypted messages securely, without anyone being able to
intercept the message and leaving a trace.

The objective of this study is the analysis of a same
network in a classic and quantum way. To compare
them, we can understand what advantages or disadvan-
tages these new complex quantum networks bring us
over the already known complex networks. We will focus
mainly on the Internet network, although, it does not
imply that this comparative study can not be extended
to more than one network.
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II. BOND PERCOLATION THEORY

The objective of modeling complex networks is to un-
derstand the systems they represent without having to
know its exact structure, i.e. only by knowing their
statistical properties we can understand their behavior.
Once measured and quantified these properties, we must
transform these results into conclusions on how the sys-
tem can work. The phenomenon of percolation describes,
in a simple way, the criticality of some complex sys-
tems, such as physical, biological and social phenomena.
Canonical studies of this systems are within statistical
mechanics and are fundamentally associated with phase
transitions[3].

Usually the percolation process is understood as the
movement of a fluid in a porous material. This defini-
tion can help us to understand the process of percolation.
We can imagine this process as a fluid that can flow be-
tween two nodes with a probability p ∈ [0, 1]. When
the probability is p = 1, we will have all the edges con-
nected, therefore, the liquid can flow through the whole
network. When the probability is p = 0 we will have all
the edges disconnected and the liquid will not be able to
flow between nodes as there will be no edges connecting
it. Fig.(1).

In our case, we study real networks, with a number of
fixed and connected nodes in a concrete way. To under-
stand how the network behaves we can imagine that each
one of the edges has a probability p of being open and a
probability 1−p of being closed, this way of understand-
ing the network is knowning as bond percolation [3]. The
percolation threshold pc is a concentration p at which a
macroscopic connected component (or giant component
(GC)) emerges [3], see Fig.(1).

Below pc, the network is composed of a large number of
small disconnected components with a size distribution
approaching a power law as p tends to pc. Above pc,
the giant component grows and becomes equal to the
entire system when p = 1. For finite systems the giant
component is defined as the largest connected component
of the system.
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FIG. 1: Square lattice. Each edge is represented with white
squares and black squares. The white one is disconected and
black one is connected.We observe the emergence of GC with
pc = 0.59, with p < pc we only see disconnected islands.

.

III. MODELLING THE NETWORK AS A
QUANTUM NETWORK

We can consider this modelling, as in Fig.(2), where
each edge correspond to pairs of pure entanglement state,
mathematically we can express it as |Ψ〉⊗2, where the
wave function is defined as |Ψ〉 =

√
λ0 |00〉 +

√
λ1 |11〉,

representing two qubit states, where
√
λ0 ≥

√
λ1 ≥ 0

are the Schmidt coefficients. Each of these partially en-
tangled states can be converted into a singlet (maximum
entangled state) with the singlet conversion probability
p = min[1, 2(1 − λ0)] [5] . With this transformation we
guarantee that as we are in a maximally linked state,
no information is lost between states [5].However, if the
two nodes share two copies of |Ψ〉, the probability that
at least one of the two states is converted into a singlet
state is p2 = 2p − p2, where p is the singlet conversion
probability, previously defined.

FIG. 2: Equivalence between a classic and a quantum node.
On the left we see a node with three classic connections, where
there are three neighbours connected with a simple edge. On
the right we can see these same neighbours connected quan-
tum, i.e. with two links per neighbor. Figure from [4]

.

To apply the classic percolation in a quantum complex
network, we need to consider that the network now has
the same number of nodes, but the edges that join the
nodes are doubled, see Fig.(2), where each edge corre-
sponds to the partially entanglement state |Ψ〉. A better
way to understand this, is to perceive it with the same
number of nodes and edges, but now the probability that
a link is open is no longer p but p2 as the links are two
copies of |Ψ〉.We can see this in Fig.(2). The process of

applying this transformation to each edge of the classical
network, whether optimally or not, is known as classical
entanglement percolation [4].

So far we have only made a quantum transformation
allowing the network to be maximally entangled. But
we can obtain new characteristics if we apply other local
quantum transformations that transform the geometry
of the network, it must be taken into account that this
change in geometry involves a change in the percolation
threshold. [4]. To understand this new quantum prop-
erty first we need to comprehend the entaglement swap-
ping. Let us now consider a node (c) of our network, in
which we make a Bell measurement in two qubits that
belong to a |Ψ〉 state and each edge is shared with a dif-
ferent node (a and b). Once this operation is done, the
nodes (a and b) of the central node (c) are untangled
and a tangle is created between nodes a and b [7] , see
Fig.(3). Thanks to this type of quantum transformation
we can converte a honeycomb lattice into a triangular
lattice, ensuring that no information is lost [4]. In this
type of transformation we can see that the percolation
threshold is lower for the triangular lattice than for the
honeycomb lattice [3], which represents an improvement
over the previous lattice.

