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0.1 Abstract
This thesis deals with the study of the Planar Circular Restricted Extended Three-Body

problem, which is a generalisation of the regular Planar Circular Restricted Three-Body
problem in which we replace the classical gravitational field (F ∼ r−2) with another one
such that F ∼ rα, with arbitrary values of α, with the final objective of performing accurate
simulations of the trajectory of the third body.

We begin by precisely stating the problem as well as introducing some concepts that will
be needed throughout this thesis for its development. We will then move onto the study
of Hill Regions, which are the regions of the plane in which motion of the third body is
possible. These regions are related to the value of the Jacobi constant, the only constant
variable known for the restricted three-body problem. Following we will deal with the
regularisation of the problem, a useful concept that becomes of utmost importance when
computing the trajectory of the third body near the collisions. Finally we outline some
important points that arose when computing the trajectory and how did we overcome them.
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0.3 Introduction
The three-body problem is a specific instance of the more general n-body problem, which

seeks to predict the motion of a set of n bodies interacting with each other. Originally, its
study originated from the desire to better understand the motions of celestial bodies, such
as planets or stars according to classical Newtonian mechanics. More recently, it has lead
into the study of motions of celestial bodies according to the laws of general relativity or the
study of the motion of subatomic particles according to the laws of quantum mechanics.

In general, neither the n-body problem nor the three-body problem have analytic solu-
tions, and its evolution is believed to be chaotic in the majority of configurations. Hence,
if one seeks study the motion of the individual bodies, one must draw upon numerical
methods to get an approximation to the solution.

In this thesis, we will restrict ourselves to the study of the extended, circular, restricted,
planar three-body problem, i.e. we will consider a plane in which we have two bodies
orbiting in a circular motion around its centre of masses, and we shall study the motion of
a third body with negligible mass interacting with the other two. In the extended version,
we do not restrict ourselves to the gravitational force, but we consider a generic force field
F such that F ∼ rα, where α ∈ R.

Although this may seem as an oversimplification, these assumptions are enough to study
real phenomena, such as the motion of a satellite under the gravitational pull of the Earth
and the Moon or, in quantum mechanics, the study of the movement of an electron in a
hydrogen atom.

In this thesis, we will first of all, introduce the basic definitions needed to comprehend
the problem, as well as provide a precise mathematical definition of it. We will also perform
a study of the Lagrange points, which are basically stationary solutions of the problem when
considering a synodic frame of reference, i.e. a rotational frame of reference in which the
two revolving bodies become fixed over the x axis.

Then we will perform an study of the Hill Regions, which are basically the regions of
the plane in which the motion of the third body is possible. These regions are delimited by
the Zero Velocity Curves, which are, as it name suggests, the curves in which the velocity
of the third body becomes null in a synodic frame of reference.

We will move then onto the topic of regularisation. We will try to generalise the method
used in the classical field and then, apply it to perform the regularisation for any value of α.

Once this analysis is performed, we will be well equipped to tackle the computation of
the orbit of the third body. In the last chapter of this thesis, we will describe briefly how this
theoretical analysis is used to solve various problems that arise when trying to perform the
computation.





Chapter 1

The extended, circular, planar,
restricted three-body problem

We will begin this chapter by providing a precise definition of the extended, planar,
restricted, circular three-body problem, which is the object of our study.

After describing the problem, the differential equations of motion in the inertial (sidereal)
referential frame, will be derived, and then transformed into the rotating (synodic) referential
frame, which provides a great simplification for subsequent calculations.

We shall then introduce the Lagrangian and the Hamiltonian of the system, as well as
introduce the concept of the Jacobi integral and the Jacobi constant, which will be a central
concept in the understanding of zero velocity curves, which will be studied in depth in
chapter 2.

Finally, in the synodic referential frame, we will perform an study of the Lagrange points
of the system, i.e. points in which the sum of gravitational forces is 0 (and therefore, a
body placed in one of these points shall remain fixed). The Lagrange points colinear with
the bodies do not have, in general, analytic solutions, although it is possible to perform
a qualitative study and obtain the number of solutions according to the value of a given
parameter.

1.1 The extended gravitational field
Let Fα be a vector field such that

Fα : R3 × R3 × R → R3

(r, ṙ, t) 7→ Fα(r, ṙ, t).

The Newton equation, i.e. the equation that rules the motion of a body under the influence
of the field Fα according to classical mechanics is given by

r̈ = Fα(r, ṙ, t). (1.1)

Let us consider two bodies of massesM1 andM2. The vector field that describes the grav-
itational force acting on the first body by effect of the second is Fα(R̄) = −GM1M2R̄

−2ur,

1



2 The extended, circular, planar, restricted three-body problem

where R̄ is the distance between the two bodies and ur is the unitary vector from the first
body to the second. In this thesis we will consider extend the study of the gravitational force
to a family of forces of the form

Fα(R̄) = −GM1M2R̄
αur, (1.2)

where α ∈ R, known as the extended gravitational forces, hence generating a family of gravita-
tional potentials of the form

Vα(R̄) =

∫
Fα(R̄) dR̄ =

1

α+ 1
GM1M2R̄

α+1 +K

where K is the integration constant. The common consensus in physics is to pick the origin
of potentials at the infinity. However, since we are dealing with forces that might not be null
at the infinite, we will choose our origin of potentials at radius 1, by means of choosing an
appropriate integration constant K = − 1

α+1GM1M2, and thus,

Vα(R̄) =
1

α+ 1
M1M2(R̄

α+1 − 1) (1.3)

1.2 The extended two-body problem
Let us consider two bodies of masses M1 and M2 such that M1 ≥M2. These bodies are

named the primary and the secondary body respectively.
Assume that these bodies follow a circular motion around their centre of mass and that

a third body, with mass much lower than both M1 and M2, moves in the plane defined by
the two revolving bodies. Describing the motion of this third body is the extended restricted
circular planar three-body problem

Let Fα(R̄) = GM1M2R̄
α be an attractive force associated with the two bodies, where R̄ is

the distance between the two. These forces are an extension of the gravitational force, which
stands for α = −2. Assume that these two bodies revolve in a circular motion around their
centre of mass and that a third body moves in the plane defined by the other two bodies
such that its motion is affected by them but it itself does not affect the revolving bodies.
Describing the motion of this third body is the extended, restricted, circular, planar three-body
problem.

1.3 The extended, planar and circular restricted three-body
problem

Let us restrict the motion of the primary and the secondary bodies such that they describe
a circular motion around their centre of masses with constant angular velocity n. In this
situation, both bodies remain at a constant distanceD and, assuming initial positions (mD, 0)
and ((m− 1)D, 0), where M =M1 +M2, m = M2

M and 1−m = M1

M , describe circular orbits
with equations

(mD cos(nt̄), mD sin(nt̄)) and ((m− 1)D cos(nt̄), (m− 1)D sin(nt̄)). (1.4)

The extended planar and circular restricted three-body problem analyses the movement of a
third body under the influence of these two bodies in their same plane and assuming that
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its mass is much less than bothM1 andM2 (by much less we mean that this third body does
not perturb the motion of the other two). The differential equations (Newton equation) that
describe the motion of this their body are:

d2X̄

dt̄2 = −GM(1−m)(X̄ −mD cos(nt̄))R̄1
α−1

+m(X̄ − (m− 1)D cos(nt̄))R̄2
α−1

,

d2Ȳ

dt̄2 = −GM(1−m)(Ȳ −mD sin(nt̄))R̄1
α−1

+m(Ȳ − (m− 1)D sin(nt̄))R̄2
α−1

,

(1.5)

with

R2
1 = (X̄ −mD cos(nt̄))2 + (Ȳ −mD sin(nt̄))2

R2
2 = (X̄ − (m− 1)D cos(nt̄))2 + (Ȳ − (m− 1)D sin(nt̄))2,

which can also be written in terms of the extended gravitational potentials as

d2X̄

dt̄2 =
∂Vα(X̄, Ȳ , t̄)

∂X
, and d2Ȳ

dt̄2 =
∂Vα(X̄, Ȳ , t̄)

∂Ȳ

1.3.1 The synodical coordinate system
Lets consider now a system of coordinates (X,Y ) in which the primary and the secondary

bodies are fixed. The coordinate transformation from the Cartesian coordinate system is
simply a rotation:

X = X̄ cos(nt̄)− Ȳ sin(nt̄) (1.6)
Y = X̄ sin(nt̄) + Ȳ cos(nt̄), (1.7)

which may be written in complex form as

Z = Z̄eint̄, (1.8)

such that Z̄ = X̄ + iȲ , Z = X + iY . In complex form, the distances R1 and R2 are given by

R1 = |Z − Z1|, and R2 = |Z − Z2|, (1.9)

where Z1 = mDeint̄ and Z2 = −(m − 1)Deint̄. To obtain the equations of motion in this
system of coordinates, we must find the expression of d2Z

dt̄2 :

d2Z

dt̄2 =
d
dt̄

d(Z̄eint̄)
dt̄ =

d
dt̄

(
dZ̄
dt̄ e

int̄ + inZ̄eint̄
)

=
d2Z̄

dt̄2 e
int̄ + in

dZ̄
dt̄ e

int̄ + in
d2Z̄

dt̄2 e
int̄ − n2Z̄eint̄

=

(
d2Z̄

dt̄2 + 2in
dZ̄
dt̄ − n2Z̄

)
eint̄.

Therefore, the complex form of the equations of motion in the synodical system is

d2Z̄

dt̄2 + 2in
dZ̄
dt̄ − n2Z̄

= −GM
(
(1−m)(Z̄ −mD)|Z̄ −mD|α−1 +m(Z̄ + (m− 1)D)|Z̄ + (m− 1)D|α−1

)
,



4 The extended, circular, planar, restricted three-body problem

with real and imaginary parts

d2X̄

dt̄2 − 2n
dȲ
dt̄ − n2X̄ = −GM

(
(1−m)(X̄ −mD)Rα−1

1 +m(X̄ + (m− 1)D)Rα−1
2

)
d2Ȳ

dt̄2 + 2n
dX̄
dt̄ − n2Ȳ = −GM

(
(1−m)Ȳ Rα−1

1 +mȲ Rα−1
2

)
.

(1.10)

Upon finding these expressions its clear that the left hand side becomes noticeably more
complicated, with the presence of first order derivatives, and one may question whether
this transformation serves any interest or rather it only confuses the matter. As we will see
in section 1.3.3, equations 1.10 have a useful integral.

1.3.2 Transformation into nondimensional units
Let us apply adequate Galilean transformations of space and time:

X̄ = DX, Ȳ = DY, nt̄ = t.

