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Abstract: Computational neural networks are inspired in the brain structure and designed to
mimic its intelligence artificially. In particular, they can be used as a tool to explore information
transport and processing among interconnected units forming layers. In this article we study how the
structure of the network (number of layers) and the state of the connections (edge weights) affect
to the information flow. A computational model, that allows us to simulate neurons’ collective
behaviour, has been used over different neural networks configurations, analysing the variation of
some structure features. Results show a strong dependence between the number of connections and
the response of the network. Also, we have found a relationship among the edge weights distribution
and the propagation of the information from the input node to the output layer.

I. INTRODUCTION

Santiago Ramón y Cajal and Camillo Golgi won in
1906 the Nobel prize in Medicine due to the discovery
of that the central nervous system was composed by
several small units called neurons and their behaviour
was like a relays in an electric circuit [1]. Ever since
that, neuroscience has become a field that attracts the
interest of many scientists from various disciplines. For
instance, biologists and biophysicists have been working
hard to build accurate and complex models that fit well
with the conducted experiments about how neurons
interact with its neighbours. These experiments tell us
that neurons share information through changing the
electric potential of the media by means of modifying
the flux through its ion channels. So, these models
are based mainly in compute the solutions for the ion
concentration differential kinetic equations and apply
stochastic methods for the neurons’ response [2]. These
kind of models have allowed us to study of the neurons’
behaviour, giving some clues for the understanding of
brain main activities at neuron level.
At large scale, today the use of computational neural
networks (NNs) models plays a main role in the AI
(Artificial Intelligence) development. These models are
based on compute an output for a given input after the
information have passed through the NN with a defined
node topology (neurons’ distribution) and weighed edges
(synaptic connections’ state). These networks can be
trained by tuning the edge weights depending on whet-
her the output is correct or not [3]. Therefore, for these
models the most important feature are the connection
types (long range, self-loop, ...) and its weights.
Then, computational models based on the biological
behaviour of the neurons, not NNs, claims to recreate
the complexity of the human brain by performing de-
tailed computations for enormous number of individual
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simulated neurons. For instance, more than 20 million
neurons conform IBM’s brain model [4]. But, these
models are too complex to build and execute in an
standard computer, due to the huge number of needed
computations to simulate even an small portion of the
brain. On the other hand, NNs used for deep learning
usually are fixed fully connected networks (without
stochastic processes) to make easier the computation of
the learning algorithm. For that reason these models
are not able to reflect complex collective phenomenons.
So, we have must to choose one model that ensures to
reproduce brain key features and allow us to record
and analyse the whole process activity. Therefore, the
chosen model has to lie in the middle point between both
presented kind of models. In this point we found one
common feature that belongs to the fundamental nature
of a brain: how information flows through it depending
on its structure. For that reason, in this article we have
focused on the study of information propagation and
how its changes are related with the topology features
of the computational model.

II. THE NEURAL NETWORK MODEL

In the paper Percolation Model of Sensory Trans-
mission and Loss of Consciousness Under General
Anesthesia [5] authors propose a NN computational
model and they sentence that it is able to reproduce
electroencephalographic features associated with loss of
consciousness during general anesthesia.
This model has been replicated, but instead of analyse
only the impact of the weight edges modification over
the information flux, we have also studied the affectation
of multiple structure key parameters. This has allowed
us to analyse how an input signal is transformed after
passing through a network depending on its set-up.
Each used configuration represents a portion of a brain
under different conditions.
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A. Network structure

Cerebral cortex is known to be build in layers [6],
so nodes in neural networks are distributed in layers
as well. This layers are made of nodes that belong to
the same generation. That is, all of the predecessor
nodes belong to the previous layer. In addition to the
single connection with the previous layer and the T
connections to the following one, each node has ki edges
with its layer neighbours, depending on the result of
apply Watts-Strogartz algorithm [7] to it.
Watts-Strogartz algorithm gives us the possibility of
change the intra-layer connections’ configuration by
varying the parameter β between 0 and 1. Whether the
algorithm is applied to a regular ring lattice with mean

degree K =
〈∑N

i=1 ki

〉
, and the total number of nodes

(N) satisfies that N >> K >> lnN >> 1, one obtains
the following network features: If β = 0 → It doesn’t
change the regular ring lattice, so the degree of each
node would be the same (ki = K, ∀ i). If β ≈ 0.5 →
One obtains an small-world type network, where ki 6= K
is possible. And, if β ≈ 1 → A random connection
distribution is the result of applying the algorithm in
this case. In the all three cases, the mean degree K
remains constant.
An example of how this algorithm changes the layer
edge distribution is shown at Figure 1.

(a) β = 0 (b) β = 0.8

Figure 1: Comparison of 3-layer network examples with
Inod = 10, T = 4, K = 4, and different Watts-Strogatz
parameter (β). Nodes are labelled ascending from input
to outputs. Connections within the layer itself are co-
loured pink, and projections to the next layer are drawn
in black. The colour-bar legend represent the degree k
of connections that have each node with its layer neigh-
bours.