FIG. 3: Entangelment swapping

.

IV. INTERNET NETWORK

Many times we believe that the WWW and the
Internet network are the same, which is not true. They
are very different networks from each other. In a general
way, we can define the Internet network as a worldwide
network of computers interconnected by cables, this
allows an exchange of information between them. The
vertices of this network are:

- The computers of the users.
- The servers (computers or programs providing a
network service).
- The routers that arrange traffic across the Internet.

Connections are undirected, and traffic (including
its direction) changes constantly [10]. In table I we
summarize the main characteristics of the network,
which will be studied below.
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N L 〈c〉 〈k〉 Vertex type Format

Internet AS 23752 65048 0.20 4.92 AS Undirect

TABLE I: Main characteristics of the internet network, Num-
ber of nodes N , number of edges L, Clustering coefficient 〈c〉,
Average degree 〈k〉 , Vertex type, Network format.

To understand the topology of this network, we can
start by studying its cumulative degree distribution Eq.
(1), which is the probability that a randomly selected
node has k or more edges, according to the behavior of
Pc(k) that we can see in the Fig.(5). The internet net-
work has a scale-free topology, which means, it is a net-
work with nodes with a large number of neighbours and
nodes with very few neighbouneirs. In Fig. (4) we can
see this since the nodes in the middle have many more
connections than those at the ends. In this network rep-
resentation, the size of the nodes is proportional to the
logarithm of their degrees. We can see that there are
very large nodes (they have many connections) in the
center and very small nodes (they have few connections)
at the ends, which is consistent with the representation
of Pc(K) that we found in the simulations made to ob-
tain the characteristics of the Internet network, Fig.(5)
and Fig.(6).

FIG. 4: Hyperbolic representation of the network we have
used for this document, Figure from [8].

Pc(k) =
∑
k≤k′

P (k′) (1)

The next thing we will focus on understand is the
topology of the network is the average nearest neigh-
bours degree Eq. (2) depicting a measurement of the

tendecy of nodes to connect to peers in terms of the de-
gree. On the right of Fig.(5) we can see knn(k) which
represents the average nearest neighbours degree of the
internet network, which decreases in function of the de-
grees. This presents a disassortative pattern of degree,
i.e the internet network connects in such a way that small
degree nodes tend to connect with large degree nodes, we
can see this in Fig.(4), we see that the smaller nodes (the
ones at the end) are not connected to each other but they
are connected to the large nodes (central nodes). This
is what is expected in a scale-free network if we want
to add new nodes these will tend to be added to nodes
that already have many connections, i.e. new nodes will
not be added randomly (if they did, we expect a distri-
bution in the P (k)). For instance, if you just bought a
new computer and need internet, you do not choose at
random company to hire the service from, but you are
informed of which company offers the best service. If all
the people who hire internet do it in this way, we will
see that the network will evolve in such a way that the
best company will have more customers. Therefore the
degree of the edges are increased for this company.

knn(k) =
∑
k′

k′P (k′|k) =
1

Nk

∑
i∈k

1

k

∑
j

ai,jkj (2)

FIG. 5: The graphic on the left shows the comulative degree
distribution Pc(k) and the graphic on the right shows the
average nearest neighbours degree knn(k)

FIG. 6: The graphic on the left shows Clustering coefficient
Ck(k) and the graphic on the right shows the GC and χ as a
funtions of p.
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To conclude this presentation of the topology of
the Internet network, we need to explain three others
properties that characterize the network:

- Grade-dependent grouping coefficient, Ck(K).
- Variance, χ.
- Percolation thresholds, pc.

The first, the grade-dependent grouping coefficient or
grouping spectrum defined by the Eq. (3), is the average
of the local grouping coefficient over the degree classes.
It gives us an idea of how much the network is grouped.
In Fig.(6), we see two curves represented, the green one
refers to 1

k−1 and the purple one represents Ck(K). The
first thing we can observe is that this coefficient is much
bigger than the one we would obtain in a random net-
work. This means that the obtained values cannot be
explained with the model of a random network. If we
compare Ck(K) and 1

k−1 , we see that most points of

Ck(K) are above the value 1
k−1 , which means that it

is a network with strong clustering. Is very interesting
to see that although it is a very large network (it a large
number of nodes) with a very high clustering, it has a
very low average path length [11].