Applying these transformations we get

d2X̄

dt̄2 =
d2(DX)

d( t
n )

2
= n2D

d2X

dt2 ,

d2Ȳ

dt̄2 =
d2(DY )

d( t
n )

2
= n2D

d2Y

dt2 ,

R̄2
1 = (DX −mD cos(t))2 + (DY −mD sin(t))2

= D2
(
(X −m cos(t))2 + (Y −m sin(t))2

)
= D2R2

1,

R̄2
2 = (DX − (m− 1)D cos(t))2 + (DY − (m− 1)D sin(t))2

= D2
(
(X − (m− 1) cos(t))2 + (Y − (m− 1) sin(t))2

)
= D2R2

1,

(1.11)

and therefore,

n2D
d2X

dt2 = −GMDα((1−m)(X −m cos(t))Rα−1
1 +m(X − (m− 1) cos(t))Rα−1

2 ),

n2D
d2Y

dt2 = −GMDα((1−m)(Y −m sin(t))Rα−1
1 +m(Y − (m− 1) sin(t))Rα−1

2 ).

(1.12)

Taking into account the extended Kepler’s third law, n2D = GMDα, we may simplify equa-
tions to

d2X

dt2 = −(1−m)(X −m cos(t)Rα−1
1 +m(X − (m− 1) cos(t))Rα−1

2 ,

d2Y

dt2 = −(1−m)(Y −m sin(t))Rα−1
1 +m(Y − (m− 1) sin(t))Rα−1

2 .

(1.13)

Similarly,the equations of motion in the nondimensional synodical system, correspond-
ing to equations 1.10, become

d2x

dt2 − 2
dy
dt − x = (1−m)(x−m)rα−1

1 −m(x−m+ 1)rα−1
2 ,

d2y

dt2 + 2
dx
dt − y = (1−m)yrα−1

1 −myrα−1
2 ,

(1.14)
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with r21 = (x−m)2 + y2 and r22 = (x−m+ 1)2 + y2

These scaling to nondimensional units produce the following simplifications in the equa-
tions of movement of the third body:

1. The scaled masses have an unitary sum: 1−m, m.

2. The gravitational constant does not appear in the equations.

3. The distance between the two masses is 1 and the time to revolve once around their
common centre of masses is 2π.

1.3.3 An invariant relation: The Jacobi integral
In this section, we will derive an invariant relation, which will prove useful in the up-

coming sections to study the motion of the system, as well as a powerful way to check our
numerical computations, since it must be constant regardless of the position and the velocity
of the third body. We shall first introduce the concept of an integral of a dynamical system:

Let us consider a dynamical system ofndegrees of freedom with coordinates q1, q2, . . . , qn,
and write the equations of motion as

d2qi
dt2 = Qi(q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n, t), (1.15)

where q̇i denotes the derivative of qi with respect to t.
This system of n differential equations of second-order may also be written as a 2n system

of first-order differential equations, by means of introducing variables xi = qi and xn+i = q̇i.
In this case, the system of differential equations 1.15 becomes

dxi
dt = xn+1,

dxn+i

dt = Qi(x1, x2, . . . , x2n, t),

(1.16)

or simply

ẋk = Pk(x1, . . . , xm, t), (1.17)

where m = 2n and k = 1, . . . ,m, and such that Pk and their partial derivatives are defined
and continuous in a certain domain.

Definition 1.1. Consider a system of m first-order differential equations such that

ẋk = Pk(x1, . . . , xn, t). (1.18)

Let G(x1, . . . , xm, t) be a differentiable function such that its partial derivatives with respect to
x1, x2, . . . , xm, t are continuous, and such that

dG
dt = 0 (1.19)

for every set of solutions x1(t), x2(t), . . . , xm(t). Then, we call G(x1, x2, . . . , xm, t) an integral of
the system of equations 1.18.
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We shall find now an integral for the restricted problem of three bodies. We will derive
it in the nondimensional synodical system, since this is the system we will mainly use
throughout this thesis. To begin with, we will rewrite equations 1.14 by means of a potential
function Ω̄:

d2x

dt2 − 2
dy
dt =

∂Ω̄

∂x
d2y

dt2 + 2
dx
dt =

∂Ω̄

∂y

or
ẍ− 2ẏ = Ω̄x

ÿ − 2ẋ = Ω̄y.
(1.20)

Multiplying now the first equation by ẋ and the second one by ẏ and summing them we
obtain

ẍ+ ÿ = Ω̄xẋ+ Ω̄y ẏ, (1.21)

and integrating this new expression yields

ẋ2 + ẏ2 = 2Ω̄ + C, (1.22)

where C is the integration constant. Observe that

J(x, y, ẋ, ẏ) = ẋ2 + ẏ2 − 2Ω̄(x, y) (1.23)

is an integral, known as the Jacobi integral, and C is known as the Jacobi constant.
Let us find the expression of the function Ω̄ explicitly, since it will be useful in upcoming

sections. From the system of equations 1.20 we have

∂Ω̄

∂x
= x− (1−m)(x−m)rα−1

1 −m(x−m+ 1)rα−1
2

∂Ω̄

∂y
= y − (1−m)yrα−1

1 −myrα−1
2 .

(1.24)

Therefore,

Ω̄ =

∫
∂Ω̄

∂x
dx+ φ(y)

=

∫
(x− (1−m)(x−m)rα−1

1 −m(x−m+ 1)rα−1
2 )dx+ φ(y)

=
x2

2
− (1−m)

1

2

∫
2(x−m)((x−m)2 + y2)

α−1
2 dx

−m
1

2

∫
2(x−m+ 1)((x−m+ 1)2 + y2)

α−1
2 dx+ φ(y)

=
x2

2
− 1−m

α+ 1
((x−m)2 + y2)

α+1
2 − m

α+ 1
((x−m+ 1)2 + y2)

α+1
2 + φ(y) + C +D

=
x2

2
− (1−m)

1

α+ 1
(rα+1

1 − 1)−m
1

α+ 1
(rα+1

2 − 1) + φ(y) +K1,

(1.25)



1.3 The extended, planar and circular restricted three-body problem 7

and also

Ω̄ =

∫
∂Ω̄

∂y
dy + ψ(x)

=

∫
(y − (1−m)yrα−1

1 −myrα−1
2 )dy + ψ(x)

=
y2

2
− (1−m)

1

2

∫
2y((x−m)2 + y2)

α+1
2 dy

−m
1

2

∫
2y((x−m+ 1)2 + y2)

α+1
2 dy + ψ(x)

=
y2

2
− 1−m

α+ 1
((x−m)2 + y2)

α+1
2 − m

α+ 1
((x−m+ 1)2 + y2)

α+1
2 + ψ(x) + C +D

=
y2

2
− (1−m)

1

α+ 1
(rα+1

1 − 1)−m
1

α+ 1
(rα+1

2 − 1) + ψ(y) +K2.

(1.26)

Note that in the last step of both computations, we have chosen appropriate integration
constants C and D such that the origin of potentials is at radius 1, as mentioned in section
1.1. Taking K1 = K2 = 0, φ(y) = y2

2 and ψ(x) = x2

2 , we arrive at

Ω̄ =
1

2
(x2 + y2)− (1−m)

1

α+ 1
(rα+1

1 − 1)−m
1

α+ 1
(rα+1

2 − 1) (1.27)

Observe that the equations of motion are solely determined by the partial derivatives of
this function Ω̄, and hence, an addition of a constant value will not modify them. We may
therefore, consider the function

Ω = Ω̄ +
1

2
m(1−m), (1.28)

which also defines unequivocally the equations of motion, but offers a more symmetric form,
for it may be written solely in terms of r1 and r2:

Ω =
1

2
((1−m)r21 +mr22)− (1−m)

1

α+ 1
(rα+1

1 − 1)−m
1

α+ 1
(rα+1

2 − 1), (1.29)

or

Ω = (1−m)

(
r21
2

− 1

α+ 1
(rα+1

1 − 1)

)
+m

(
r22
2

− 1

α+ 1
(rα+1

2 − 1)

)
. (1.30)

Conservation of energy

Upon studying the Jacobi integral the question arises whether there are more of this in-
variant relations in the restricted problem of three bodies. As it turns out, the Jacobi integral
is the only known invariant in the restricted problem of three bodies, and for example, the
total energy is not constant, as we shall now prove.

Let m3 be the mass of the third body and let h3 be the total energy of the third body per
unit of mass, such that

h3 =
1

2
(ẍ+ ÿ)− Ω (1.31)
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If we denote by H12 the total energy of the primary and secondary bodies combined, it
results that

H12 =
1

2
−m(1−m), (1.32)

where the first term corresponds to the kinetic energy and the second to the potential energy
between the two bodies. Observe that H12 is a constant.

The total energy of the system H is the sum of the energy of each of its particles, and
therefore

H = m3h3 +H12, (1.33)

which is clearly not a constant.
One may find such a result a violation of the energy conservation principle. However,

this is not the case, inasmuch as one of the hypothesis of the restricted problem is that the
mass of the third body is negligible, thus not affecting the primary and the secondary body,
whereas in reality this cannot be the case. Therefore, we created a situation which, strictly
speaking, is only valid when m3 = 0, and in that case, equation 1.33 does certainly become
a constant.

1.4 Hamiltonian formulation
A dynamics system with n degrees of freedom and n related independent coordinates

(q1, q2, . . . , qn) can be described at any time provided that one derives every qi as a function
of time. This functions of time can be found applying 2n initial conditions, of the form
qi = qi0 , q̇i = q̇i0 at t = t0, and thus,

qi = qi(t, qi0 , q̇i0). (1.34)

The configuration space, i.e. the space formed by this n qi coordinates, has dimension n.
Note that a point in the configuration space is not uniquely related with a particular motion,
for every point (q1, q2, . . . , qn) is related to infinitely many orbits, depending of the values
of the n initial velocities considered.

The Lagrangian dynamics are related to the configuration space, where the equations of
motion appear as n second-order differential equations:

d
dt
∂L

∂q̇i
− ∂L

∂qi
= 0, for i = 1, . . . , n, (1.35)

where L = T − V , the kinetic energy minus the potential energy.
Introducing n more variables, p1, p2, . . . , pn, the generalised momenta, defined as

pi =
∂L(qj , q̇j , t)

∂q̇i
. (1.36)

The Hamiltonian of a dynamical system is defined by

H(q, p, t) =

n∑
i=0

q̇ipi − L(q, q̇, t). (1.37)
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The n second-order differential equation system 1.35 is transformed in the Hamiltonian
system into a 2n first-order differential equation system:

q̇i =
∂H

∂pi
, (1.38)

ṗi = −∂H
∂qi

. (1.39)

We shall now compute this Hamiltonian for the synodical coordinate system, although
to do so it will be necessary to find it in the sidereal coordinate system. In this system we
will consider X = q1 and Y = q2. The Lagrangian function is therefore

L =
1

2
(q̇21 q̇

2
2) + Vα(q1, q2, t), (1.40)

where in this case,

Vα(X,Y, t) = (1−m)
1

α+ 1
(Rα+1

1 (t)− 1) +m
1

α+ 1
(Rα+1

2 (t)− 1). (1.41)

The momenta pi = ∂L
∂q̇i

become

pi = qi, (1.42)

and thus the Hamiltonian is given by

H(q, p, t) =
1

2
(p21 + p22)− Vα(q1, q2, t). (1.43)

1.4.1 Canonical transformations in the phase space
Our goal now is to transform the Hamiltonian found for the sidereal coordinate system

in equation 1.43 into the synodic coordinate system. To do so, we must first introduce the
canonical transformations of the phase space.

Let q1, . . . , qn, p1, . . . , pn and Q1, . . . , Qn, P1, . . . , Pn be two sets of 2n canonical variables
such that

Qi = Qi(q1, . . . , qn, p1, . . . , pn, t),

Pi = Pi(q1, . . . , qn, p1, . . . , pn, t).
(1.44)

Assume that these transformations are such that Q1, . . . , Qn, P1, . . . , Pn are canonical.
Then, they give place to a new Hamiltonian H̄ such that

Q̇i =
∂H̄

∂Pi
, Ṗi = − ∂H̄

∂Qi
. (1.45)

One may derive some useful transformations from Hamilton’s principle, which states
that

δ

∫ t2

t1

Ldt = 0. (1.46)
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Since H =
∑n

i=1 piq̇i − L, we have

δ

∫ t2

t1

(
n∑

i=1

piq̇i −H

)
dt = 0, (1.47)

and also, after applying the transformations,

δ

∫ t2

t1

(
(

n∑
i=1

PiQ̇i − H̄

)
dt = 0 (1.48)

The difference between the two variations is therefore,

δ

∫ t2

t1

(
n∑

i=1

(pidqi − PidQi)−H + H̄

)
dt = 0. (1.49)

Let now
n∑

i=1

(pidqi − PidQi)−H + H̄ =
dW
dt , (1.50)

or also,
n∑

i=1

(pidqi − PidQi) = dW + (H − H̄)dt, (1.51)

where W is named the generating function. In principle, W (qi, Qi, pi, Pi, t) depends on 4n+

1 variables. However, since there are 2n relationships given by 1.44 between the 4n + 1

variables, W depends actually on 2n+ 1 variables. We may therefore consider W functions
of the form

W1 =W1(q,Q, t),

W2 =W2(q, P, t),

W3 =W3(p,Q, t),

W4 =W4(p, P, t).

(1.52)

For W3, for example, we have

dW3 =
∂W3

∂pi
dpi +

∂W3

∂Qi
dQi +

∂W3

∂t
dt. (1.53)

Substituting 1.53 into 1.51 gives
n∑

i=1

(pidqi − PidQi) =
∂W3

∂pi
dpi +

∂W3

∂Qi
dQi + (

∂W3

∂t
+H − H̄)dt, (1.54)

and therefore,

qi = −∂W3

∂pi
, Pi = −∂W3

∂Qi
, (1.55)

and

H̄ = H +
∂W3

∂t
. (1.56)

These 2n+ 1 equations give the new 2n canonical variables and the new Hamiltonian.



1.5 Colinear equilibrium points 11

1.4.2 Transformation into the synodical coordinate system
Let us now consider a canonical transformation to transform the Hamiltonian from the

sidereal coordinate system into the synodical coordinate system. We will choose the trans-
formation given by

W3(p1, p2, Q1, Q2, t) = −aij(t)piQj , (1.57)

where

(aij) =

(
cos t − sin t
sin t cos t

)
, (1.58)

which represents a rotation with angular velocity ω = 1. As seen in the previous section, we
obtain that

qi = −∂W3

∂pi
, Pi = −∂W3

∂Qi
, (1.59)

and

H̄ = H +
∂W3

∂t
. (1.60)

Therefore, we obtain that

qi = aijQj , Pi = ajipj , (1.61)

and

H̄(Q1, Q2, P1, P2) =
1

2
(P 2

1 + P 2
2 ) +Q2P1 −Q1P2 − Ω(Q1, Q2). (1.62)

or

H̄(x, y, px, py) =
1

2
(p2x + p2y) + ypx − xpy − Ω(x, y). (1.63)

Note that Vα is transformed into Ω is obvious, since it is the same process that we applied
in section 1.3.1.

1.5 Colinear equilibrium points
The colinear equilibrium points are the equilibrium points on the x axis, and as such, they

fulfil the colinear equilibrium equation:

x− (1−m)(x−m)rα−1
1 −m(x−m+ 1)rα−1

2 = 0.

Since r21 = (x−m)2+y2 and r22 = (x−m+1)2+y2 (and in this case, y = 0), the aforementioned
equation is equivalent to:

x− (1−m)(x−m)|x−m|α−1 −m(x−m+ 1)|x−m+ 1|α−1 = 0. (1.64)
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Note that for α > 0, L0 = (m − 1, 0) and L−1 = (m, 0) are two solutions for the equation
1.64, located at the positions of the primary and the secondary body, and so they are called
the collision points.

According to the signs of x−m and x−m+1, we can find three other colinear Lagrangian
equilibrium points: L1, placed between the two bodies, when x−m > 0 and x−m+ 1 < 0,
L2, placed beyond the secondary body, when x−m < 0 and x−m+1 < 0, and L3, beyond
the primary body, when x−m > 0 and x−m+ 1 > 0.

If we define a = x−m, the colinear equation becomes

Fα,m(a) = a+m− (1−m)a|a|α−1 −m(a+ 1)|a+ 1|α−1 = 0,

which can be written in each of the intervals as

Fα,m(a) =


a+m+ (1−m)(−a)α +m(a+ 1)α = 0, if a < −1,

a+m+ (1−m)(−a)α −m(a+ 1)α = 0, if − 1 < a < 0,

a+m− (1−m)aα −m(a+ 1)α = 0, if 0 < a.

(1.65)

Solutions of the colinear equilibrium equations

Note that in general, it is not possible to find an analytic solution to the colinear equilib-
rium equation. It is possible, however, to study the number of its solutions in terms of α, in
which similar qualitative behaviour is observed.

We shall study which of the Lagrangian points mentioned in the previous section exist
for a given value of α.

Theorem 1.2. Let us consider three intervals corresponding to the intervals of the Fα,m function
and values a1, a2 and a3 such that α2 ∈ (−∞,−1), α1 ∈ (−1, 0) and α3 ∈ (0,∞).

• L0 and L−1: For α ≥ 0, a = 0 and a = −1 are solutions for the colinear equilibrium equation.
For α < 0, a = 0 and a = −1 are singularities of Fα,m.

Proof. If α < 0, lima→−1 Fα,m(a) = lima→−1m(−a− 1)α = ∞, and lima→0 Fα,m(a) =

lima→0 ±aα −m = ±∞.
If α ≥ 0, Fα,m(−1) = 0 and Fα,m(0) = 0, hence fulfilling the colinear equation and
L−1 = (m− 1, 0), L0 = (m, 0)

• L1: For α ≤ 1
1−m and α ≥ 1

m , there exists a solution a1 ∈ (−1, 0) for the colinear equilibrium
equation.

Proof. If α < 0, then in the interval (−∞,−1),

F ′
α,m(a2) = 1− α(1−m)(−a)α−1 +mα(a+ 1)α−1 > 0, (1.66)

and thus, Fα,m is strictly increasing in the interval (−∞,−1). Since Fα,m is a contin-
uous function in this interval, lima→−∞ Fα,m(a) = −∞ and Fα,m(−1) = ∞ as seen
previously, it follows immediately, applying Bolzano’s theorem that there exists exactly
one solution a2 ∈ (−∞,−1).
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If 0 < α < 1,

lim
a→−∞

F ′
α,m(a) = 1 (1.67)

lim
a→−1

F ′
α,m(a) = −∞, (1.68)

and, in the interval (−∞,−1),

F ′′
α,m(a) = α(α− 1)(1−m)(−a)α−2 +mα(α− 1)(a+ 1)α−2 < 0, (1.69)

which implies the existence of exactly one maximum in the interval (−∞,−1). More-
over, since lima→−∞ Fα,m(a) = −∞ and Fα,m(−1) = 0, it is clear that Fα,m(a) has
exactly one zero in the interval (−∞,−1).
If 1 < α < 1

1−m , then observe that,

lim
a→−∞

F ′
α,m(a) = −1 (1.70)

lim
a→−1

F ′
α,m(a) = 1− (1−m)α > 0. (1.71)

and, in the interval (−∞,−1),

F ′′
α,m(a) > 0. (1.72)

This implies that there exists exactly one minimum in the interval aforementioned
interval. Furthermore, since lima→−∞ Fα,m(a) = ∞ and Fα,m(−1) = 0, it is clear that
there exists exactly one solution in the interval (−∞,−1).
For α > 1

m , we may observe that

lim
a→−∞

F ′
α,m(a) = −1 (1.73)

lim
a→−1

F ′
α,m(a) = 1− (1−m) < 0, (1.74)

and, in the interval (−∞,−1),

F ′′
α,m(a) > 0. (1.75)

Furthermore, lima→−∞ Fα,m(a) = ∞ and Fα,m(−1) = 0, it is clear to see that there
exists exactly one solution in the interval (−∞,−1) as well.

• L2: For α ≤ 1
1−m , there exists a solution a2 ∈ (−1, 0) for the colinear equilibrium equation.

Proof. If α < 0, it is clear that Fα,m(a) is strictly increasing in the interval (−1, 0).
Furthermore,

lim
a→−1

Fα,m(a) = −∞ (1.76)

lim
a→0

Fα,m(a) = ∞, (1.77)

and, in the interval (−1, 0),

F ′
α,m(a) = 1− α(1−m)(−a)α−1 −mα(a+ 1)α−1 > 0. (1.78)
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These results, together with the fact that Fα,m is a continuous function in the interval
(−1, 0), imply, by Bolzano’s theorem, that there exists exactly a single solution for the
function Fα,m in the interval (−1, 0).
If 0 < α < 1, we have that

F ′′
α,m(a) = α(α− 1)(1−m)(−a)α−2 −mα(α− 1)(a+ 1)α−2, (1.79)

and, therefore,

lim
a→−1

F ′′
α,m(a) = ∞, (1.80)

lim
a→0

F ′′
α,m(a) = −∞, (1.81)

Then, the third derivative of the function in the interval (−1, 0) is given by the following
expression:

F ′′′
α,m = −α(α− 1)(α− 2)(1−m)(−a)α−3 −mα(α− 1)(α− 2)(a+ 1)α−3 < 0.