For the second property we can look at Fig.(6). On
the right we see how the giant component of the network
varies in function of p. The variance, χ, is defined accord-
ingly to the Eq.(4). It is proportional to the probabil-
ity that concentration p, as spanning cluster (GC 6= 0),
starts to appear and according to this, we can find pc
which corresponds to the maximum point of χ is found.
This is the same point where the GC becomes zero.

According to this, for the classical internet network we
found a third property; a value of pc = 0, 014. Which
shows us that it is a highly connected network. With a
very small value of p the GC becomes larger than zero,
therefore we begin to have a connected network.

c(k) =
1

Nk

∑
i∈k

ci =
2

k(k − 1)P (k)

1

N

∑
i∈k

Ti (3)

χ =
〈GC2〉 − 〈GC〉2

〈GC〉
(4)

V. INTERNET QUANTUM COMPLEX
NETWORK

The Internet network we have described is the network
we know today. Now we are going to study how it be-
haves and what properties it acquires when we apply the
quantum transformations described in section III. First
we must consider that every classic internet edge becomes
a quantum double edge, |Ψ〉⊗2, see Fig.(7) so that the
probability we keep in mind to apply bond percolation
is p2. If we only take into account this first local change

in the original network we can see that all the properties
of the network are maintained , except pc, we see that
for the internet network, if we take into account this first
transformation, the threshold probability is pc = 0, 006
to the left of the one we had found for the classical in-
ternet network, therefore this network percolates before,
see Fig.(8) and Fig.(9), in this figure you can see how the
Ck(K), the Pc(K) and the Knn(k) of the classical net-
work and the new quantum network with multilinks are
the same. This first transformation is necessary because
we cannot compare a classical network with a quantum
network, therefore what we transform the internet net-
work into one with new quantum edges, but keeping its
topology. In this way we will be able to see the effect
that the swapping change has on the network.

FIG. 7: Equivalence between a classic edge and a quantum
edge

Finally we apply the swapping transformation in the
network, see Fig.(3). When we apply this second trans-
formation, the topology of the network changes because
the nodes that were not connected before now can be
connected and the nodes that were connected before can
remain connected. When we connect these two neigh-
bours there may be still a border between the selected
neighbours and the central node. This new change in the
topology can be seen in Fig.(9). As you can see both
Ck(k), Knn(k) and Pc(k) have different behaviors but
the general characteristics of the network are maintained,
it is still a network with a strong clustering and where
small range nodes still tend to connect with large range
nodes. What we have achieved with this transformation
is that the threshold of percolation is smaller than the
one that the network had with the new quantum edges,
pc = 0, 004, see Fig.(8), maintaining the general charac-
teristics of the classical network. Therefore the new con-
struction implies that the network with swapping trans-
formation percolates before the network with quantum
edges.

FIG. 8: The graph on the right shows χ(p), the graph on
the left shows GC(P ), for the classic internet network (pur-
ple), the quantum network with multiple edges (blue) and the
quantum network applying swapping (red).
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FIG. 9: The graphic on the left shows the comulative degree
distribution Pc(k) and the graphic in the middle shows the
coeficient grouping Ck(k) and on the right shows the aver-
age nearest neighbours degree knn(k), for the classic internet
network (purple), the quantum network with multiple edges
(blue) and the quantum network applying swapping (red).

VI. CONCLUSIONS

We have studied the percolation of entanglement in
the Internet network, which we can characterize by its
statistical properties without knowing its exact structure
and which shows that with purely local quantum trans-
formations, we can lower the threshold of percolation of
the network, pc, without excessively changing its global
characteristics. When we mix the bond percolation of
complex networks with the local transformations of quan-
tum mechanics, we see that networks undergo non-trivial

changes, opening new paths to explore how classical net-
works can be improved by applying these transforma-
tions.

Although this has already been demonstrated for syn-
thetic networks in different studies, we have seen that
this theory is also valid for a real network such as the In-
ternet. If the future of telecommunications is quantum,
we think it’s a good starting point to know that quantum
networks can substantially improve information delivery
without drastically changing the structure we have today.
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