(1.82)

These conditions indicate the existence exactly one inflection point in the interval
(−1, 0). Furthermore, since

lim
a→−1

F ′
α,m(a) = −∞, (1.83)

lim
a→0

F ′
α,m(a) = −∞ (1.84)

it follows the existence of one and only one minimum and one and only one maximum
in the interval (−1, 0), with negative and positive values respectively. Therefore the
existence of a single solution of the colinear equation for (−1, 0) follows immediately.
If 1 < α < 1

1−m ,

lim
a→−1

F ′′
α,m(a) = −∞ (1.85)

lim
a→0

F ′′
α,m(a) = ∞ (1.86)

and

F ′′′
α,m(a) > 0. (1.87)

These facts indicate the existence of one and only one inflexion point in the interval
(−1, 0). Furthermore,

lim
a→−1

F ′′
α,m(a) = 1− α(1−m) > 0, (1.88)

lim
a→0

F ′′
α,m(a) = 1−m > 0, (1.89)

indicating the existence of one and only one maximum and one and only one minimum
in the interval (−1, 0) with positive and negative values respectively. This implies that
Fα,m has exactly one zero in the interval (−1, 0).
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• L3: For α ≤ 1
m , there exists one and only one solution a3 ∈ (0,∞) for the colinear equilibrium

equation.

Proof. If α < 0,

lim
a→0

Fα,m(a) = −∞, (1.90)

lim
a→∞

Fα,m(a) = ∞ (1.91)

and, in the interval (0,∞),

F ′
α,m(a) = 1− α(1−m)aα−1 − α(a+ 1)α−1 > 0. (1.92)

Therefore, it follows immediately that the colinear equation Fα,m has one and only
one zero in the interval (0,∞).
If 0 < α < 1,

lim
a→0

F ′
α,m(a) = −∞, (1.93)

lim
a→∞

F ′
α,m(a) = 1, (1.94)

and, in the interval (0,∞)

F ′′
α,m(a) = −α(α− 1)aα−2 − α(α− 1)(a+ 1)α−1 > 0. (1.95)

These facts together indicate the existence of one and only one maximum in the interval
(0,∞). Together with the fact that Fα,m(0) = 0 and lima→∞ Fα,m(a) = ∞, it follows
that there must exist one and only one solution of the colinear equation in the interval
(0,∞).
If 1 < α < 1

1−m , we have that

lim
a→0

F ′
α,m(a) = 1− αm > 0, (1.96)

lim
a→∞

F ′
α,m(a) = −1, (1.97)

and, in the interval (0,∞),

F ′′
α,m(a) < 0. (1.98)

It follows immediately that there exists one and only one maximum in the interval
(0,∞). Furthermore, Fα,m(0) = 0 and lima→∞ Fα,m(a) = −∞ and whence, Fα,m has
exactly one zero in the interval (0,∞).
If 1

1−m < α < 1
m ,

lim
a→0

F ′
α,m(a) = 1− αm > 0, (1.99)

lim
a→∞

F ′
α,m(a) = −1, (1.100)
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Figure 1.1: Summary of the intervals in which the Lagrange points L1, L2 and L3 exists.

and, in the interval (0,∞),

F ′′
α,m > 0. (1.101)

Therefore, it follows that there exists one and only one maximum ofFα,m in the interval
(0,∞). Moreover, since Fα,m(0) = 0 and lima→∞ Fα,m(a) = −∞, it is clear that there
must exist exactly one zero of Fα,m in the interval (0,∞).

The preceding result is summarised in figure 1.1.

Particular cases

We shall now study the limit cases α = 0 and α = −1, as well as an expansion for the
cases in which α is close to 1.

• Case α = −1

In this case, the three separate cases of the colinear equilibrium equations reduce to a
single one

F−1,m(a) = a+m− (1−m)
1

a
−m

1

a+ 1
= 0,

which is actually a cubic equation:

a3 + (m+ 1)a2 − (1−m)a− (1−m) = 0.
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In this case, the solutions, and hence the Lagrange equilibrium points could be explic-
itly computed, although the resulting expressions are not simple at all and therefore
we will not explicit them.

• Case α = 0

In this case, the colinear equilibrium equation becomes:

F0,m(a) =


a+ 1 +m if a < −1,

a+ 1−m if − 1 < a < 0,

a− 1 +m if 0 < a

The vertical asymptotes become jump discontinuities for a = −1 and a = 0. The three
solutions are a1 = −1+m, a2 = −1−m, and a3 = 1−m, and thus, the corresponding
equilibrium points are then:

L−1 = (−1 +m, 0), L0 = (m, 0),

L1 = (−1 + 2m, 0), L2 = (−1, 0), L3 = (1, 0)

• Case α ≈ 1

For α = 1, F−1,m(a) becomes identically 0. However, the continued colinear equilib-
rium equation for α ≈ 1 can be computed taking into account the expansions of Fα,m

for α = 1 + ε, for a small value of ε.

F1+ε,m(a) =


a+m+ (1−m)(−a)1+ε +m(a+ 1)1+ε, if a < −1,

a+m+ (1−m)(−a)1+ε −m(a+ 1)1+ε, if − 1 < a < 0,

a+m− (1−m)a1+ε −m(a+ 1)1+ε, if 0 < a.

Note that we can rewrite F1+ε,m(a) as

F1+ε,m(a) =


(1−m)((−a)1+ε − (−a)) +m((−a− 1)1+ε − (−a− 1)), if a < −1,

(1−m)((−a)1+ε − (−a))−m((a+ 1)1+ε − (a+ 1)), if − 1 < a < 0,

−(1−m)(a1+ε − a)−m((a+ 1)1+ε − (a+ 1)), if 0 < a.

which using that

a1+ε − a = aaε − a = a(eε log a − 1) ≈ εa log a,

the expansions at first order in ε of F1+ε,m are:

F1+ε,m(a) ≈


ε((1−m)(−a) log(−a) +m(−a− 1) log(−a− 1)), if a < −1,

ε((1−m)(−a) log(−a)−m(a+ 1) log(a+ 1)), if − 1 < a < 0,

ε(−(1−m)(a) log(a)−m(a+ 1) log(a+ 1)), if 0 < a.
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= 3.000 = 2.900 = 2.800 = 2.700 = 2.600

= 2.500 = 2.400 = 2.300 = 2.200 = 2.100

= 2.000 = 1.900 = 1.800 = 1.700 = 1.600

= 1.500 = 1.400 = 1.300 = 1.200 = 1.100

= 1.000 = 0.900 = 0.800 = 0.700 = 0.600

= 0.500 = 0.400 = 0.300 = 0.200 = 0.100

= 0.000 = 0.100 = 0.200 = 0.300 = 0.400

= 0.500 = 0.600 = 0.700 = 0.800 = 0.900

= 1.000 = 1.100 = 1.200 = 1.300 = 1.400

= 1.500 = 1.600 = 1.700 = 1.800 = 1.900

= 2.000 = 2.100 = 2.200 = 2.300 = 2.400

= 2.500 = 2.600 = 2.700 = 2.800 = 2.900

Figure 1.2: Colinear equation for m = 0.2 and different values of α
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= 3.000 = 2.900 = 2.800 = 2.700 = 2.600

= 2.500 = 2.400 = 2.300 = 2.200 = 2.100

= 2.000 = 1.900 = 1.800 = 1.700 = 1.600

= 1.500 = 1.400 = 1.300 = 1.200 = 1.100

= 1.000 = 0.900 = 0.800 = 0.700 = 0.600

= 0.500 = 0.400 = 0.300 = 0.200 = 0.100

= 0.000 = 0.100 = 0.200 = 0.300 = 0.400

= 0.500 = 0.600 = 0.700 = 0.800 = 0.900

= 1.000 = 1.100 = 1.200 = 1.300 = 1.400

= 1.500 = 1.600 = 1.700 = 1.800 = 1.900

= 2.000 = 2.100 = 2.200 = 2.300 = 2.400

= 2.500 = 2.600 = 2.700 = 2.800 = 2.900

Figure 1.3: Colinear equation for m = 0.4 and different values of α





Chapter 2

Hill regions and zero velocity
curves

This chapter is devoted to the study of the subset of the plane in which a particle with a
given synodic energy is able to move.

This study will be built upon the Jacobi integral introduced in the first chapter. The
constant C in the Jacobi integral will be related to the total energy of the body. Since the
Jacobi integral relates the velocity (a magnitude for which is modulus is always a positive
measure) of the body with with the Ω function that determines the movement of the body,
there is only a subset of the plane for which movement is possible, i.e. the subset of the
plane (x, y) in which the modulus of the velocity is a positive measure, that is, ẋ2 + ẏ2 is a
positive measure.

These regions in which motion is possible are known as the Hill regions, and are delimited
by the zero velocity curves, which as it name indicates, are the curves in which the velocity of
the body becomes null.

2.1 An analysis of the Ω function
As stated previously, taking into account the Jacobian integral

ẋ2 + ẏ2 = 2Ω(x, y)− C (2.1)

establishes regions in which motion is possible, since the expression on the left-hand side is
always positive. If we compute the constant C for a given set of initial conditions, we may
impose ẋ2 + ẏ2 = 0 and then

2Ω(x, y) = C (2.2)

determines the zero velocity curves that are the border of the subset of the plane in which
motion can occur.

Since the study of these regions is of utmost importance in the applications of the study
of the three-body problem, this subject will be discussed in detail in upcoming section.

In this section, however, we will introduce some properties of the Ω function that will
simplify the treatment of the problem of finding the zero velocity curves.

21
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List of properties of the Ω function

1. For r1 = r2 = 1 gives Ω(r1, r2) = 1
2 . For α < 1 then this is a relative minimum whereas

for α > 1 it is a relative maximum.

Proof. With a simple study of the hessian of the Ω function it is easy to prove, for

∂Ω

∂r1
= (1−m)(r1 − rα1 ) = 0

∂Ω

∂r2
= m(r2 − rα2 ) = 0,

(2.3)

which holds only for r1 = r2 = 1. The hessian matrix for r1 = 1, r2 = 1 is(
(1−m)(1− α) 0

0 m(1− α)

)
. (2.4)

Since 1− α > 0 for α < 1 and 1− α < 0 for α > 1, it is clear that for α < 1 we have a
minimum and for α > 1 we have a maximum.

2. (a) For α < −1,

lim
r1→0

Ω(r1, r2) = lim
r2→0

Ω(r1, r2) = ∞

lim
r1→∞

Ω(r1, r2) = lim
r2→∞

Ω(r1, r2) = ∞.
(2.5)

(b) For −1 < α < 1,

lim
r1→0

Ω(r1, r2) =
m

2
+

1−m

α+ 1

lim
r2→0

Ω(r1, r2) =
1−m

2
+

m

α+ 1

lim
r1→∞

Ω(r1, r2) = lim
r2→∞

Ω(r1, r2) = ∞.

(2.6)

(c) For 1 < α,

lim
r1→0

Ω(r1, r2) =
m

2
+

1−m

α+ 1

lim
r2→0

Ω(r1, r2) =
1−m

2
+

m

α+ 1

lim
r1→∞

Ω(r1, r2) = lim
r2→∞

Ω(r1, r2) = −∞

(2.7)

Proof. We will only prove the results for r1, since proving the results for r2 does not
require any different procedure.
First of all, observe that since the main two bodies are at distance 1, then as r1 → 0,
r2 → 1 and viceversa. Therefore,

lim
r1→0

Ω(r1, r2) = lim
r1→0,r2→1

Ω(r1, r2) =

= lim
r1→0

(1−m)

(
− 1

α+ 1
(rα+1 − 1)

)
+

1

2
m,

(2.8)

and thus,
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(a) For α < −1, then limr1→0 r
α+1 = −∞, and therefore,

lim
r1→0

Ω(r1, r2) = lim
r1→0

−1−m

α+ 1
(rα+1 − 1) +

1

2
m = ∞ (2.9)

(b) For −1 < α, then limr1→0 r
α+1 = 0, and therefore,

lim
r1→0

Ω(r1, r2) = lim
r1→0

=
1−m

α+ 1
+

1

2
m. (2.10)

Now, for the case of r1 → ∞, we have

lim
r1→∞

Ω(r1, r2) = lim
r1→∞

(1−m)

(
r21
2

− 1

α+ 1
(rα+1

1 − 1)

)
(2.11)

(a) For α < 1, limr1→∞ rα+1
1 = 0, and thus,

lim
r1→∞

Ω(r1, r2) = ∞ (2.12)

(b) For 1 < α, limr1→∞ rα+1
1 = ∞, and thus,

lim
r1→∞

Ω(r1, r2) = −∞ (2.13)

3. Ω(x, y) = Ω(x,−y).

Proof. It follows immediately taking into account that Ω may be written solely in terms
of r1 and r1 and observing that r1 = ((x−m)2+y2)

1
2 and r2 = ((x−m+1)2+y2)

1
2 .

4. For α < 1, the absolute minimum of the function occurs at the Lagrangian points L4

and L5. For 1 < α, they are absolute maximums.

Proof. It follows immediately from items 1 and 2.

2.2 Regions of motion
As mentioned in the introduction of this chapter, the curves Ω(x, y) = ctant represent

regions in which motion is possible (the outside of the curve if α < 1 and the inside if 1 < α),
since this function is connected with an essentially positive magnitude, namely the square
of the relative velocity by means of the Jacobian integral.

Let us consider first of all the trivial case in which m = 0, to provide some insight into
the problem at hand. In this case, the function Ω(r1, r2) has the form

Ω(r1, r2) =
r21
2

− 1

α+ 1
(rα+1

1 − 1), (2.14)

where r1 = r is the distance between the third body and the primary body, located at the
origin of coordinates. Therefore, the curves Ω(x, y) = ctant are concentric circles around
the origin.
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The Jacobian integral ẋ2+ ẏ2 = 2Ω(x, y)+C, or v2 = 2Ω(x, y)+C, where v is the velocity
of the third particle, becomes

v2 = r2 − 2

α+ 1
(rα+1 − 1)− C. (2.15)

Considering initial conditions of velocity and radius v = v0 and r = r0, and taking
into account that the Jacobian integral is a constant of the movement, equation 2.15 may be
written as

C0 = r20 −
2

α+ 1
(rα+1

0 − 1)− v20 . (2.16)

The radius of the circle of zero velocity for the given constant C0 may be found solving the
equation

C0 = r2z −
2

α+ 1
(rα+1

z − 1), (2.17)

or,

r20 −
2

α+ 1
(rα+1

0 − 1)− v20 = r2z −
2

α+ 1
(rα+1

z − 1). (2.18)

At any given point in time, the velocity of the third body is related to the radius from the
origin r by means of the Jacobian integral 2.15 by

v2 = r2 − 2

α+ 1
(rα+1 − 1)− C0 (2.19)

or

v2 = r2 − 2

α+ 1
(rα+1 − 1)− r2z +

2

α+ 1
(rα+1

z − 1). (2.20)

Since v2 ≥ 0, we have

r2 − 2

α+ 1
(rα+1 − 1)− r2z +

2

α+ 1
(rα+1

z − 1) ≥ 0, (2.21)

where the equality holds for r = rz (i.e. v = 0), or in other words, when the particle is over
the its own zero velocity curve.

In order to find this regions of movement, one may take the following equation and solve
it for rz , to find the values of the radius for which there arises a change in the regions for
which movement is possible and not:

0 = r2z −
2

α+ 1
(rα+1

z − 1)− C0. (2.22)

In the general case the zero velocity curves for a given particle such that its initial condi-
tions give a value of the Jacobi constant of C0, are defined by

ZVC(C0) = {(x, y) ∈ R2 | 2Ω(x, y) = J0}. (2.23)
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The critical points of Ω(x, y) and their extended Jacobi constants play an important role
in the analysis of these curves. In these points, the derivative of Ω(x, y) equals 0, i.e.

∂Ω(x, y)

∂x
= x− (1−m)(x−m)rα−1

1 −m(x−m+ 1)rα−1
2 = 0

∂Ω(x, y)

∂y
= y − (1−m)yrα−1

1 −myrα−1
2 = 0

(2.24)

Note that these conditions are the same as for the Lagrangian equilibrium points. Hence,
the Lagrangian equilibrium points are critical points of Ω(x, y).

For α > 0 the collision points are equilibrium points and so they are critical points of
Ω(x, y), and play a role in the ulterior analysis of the zero velocity curves. For α < 0 they
constitute singularities of the Hamiltonian field and they are no longer equilibrium points.
However for−1 < α < 0 they become cuspid points ofΩ(x, y), i.e. points where the function
has finite values but unbounded derivatives.

The critical points can also be classified taking into account the value of second derivative
of Ω(x, y) over them.
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J = 0.8660 J = 0.9660

J = 1.0660 J = 1.1660

Figure 2.1: Zero velocity curves for m = 0.2 and α = −0.5 for different values of the Jacobi
constant J

J = 0.8660 J = 0.9660

J = 1.0660 J = 1.1660

Figure 2.2: Zero velocity curves for m = 0.4 and α = −0.5 for different values of the Jacobi
constant J
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J = 0.8660 J = 0.9660

J = 1.0660 J = 1.1660

Figure 2.3: Zero velocity curves for m = 0.2 and α = −1.5 for different values of the Jacobi
constant J

J = 0.8660 J = 0.9660

J = 1.0660 J = 1.1660

Figure 2.4: Zero velocity curves for m = 0.4 and α = −1.5 for different values of the Jacobi
constant J





Chapter 3

Regularisation of the extended,
planar, circular, restricted
three-body problem

As seen in chapter 1, for α < −1, the system of differential equations corresponding to
the restricted three-body problem presents singularities at the positions of the primary and
the secondary body. Therefore, problems arise when trying to compute the motion of the
third body near the two bodies.

However, such singularities do not present an essential character, an hence, can be elimi-
nated with a proper transformation of time and space coordinates.

Eliminating the singularities by means of an adequate transformation has the following
beneficial effects in the treatment of the problem

1. There exists solutions for any selection of the initial conditions.

2. Solutions approaching the singularities (and going through them, although this is
impossible in the physical sense) may be studied analytically.

The main goal of this chapter is to find such a transformation that will allow us to reg-
ularise the extended problem. To reach this objective, we will begin by studying the case
of the two-body problem and then proceed to regularise the equations of motion at each of
the singularities separately.

3.1 Regularization in the problem of two bodies
Consider Ω as defined in 1.27. We will begin by studying a restricted case of the problem,

where m = 0 and 1 − m = 1, which will provide some insight that will be of use when
developing the general theory. In this case, the corresponding function ω becomes

ω =
1

2
r2 − 1

α+ 1
(rα+1 − 1), (3.1)

29
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where r2 = r21 = x2 + y2. The equations of motion thus become,

ẍ− 2ẏ = x(1− rα−1)

ÿ − 2ẋ = y(1− rα−1),
(3.2)

and the Jacobian

ẋ2 + ẏ2 = r2 − 2

α+ 1
(rα+1 − 1) + C. (3.3)

Observe that this situation correspond to a simplified restricted problem of three bodies,
in which the mass of the secondary body is zero. However, this is in a synodical system,
and therefore the equations become somewhat complicated. The equations corresponding
to a fixed system are

ξ̈ = −ξρα−1

η̈ = −ηρα−1,
(3.4)

where ρ2 = r2 = x2 + y2 = ξ2 + η2. The Jacobi integral

ξ̇2 + η̇2 = − 2

α+ 1
(ρα+1 − 1)− C. (3.5)

Let us consider a specific situation: at t0 = 0, consider ξ = ξ0, ξ̇ = 0, η = 0, η̇ = 0. In this
case, ρ = |ξ|2, and therefore, equation 3.5 becomes

ξ̇2 = − 2

α+ 1
(|ξ|α+1 − 1)− C, (3.6)

and thus,

ξ̇ =

(
− 2

α+ 1
(|ξ|α+1 − 1)− C

) 1
2

. (3.7)

For the sake of the discussion, assume α < −1. In this case, as the third body approaches the
origin (i.e. ξ → 0), velocity increases in absolute value (ξ̇ → ∞). Hence it is clear that there
exists a singularity at the origin. We shall now eliminate this singularity with an adequate
transformation, which shall also be valid for the case α > −1, although in this case there is
no such singularity.

In order to eliminate this singularity, new independent and dependent variables must
be introduced, such that

ξ = f(u), (3.8)

and

τ =

∫ t

t0

dt
g(u)

, (3.9)

which may also be written as

dt
dτ = g(u). (3.10)



3.1 Regularization in the problem of two bodies 31

The goal now is to find explicit expressions for f(u) and g(u). Once these are found,
equation 3.8 gives u as a function of t, since ξ = ξ(t), and equation 3.9 gives the relation
between t and τ .

Let u′ = du
dτ and f ′ = df

du . Since ξ = f(u), ξ̇ = dξ
dt may be written as

dξ
dt =

df
du

du
dτ

dτ
dt , (3.11)

or

ξ̇ = u′
f ′

g
. (3.12)

The new velocity in this system is therefore

u′ =
g

f ′
ξ̇, (3.13)

and hence, in order to have a finite value of this new velocity at the origin, it must be that
g
f ′ → 0 as ξ̇ → ∞. Assuming that ξ > 0, we may rewrite the Jacobi integral 3.6 as

ξ̇2 = − 2

α+ 1
(ξα+1 − 1)− C = 2U (3.14)

In terms of u, f and g, from 3.13 and 3.14:

(u′)2 =
g2

(f ′)2

(
− 2

α+ 1
(fα+1 − 1)− C

)
=

g2

(f ′)2

(
− 2

α+ 1
fα+1 − C ′

)
=

g2

(f ′)2
2U. (3.15)

Since U → ∞ as ξ → 0 and since u′ must be finite at collision, it must be the case that g2

(f ′)2U

is finite as ξ → 0.
Since close to the collision 2U = − 2

α+1ξ
α+1 = − 2

α+1f
α+1, the requirement for finite

velocity u in the system (u, τ) is that

g2

(f ′)2
fα+1 (3.16)

is finite as ξ approaches 0, or also that
g

f ′
f

α+1
2 (3.17)

is finite as f tends to 0.
Consider now g

f ′ expressed as a power series in f−α+1
2 ,

g

f ′
= A0 +A1f

−α+1
2 +A2f

α+1 +A3f
− 3(α+1)

2 + . . . . (3.18)

Therefore,
g

f ′
f

α+1
2 = A0f

α+1
2 +A1 +A2f

−α+1
2 +A3f

−(α+1) + . . . . (3.19)

Since g
f ′ f

α+1
2 must be finite as f → 0, it implies that A0 = 0. Consequently,

g

f ′
f

α+1
2 = A1 +A2f

−α+1
2 +A3f

−(α+1) + . . . (3.20)
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and thus, as f → 0, g
f ′ f

α+1
2 → A1. Now, from equation 3.13 and considering that near the

singularity C ′ = 0, we find that, near the singularity,

(u′)2 = − 2

α+ 1

g

f ′
fα+1, (3.21)

and so,

u′ =
g

f ′
f

α+1
2

(
− 2

α+ 1

) 1
2

= A1

(
− 2

α+ 1

) 1
2

. (3.22)

For instance, assume we choose ξ = f(u) = un. In that case, we have u′ = nun−1 =

A1

(
− 2

α+1

) 1
2 , and therefore,

g = A1f
′f−

α+1
2 = A1nu

n(1−α)
2 −1. (3.23)

3.1.1 The equations of motion
We shall now analyse how the equations of motion in regard to singularities. Deriving

equation 3.12 we obtain

ξ̈ = f ′u′
(

d
dt

1

g

)
+ (f ′u′′ + f ′′u′2)

1

g2
, (3.24)

and thus,

ξ̈ = −(u′)2
f ′g′

g3
+
f ′u′′ + f ′′(u′)2

g2
=
f ′u′′

g2
+ (u′)2

(
f ′′

g2
− f ′g′

g3

)
(3.25)

Since we are considering that ρ = |ξ|, considering ξ > 0 and from equations 3.4 we find
that ξ̈ = −ξα, and hence,

−fα =
f ′u′′

g2
+ (u′)2

(
f ′′

g2
− f ′g′

g3

)
. (3.26)

We may rewrite equation 3.26 in terms of dU
du = −fαf ′ as

dU
du

1

f ′
=
f ′u′′

g2
+ (u′)2

(
f ′′

g2
− f ′g′

g3

)
, (3.27)

or equivalently,

g2

(f ′)2
dU
du = u′′ + (u′)2

gf ′′ − f ′g′

f ′g
. (3.28)

Observe now that

d
du

(
g2

(f ′)2
U

)
=

g2

(f ′)2
dU
du +

(u′)2

f ′g
(g′f ′ − gf ′′), (3.29)

which substituted into equation 3.28 gives us the expression

u′′ =
d

du

(
g2

(f ′)2
U

)
. (3.30)



3.1 Regularization in the problem of two bodies 33

3.1.2 An example of functions f and g

Let us now provide an example of these functions f and g building upon the example
presented previously for f(u) = un. As we will see shortly, it would be an interesting
property that both, f and g to be functions of the same power of u. Following from 3.23,
that means that

n =
n(1− α)

2
− 1, (3.31)

which holds for n = − 2
α+1 .

Therefore, let

f(u) = u−
2

α+1 , (3.32)

and as stated before and following from 3.23,

g(u) = Bu−
2

α+1 , (3.33)

where B is an arbitrary constant.
As seen in equation 3.15,

(u′)2 =
g2

(f ′)2

(
− 2

α+ 1
fα+1 − C ′

)
=

B2u−
4

α+1(
− 2

α+1

)2
u−

4
α+1−2

(
− 2

α+ 1
u−2 − C ′

)

= B2

(
− 1

2
α+1

− C ′u2

4
(α+1)2

) (3.34)

Since B is an arbitrary constant, we may choose B = 2
α+1 , and then, the previous equa-

tion simplify to

(u′)2 = − 2

α+ 1
− C ′u2, (3.35)

or

u′ =

(
− 2

α+ 1
− C ′u2

) 1
2

. (3.36)

The equation of motion can be found by differentiating equation 3.36:

u′′ = −
(
− 2

α+ 1
− C ′u2

)− 1
2

C ′uu′, (3.37)

and since u′ =
(
− 2

α+1 − C ′u2
) 1

2 , it simplifies to

u′′ + C ′u = 0. (3.38)



34 Regularisation of the extended, planar, circular, restricted three-body problem

Solving the differential equation 3.36 or 3.38, we may find the equation of motion in the
regularised system of coordinates:

u(τ) =

(
− 2

α+ 1

1

C ′

) 1
2

sin((C ′)
1
2 τ), (3.39)

where we have applied the initial conditions τ0 = 0, u0 =
(
− 2

α+1
1
C′

) 1
2 and u′0 = 0.

Since we have the relation dt
dτ = g(u), we can obtain the relationship between the time τ

in the regularised system and the old time t,

t =

∫ τ

0

g(τ)dτ =

∫ τ

0

2

α+ 1
u(τ)−

2
α+1 dτ. (3.40)

Note that it is not possible to find an analytic expression for this integral for arbitrary values
of α, and as such we will have to fallback to a numerical analysis when performing the
computation of the trajectory of the third body in upcoming chapters.

3.2 Generalisation to the general two-body problem
The preceding section performed a series of simplifications to introduce the matter of

regularisation, namely assume that the body was at η = 0 and thus, ρ = |ξ|. To study the
general case, we may introduce

ζ = ξ + iη, (3.41)

and thus ρ = |ζ|, and rewrite the equations of motion 3.4 in terms of this new variable:

ζ̈ = −ζ|ζ|α−1. (3.42)

As before, the singularity is also at the origin, and as such, mathematically, it is only inter-
esting to consider the degenerate case in which the trajectory degenerates into a straight line
going through the collision. Note however, that when performing numerical simulations,
for trajectories sufficiently close to the origin, it is also necessary to apply this regularisation,
since accuracy problems arise.

The corresponding generalisation in the general case is given again by two functions f
and g, such that

ζ = f(ω) (3.43)

and

dt
dτ = g(ω), (3.44)

where ω is now a complex variable, ω = u + iv, and g(ω) is a real function of the complex
variable ω, so that the new time τ is also a real variable.

The Jacobi integral becomes

|ζ̇|2 = − 2

α+ 1
(|ζ|α+1 − 1)− C = − 2

α+ 1
|ζ|α+1 − C ′ = 2U, (3.45)
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also in accordance with the one dimensional case. The computation of ζ also follows the
pattern established previously:

ζ̇ =
dζ
dω

dω
dτ

dτ
dt , (3.46)

or in terms of the functions f and g,

|ζ̇| = |f ′(ω)|2|ω′|2

g2
. (3.47)

Combining this with the energy integral equation, we may rewrite the energy integral
only in terms of the variables in this new system of coordinates:

|ω′|2 =
g2

|f ′|2

(
− 2

α+ 1
(|f |α+1 − 1)− C

)
=

g2

|f ′|2

(
− 2

α+ 1
|f |α+1 − C ′

)
, (3.48)

where

|ω′|2 =

(
du
dτ

)2

+

(
dv
dτ

)2

(3.49)

is the square of the new velocity.
Observe that we may rewrite equation 3.42 as

ζ̈ = gradζ −
|ζ|α+1

α+ 1
, (3.50)

where the gradient of a complex function gradζ F (ζ) is defined as

gradF (ζ) = ∂F

∂ξ
+ i

∂F

∂η
. (3.51)

Since U = − |ζ|α+1

α+1 − C′

2 , we have

ζ̈ = gradζ U. (3.52)

Let

dτ
dt = τ̇ ,

df
dω = f ′(ω),

dω
dτ = ω′(τ), (3.53)

such that we can rewrite equation 3.46 as

ζ̇ = f ′ω′τ̇ . (3.54)

Its second derivative becomes

ζ̈ = f ′ω′τ̈ + (f ′′(ω′)2 + f ′ω′′)τ̇2. (3.55)

Let us transform the gradient operator of U in terms of the gradient of ω. Observe first
of all that

gradω U(ω) = Uu + iUv. (3.56)
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Since ω = u+ iv, we have

gradω U = Uξξu + Uηηu + i(Uξξv + Uηηv). (3.57)

Taking into account the Cauchy-Riemman equations, we find that

Uξξv + Uηηv = −Uξηu + Uηξu, (3.58)

and thus,

gradω U = (ξu − iηu)(Uξ + iUη). (3.59)

Therefore, we arrive at

gradω U = f̄ ′ gradζ U. (3.60)

Taking into account equations 3.55 and 3.60, equation 3.52 can be transformed into the
following expression:

ω′′ + ω′ τ̈

τ̇2
+ (ω′)2

f ′′

f ′
=

gradω U

τ̇2|f ′|2
(3.61)

Taking into account equation 3.44, we have that τ̇ = 1
g , and therefore,

τ̈ = − 1

g2
ġ = −τ̇2ġ, (3.62)

and hence,

τ̈

τ̇2
= −ġ. (3.63)

Since g(ω) is a real function over a complex variable, we may rewrite it in terms of a new
differentiable complex function h(ω) as g(ω) = h(ω)h̄(ω) = |h|2. Therefore,

dg
dt =

(
h

d̄h
dω

d̄ω
dτ + h̄

dh
dω

dω
dτ

)
τ̇ . (3.64)

Let dh
dω = h′. Since

(h̄)′ =
dh̄
dω =

d̄h
ω

= h̄′, (3.65)

hence,

dh̄
dt =

¯dh
dω

dω
dτ

dτ
dt =

d̄h
dω

d̄ω
dτ τ̇ =

h̄′ω̄′

h̄h
. (3.66)

Consequently,

τ̈

τ̇2
= −ġ = −

(
h̄′ω̄′

h
+
h′ω′

h

)
, (3.67)
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and

ω′′ − |ω′|2

h̄

d̄h
dω + (ω′)2

(
f ′′

f ′
− h′

h

)
=

|h|4

|f ′|2
gradω U. (3.68)

Since

|ω′|2 =
g2

|f ′|2
2U, (3.69)

and thus the equation of motion becomes

ω′′ + (ω′)2
d

dω

(
log f

′

h

)
=

|h|4

|f ′|2

(
2U

¯d logh
dω + gradω U

)
. (3.70)

Taking into account the following properties of the gradient

1. gradω g1(ω)g2(ω) = g1 gradω g2 + g2 gradω g1, and that

2. gradω |G(ω)|2 = 2G d̄G
dω ,

where g1 and g2 are real functions over the complex variable ω and G is a complex function
over the complex variable ω, we may rewrite equation 3.70 as

ω′′ = gradω

∣∣∣∣h2f ′
∣∣∣∣2 U − 2iω′ Im

(
ω′ d

dω log f
′

h

)
. (3.71)

Note that if f ′ = h, the nonlinear part of the equation 3.71 becomes null, and therefore,
the equation of motion simplifies to

ω′′ = gradω |f ′|2 U, (3.72)

and g = |f ′|2, and whence,

dt
dτ = |f ′|2. (3.73)

3.3 Local regularisation of the three-body problem
This section will deal with the general formulation of the regularisation of the three-

body problem. We introduce again the two transformations similarly to the introduced in
the preceding section,

z = f(ω) (3.74)

and

dt
dτ = g(ω) = |h(ω)|2. (3.75)

Note that now, we do not deal with transformation in a fixed system of coordinates, but we
with the nondimensional synodical one, thus the selection of the variable z(ω) instead of
ζ(ω).
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The equation of motion in complex form of the restricted problem is simply

z̈ + 2iż = gradz U, (3.76)

which after applying the transformation similarly as in the preceding section, transforms
into

ω′′ + 2ig(ω)ω′ = gradz

∣∣∣∣h2f ′
∣∣∣∣2 U − 2iω′ Im

(
ω′ d

dω log f
′

h

)
, (3.77)

with

U = Ω− C

2
. (3.78)

Once again, if f ′ = h (or g(ω) = |f ′|2), the equation of motion simplifies into

ω′′ + 2i|f ′|2ω′ = gradz |f
′|2U. (3.79)

The Jacobian integral is

|ż|2 = 2U, (3.80)

and in the transformed system, ∣∣∣∣dωdτ

∣∣∣∣2 = 2|f ′|2U. (3.81)

According to there equations, if dt
dτ = g(ω) = |h(ω)|2 = |f ′(w)|2, then the regularised

equation is a linear equation with respect to ω.

3.4 Transformation of the Hamiltonian
LetH be the extended Hamiltonian function. The equivalent Hamiltonian H in the trans-

formed coordinate system at every level H̄ = −C
2 is found by transforming the coordinates

(x, y) into (ξ, η) and applying the time transformation dt
dτ :

H =
dt
dτ (H − H̄). (3.82)

H̄ is treated as the conjugated momentum of variable t and the canonical transformation
results.

In our case, we have found that a change of coordinates to regularise to Cartesian prima-
rycentric coordinates of the form

x+ iy = (ξ + iη)2 = (ξ2 − η2) + i(2ξη) (3.83)

suffices. This transformation leads to the following transformations for the momenta:

px =
1

2(ξ2 + η2)
(ξpξ − ηpη), py=

1

2(ξ2 + η2)
(ηpξ + ξpη), (3.84)

pξ = 2(ξpx + ηpy), pη=2(−ηpx + ξpy), (3.85)
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and the Hamiltonian

H(ξ, η, pξ, pη) =
1

8(ξ2 + η2)
(p2ξ + p2η)−

1

2
(ξpη − ηpξ)−m

1

2(ξ2 + η2)
(ηpξ + ξpη)+

(1−m)
1

α+ 1
(ξ2 + η2)α+1 +m

1

α+ 1
((ξ2 + η2)2 + 2(ξ2 − η2) + 1)

α+1
2 .

(3.86)

Observe that in this case, the Hamiltonian contains two irregular terms, namely (ξ2 +

η2)−1 and (ξ2 + η2)α+1. The second term becomes regular for values of α > −1.
We will regularise the equations using a time transformation of the form

dt
dτ = 4(ξ2 + η2)γ , (3.87)

with an adequate value of γ depending on the value of α. With this transformation, the
extended Hamiltoninan in each level H̄ becomes

H = 4(ξ2 + η2)γ(H − H̄). (3.88)

We will now show the adequate transformations to regularise the equations near the
primary body for any value of α. The regularisation near the secondary body is obtained in
a similar manner.

3.4.1 Case −2 < α < 1

In this case, it suffices to consider γ = 1, and thus, consider the time transformation

dt
dτ = 4(ξ2 + η2). (3.89)

Applying this regularisation leads to the transformed Hamiltonian for a given level H̄ ,

H(ξ, η, t; pξ, pη, H̄) =
1

2
(ξ2 + η2)− 4(ξ2 + η2)(H̄ +

1

2
(ξpη − ηpξ))− 2m((ηpξ + ξpη))

+ 4(1−m)
1

α+ 1
(ξ2 + η2)α+2

+ 4m
1

α+ 1
(ξ2 + η2)(((ξ2 + η2)2 + 2(ξ2 − η2) + 1)

α+1
2

(3.90)

The regularised Hamiltonian equations with respect to the regularised time τ have the
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following expressions:

dξ
dτ = pξ + 2(ξ2 + η2 −m)η,

dη
dτ = pη − 2(ξ2 + η2 +m)ξ,

dpξ
dτ = 8ξ(H̄ +

1

2
(ξpη − ηpξ)) + 2(ξ2 + η2 +m)pη − 8(1−m)

α+ 2

α+ 1
ξ(ξ2 + η2)α+1

+ 8mξ(
1

α+ 1
(r22)

α+1
2 + (ξ2 + η2)(ξ2 + η2 − 1)(r22)

α−1
2 ),

dpη
dτ = 8η(H̄ +

1

2
(ξpη − ηpξ)) + 2(ξ2 + η2 −m)pξ − 8(1−m)

α+ 2

α+ 1
η(ξ2 + η2)α+1

+ 8mη(
1

α+ 1
(r22)

α+1
2 + (ξ2 + η2)(ξ2 + η2 − 1)(r22)

α−1
2 ),

(3.91)

where r22 = (ξ2 + η2)2 + 2(ξ2 − η2) + 1.

3.4.2 Case −3 < α < −2

In this case, taking γ = 1 is not enough to perform the regularisation, and thus we need
a stronger transformation, namely, γ = −α. Therefore,

dt
dτ = 4(ξ2 + η2)−α. (3.92)

Applying this regularisation leads to the transformed Hamiltonian for a given level H̄ ,

H(ξ, η, t; pξ, pη, H̄) =
1

2
(ξ2 + η2)−(α+1)(p2ξ + p2η)− 4(ξ2 + η2)−α(H̄ +

1

2
(ξpη − ηpξ))

− 2m(ξ2 + η2)−(α+1)((ηpξ + ξpη)) + 4(1−m)
1

α+ 1
(ξ2 + η2)

+ 4m
1

α+ 1
(ξ2 + η2)−α((ξ2 + η2)2 + 2(ξ2 − η2) + 1)

α+1
2

(3.93)

The regularised Hamiltonian equations with respect to the regularised time τ have the
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following expressions:

dξ
dτ = (ξ2 + η2)−(α+1)(pξ + 2(ξ2 + η2 −m)η),

dη
dτ = (ξ2 + η2)−(α+1)(pη − 2(ξ2 + η2 +m)ξ),

dpξ
dτ = (α+ 1)(ξ2 + η2)−(α+2)ξ(p2ξ + p2η)

− 4α(ξ2 + η2)−(α+1)ξ(H̄ +
1

2
(ξpη − ηpξ)) + 2(ξ2 + η2)−αpη

− 4m(α+ 1)(ξ2 + η2)−(α+2)ξ(ηpξ + ξpη) + 2m(ξ2 + η2)−(α+1)pη + 8m
1

α+ 1
ξ

+ 8m(ξ2 + η2)−(α+1)ξ(
α

α+ 1
(r22)

α+1
2 + (ξ2 + η2)(ξ2 + η2 − 1)(r22)

α−1
2 ),

dpη
dτ = (α+ 1)(ξ2 + η2)−(α+2)η(p2ξ + p2η)

− 4α(ξ2 + η2)−(α+1)η(H̄ +
1

2
(ξpη − ηpξ))− 2(ξ2 + η2 +m)pξ

− 4m(α+ 1)(ξ2 + η2)−(α+2)η(ηpξ + ξpη) + 2m(ξ2 + η2)−(α+1)pξ + 8m
1

α+ 1
η

+ 8m(ξ2 + η2)−(α+1)η(
α

α+ 1
(r22)

α+1
2 + (ξ2 + η2)(ξ2 + η2 − 1)(r22)

α−1
2 ),

(3.94)

where r22 = (ξ2 + η2)2 + 2(ξ2 − η2) + 1.

3.4.3 Case α < −3

Finally, for α < −3, we have to strengthen yet another time our regularisation. In this
case, taking γ = −(α+ 1). Hence,

dt
dτ = 4(ξ2 + η2)−(α+1). (3.95)

Applying this regularisation leads to the transformed Hamiltonian for a given level H̄ ,

H(ξ, η, t; pξ, pη, H̄) =
1

2
(ξ2 + η2)−(α+2)(p2ξ + p2η)− 4(ξ2 + η2)−(α+1)(H̄ +

1

2
(ξpη − ηpξ))

− 2m(ξ2 + η2)−(α+2)((ηpξ + ξpη)) + 4(1−m)
1

α+ 1

+ 4m
1

α+ 1
(ξ2 + η2)−(α+1)((ξ2 + η2)2 + 2(ξ2 − η2) + 1)

α+1
2

(3.96)

The regularised Hamiltonian equations with respect to the regularised time τ have the
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following expressions:

dξ
dτ = (ξ2 + η2)−(α+2)(pξ + 2(ξ2 + η2 −m)η),

dη
dτ = (ξ2 + η2)−(α+2)(pη − 2(ξ2 + η2 +m)ξ),

dpξ
dτ = (α+ 2)(ξ2 + η2)−(α+3)ξ(p2ξ + p2η)

− 4(α+ 1)(ξ2 + η2)−(α+2)ξ(H̄ +
1

2
(ξpη − ηpξ)) + 2(ξ2 + η2)−(α+1)pη

− 4m(α+ 2)(ξ2 + η2)−(α+3)ξ(ηpξ + ξpη) + 2m(ξ2 + η2)−(α+2)pη

+ 8m(ξ2 + η2)−(α+2)ξ((r22)
α+1
2 + (ξ2 + η2)(ξ2 + η2 − 1)(r22)

α−1
2 ),

dpη
dτ = (α+ 2)(ξ2 + η2)−(α+3)η(p2ξ + p2η)

− 4(α+ 1)(ξ2 + η2)−(α+2)η(H̄ +
1

2
(ξpη − ηpξ))− 2(ξ2 + η2)−(α+1)pξ

− 4m(α+ 2)(ξ2 + η2)−(α+3)η(ηpξ + ξpη) + 2m(ξ2 + η2)−(α+2)pξ

+ 8m(ξ2 + η2)−(α+2)η((r22)
α+1
2 + (ξ2 + η2)(ξ2 + η2 − 1)(r22)

α−1
2 ),

(3.97)

where r22 = (ξ2 + η2)2 + 2(ξ2 − η2) + 1.



Chapter 4

Numerical simulations

This chapter is intended to be a short summary of how our program works internally,
as well as discuss some problems that arose while trying to build it and how were they
resolved.

4.1 The colinear equilibrium points

Our first problem was trying to determine which of these equilibrium points exists for
any given value of m and α. This was necessary since otherwise, the algorithms used
for finding them would return incorrect results if an equilibrium point is not found in a
given interval. Therefore, we developed section 1.5 that let us to determine exactly which
equilibrium points were present for any value of m and α.

Then it was straightforward to implement a Newton algorithm that could find an equi-
librium point, provided that we had found a sufficiently close approximation (this was done
by a simple bisect method, comparing values of the colinear equation at a certain distance
and returning if one of them was positive and the other negative). The Newton algorithm
is defined as follows:

Algorithm 1 Newton’s algorithm
1: Procedure NewtonF, x0 {Finds a zero of F with starting point x0}
2: i = 0, xi = 0

3: while i ≤ MAX_ITERATIONS do
4: x = F (xi), d = F ′(xi)

5: xi = xi − x/d

6: if fabs(x) < TOLERANCE then
7: return xi
8: end if
9: i++

10: end while
11: en procedure

43
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4.2 Runge-Kutta methods
The Runge-Kutta methods are a family of iterative methods used to approximate the

solutions of ordinary differential equations, defined as follows:
Let us consider an initial value problem defined by

df
dt = f(t, x(t)),

x(0) = x0.

(4.1)

We are interested in finding a numerical approximation of the solution x(t) of the initial
value problem over a certain time interval [a, b]. To compute this solution, let us divide the
interval [a, b] into N equal subintervals and select arbitrary mesh points ti such that,

ti = a+ ih, j = 0, 1, . . . , N, h =
b− a

N
, (4.2)

where h is the step size.
For every integerm, there is a family of Runge-Kutta methods that compute the numerical

solution of x(t) according to the relation:

x(tn+1) = xn+1 = xn + h

m∑
i+1

ciki, (4.3)

where

k1 = f(tn, xn),

k2 = f(tn + a2h, xn + hb21k1(tn, xn)),

k3 = f(tn + a3h, xn + h(b31k1 + b32k2(tn, xn)),

...

km = f(tn + amh, xn + h
∑
j1

m− 1bmjkj).

(4.4)

A particular method is defined by fixing the number of stepsm, as well as the coefficients
ai (i = 2, 3, . . . ,m), bij (1 ≤ j < i ≤ m), and ci (i = 1, 2, . . . ,m). These coefficients are usually
displayed it what is called a Butcher tableau:

0

a2 b21

a3 b31 b32
...

...
...

. . .
am bm1 bm2 · · · bm,m−1

c1 c2 . . . cm−1 cm

(4.5)

4.2.1 RK4 Method
One of the most known and useful of these methods is known as the RK4 method, which

represents one of the solutions corresponding to m = 4. In the most common case, the
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coefficients of the Butcher Tableau are obtained by matching the coefficients with those of
the Taylor series. In this case, the following system of equations is obtained:

1 = c1 + c2 + c3 + c4,

a2 = b21,

a3 = b31 + b32,

1

2
= c2a2 + c3a3 + c4a4,

1

3
= c2a

2
2 + c3a

2
3 + c4a

2
4,

1

4
= c2a

3
2 + c3a

3
3 + c4a

3
4,

1

6
= c3a2b32 + c4(a2b42 + a3b43),

1

8
= c3a2a3b32 + c4a4(a2b42 + a3b43),

1

12
= c3a

2
2b32 + c4(a

2
2b42 + a23b43),

1

24
= c4a2b32b43

(4.6)

Note that there are thirteen variables and eleven equations, and thus, we need to provide
two additional conditions. The most useful choices are

a2 =
1

2
, b31 = 0. (4.7)

Solving the equations yield its corresponding Butcher tableau:

0
1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

(4.8)

4.2.2 Adaptive Runge-Kutta methods

One way to improve the accuracy of these methods is to apply the same Runge-Kutta
method twice with different values of the parameter m. For example, one with order p and
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the other with order p− 1. This is represented in a Butcher tableau of the form

0

a2 b21

a3 b31 b32
...

...
...

. . .
am bm1 bm2 · · · bm,m−1

c1 c2 . . . cm−1 cm

c?1 c?2 . . . c?m−1 c?m.

(4.9)

We then compute

x?n+1 = xn + h

m∑
i=1

c?i ki

xn+1 = xn + h

m∑
i=1

ciki,

(4.10)

where the ki’s are defined as above, and xsn+1tar is the solution given by the lower order
method and xn+1 by the higher one.

The error estimate is then given by

ε = |xn+1 − x?n+1| = h

m∑
i=1

(ci − c?i )ki. (4.11)

We may further increase the accuracy by modifying the value of the step size h at every
iteration into the most optimal value of h. In this case,

hopt = βh
(ε0
ε

)0.2
, (4.12)

where β is called a ”safety” factor, β ' 1. If the error estimate given in equation 4.11 is
greater than ε0, the step is repeated with the newly found hopt.

In our case, we will use a method named the Runge-Kutta-Fehlberg method of orders 7
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and 8, or RKF78, whose Butcher tableau is

0
2
27

2
27

1
9

1
36

1
12

1
6

1
24 0 1

8
5
12

5
12 0 −25

16
25
16

1
2

1
20 0 0 1

4
1
5

5
6

−25
108 0 0 125

108
−65
27

125
54

1
6

31
300 0 0 0 61

225
−2
9

13
900

2
3 2 0 0 −53

6
704
45

−107
9

67
90 3

1
3

−91
1080 0 0 23

108
−976
135

311
54

−19
60

17
6

−1
12

1 2383
4100 0 0 −341

164
4496
1025

−301
82

2133
4100

45
82

45
164

18
41

0 3
205 0 0 0 0 −6

41
−3
205

−3
41

3
41

6
41 0

1 −1777
4100 0 0 −341

164
4496
1025

−289
82

2193
4100

51
82

33
164

12
41 0 1

41
840 0 0 0 0 34

105
9
35

9
35

9
280

9
280

41
840 0 0

0 0 0 0 0 34
105

9
35

9
35

9
280

9
280 0 41

840
41
840

(4.13)

4.3 Zero velocity curves
Computing the zero velocity curves was pretty straightforward. Starting with the zero

velocity curves equations given in 2.24, one can apply the Davidenko method to reduce the
problem of finding the solution to this equation, to the integration of a system of ordinary
differential equations, which can then be solved numerically by applying the Runge-Kutta
method. The resulting system of equations is

x′ =
Ωy√

Ω2
x +Ω2

y

(4.14)

y′ =
Ωx√

Ω2
x +Ω2

y

. (4.15)

Of course, it is still necessary to find an initial point (x0, y0). To do so, we take into
account the study of the Ω function developed in section 2.1. Since the L4 and L5 are both
minimums or maximums of the omega function, it is clear that any zero velocity curve will
surround them. Therefore, we can always find an initial point by beginning in one of these
two points and move along the x axis until we find a point close enough to the zero velocity
curve (i.e., a point whose velocity is small enough) applying again Newton’s algorithm.

Note that since the Ω function is symmetrical with respect to the x axis, we may study
only one of the two points.

Once this initial point is found, we can find the zero velocity curves by applying a Runge-
Kutta method. As mentioned in the preceding section, we will apply an RKF78 adaptive
Runge-Kutta method.
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4.4 Third-body trajectory

While computing the third-body trajectory sufficiently away from the primary and the
secondary body is straightforward, applying the Runge-Kutta method to the differential
equation 1.5 with an arbitrary initial point and velocity. However, near the bodies, it is
necessary to perform a regularisation to avoid the singularities, as discussed in chapter 3.

Moreover, once the regularisation is applied, for values α . −2.5, the step h due to the
adaptive nature of the method we are using, becomes too small to perform the computations
in real time while near the primary and the secondary body, and therefore, if we want to
represent the trajectory for such cases we must first of all compute the points and then
represent the trajectory while reading these points.

We will now show some examples of trajectories in different scenarios that present inter-
esting properties.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 4.1: Example of a trajectory with m = 0.2, α = −2 and J = 1.01

In this first case in figure 4.1, corresponding to the gravitational case, we can clearly the
chaotic path of the third body. It begins orbiting the secondary body, switches quickly to
the primary and then bounces off far away to the centre of the system.
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2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 4.2: Example of a trajectory with m = 0.2, α = −0.9 and J = 1.216

The second figure, figure 4.2, shows how the trajectory does not break through into the
inside of the zero velocity curves, for it rapidly changes its trajectory once it is too close to
the boundary.

Finally, figure 4.3 shows the change in the behaviour of the zero velocity curves for α > 1,
in which the inside of the region delimited by the zero velocity curves is now the region in
which movement is possible.
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2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 4.3: Example of a trajectory with m = 0.2, α = 2.7 and J = 0.672



Chapter 5

Conclusion

This thesis has provided some insight into the planar, circular, extended restricted three-
body problem.

We have given a precise mathematical definition of the problem, as well as generalise the
main physical formulae needed for its study, such as the Hamiltonian, the potential and the
Jacobi integral. We delved into the study of the colinear equilibrium points, which cannot
be determined analytically, but a rigorous qualitative analysis has been performed on the
existence of its solutions.

We performed a brief analysis on some properties of the Ω function. With its results, we
provided some insight into how the zero velocity curves behave for different values of α,
specifically for which values qualitative changes take place.

A generalisation of the regularisation method of the movement equations near the pri-
mary and the secondary bodies has been developed. A generalisation of the Levi-Civita
regularisation has been applied to regularise the Hamiltonian and the equations of motion
in the general case, with arbitrary values of α.

This theoretical work has been put into use to create a small computer program that can
compute the trajectory of the third body with great accuracy. Some theoretical background
on the numerical methods used internally has been provided, as well has some insights into
the problems that arose during the development process, and how they were solved.

On a more personal note, I would like conclude by mentioning that this thesis has been a
real challenge. It has allowed me to put into practice much of the knowledge I have gathered
throughout my degree. I have certainly learned a lot and experienced how challenging it is
to develop a work in mathematics.
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