Nodes are the computation units of the NN, like neu-
rons in a brain. There the information that surrounds the
node is compiled and transformed. Our model is built on
the basis of a hierarchical fractal network ascending from
an input node to multiple output nodes and structured

in layers. It means that each node projects the same
number of edges to the next layer, except the input no-
de (layer 1). For our simulations we have built a 1-50-4
networks. This is, the input node projects 50 connecti-
ons to the 2nd layer, and these 50 nodes project 4 new
connections to the following layer, and so on. Therefore,
our networks contain N(L) nodes where L is the total
number of layers, including the input node. Hence,

N(L) = 1 +

L−1∑
l=1

Inod · T (l−1), (1)

where Inod is the number of nodes at the second layer, in
our case Inod = 50, and T is the number of edge projec-
tions to the next layer, so in our model T = 4. This kind
of structure tries to replicate thalamocortical structure
of mammalian brain.

B. Edge weights

Each node establishes connections, edges, with its
neighbours to transmit information through them. How
much information could be transmitted depends on the
weight assigned to the edge, for instance, wij modulates
the information flow from node j to node i. Weights sam-
pling is done stochastically and characterized by a given
probability distribution (CDF ). Moreover, these weights
are directional (wij 6= wji), and in addition, self-loop
connections (wii) are allowed and represent the memory
of the past activity in the node. This yields,

wij =


1
2 ·
[
1 + erf

(
x−µ
σ
√
2

)]
if i 6= j,

c · exp
[
−λ
∑
k 6=i wki

]
if i = j,

(2)

where 0 ≤ x ≤ 1 is a random variable uniformly distri-
buted. σ = 0.05 is the standard deviation of the CDF.
µ = 1 − p is where the CDF is centred, and it depends
on a percolation parameter p. Therefore, in our model
p represents the probability that a node have to stablish
connections with its neighbours and have values between
0 (poor connections) and 1 (excellent connections). So,
the bigger p the bigger probability to have a good flux of
information between the input node and the output layer.
The values for the other parameters have been obtained
by replicating the results from [5]: c = 1 → Modulates
the memory term and it could be a value between 0 and
1. And λ = 0.2 → Determines the importance of how
well connected is the node with its neighbours. The bet-
ter outsider connections the worst memory term.
In consideration of the synaptic dynamic behaviour we
have incorporated the parameter α to module weights re-
sampling periodicity. It would be proportional to e−α·p,
where p is the percolation parameter.
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C. Neural activity

At every time step all nodes’ value have to be updated
taking into account the value of the information arrived
to its surroundings. We need a function that computes
the weighed sum of the connected neighbours information
values and the internal memory term as well,

Ai(t) =

∑
j wijPj(t)∑

j wij
=
wiiPi(t) +

∑
j 6=i wijPj(t)

wii
∑
j 6=i wij

. (3)

In this equation Ai(t) is the activity of the node i at the
time step t, and Pj(t) is a function which contains the
activity history of each node from the preceding m time
steps, and it is defined as,

Pj(t) =

∑m
τ=1 e

−τAj(t− τ)∑m
τ=1 e

−τ , with m = t− 1. (4)

D. Simulations

A simulation consists in passing a sinusoidal signal va-
lue to the input node for each time step (∆t = 10−3s),
and perform all the computations (eq. 3 and 4) for the
whole network nodes. We have fully developed a program
in Matlab/Octave language which is able to perform this
simulations over any complex NN (limited by the com-
puter memory availability) based on the model described
at previous sections and characterized by the parameters
showed at Table I.
We have focused our research on variate the following pa-
rameters: 3 ≤ L ≤ 5, 4 ≤ K ≤ 28 (each 4), 0 ≤ β ≤ 0.8
(each 0.4), 0 ≤ p ≤ 1 (each 0.25) and 4 ≤ α ≤ 12 (each 4,
and the option without weight resampling). We have in-
jected a 115 Hz input clean cosine signal along 5 seconds,
in networks built with different structure set-ups and the
all possible combinations of the mentioned parameters.
In total we have executed up to 60 different simulations
for each one of the 3 studied network models (NM). All
of them have T = 4 and Inodes = 50, but the total num-
ber of layers (L) is different. The model 1 has L = 3, the
model 2 has L = 4, and the model 3 has L = 5.

III. RESULTS

All networks neural activity (nodes’ value) has been
recorded, allowing us to recreate and analyse any instant
of the process. Furthermore, had been working with a
clean input signal has allowed us to take the dispersion
of the nodes respect to the mean value of the whole layer
activity (the standard deviation S) as an indicator of the
layer’s coherence. So, for each time-step and each layer
we have computed Sl(t) as follows,

Sl(t) =

√√√√ 1

nl − 1

nl∑
i=1

|Ai(t)− µl(t)|2. (5)

Where Ai(t) is the activity of the node i at time t, nl is
the total number of nodes at the layer l and µl(t) is the
mean value of all layer l nodes at time t,

µl(t) =
1

nl

nl∑
i=1

Ai(t). (6)

At Figure 2 it is shown how the input signal is gathered
at the output layer, depending on the percolation
parameter and the chosen model.

Figure 2: Mean value of all output layer nodes signal over
each time step depending on the percolation parameter
p. a) It corresponds to NM 1. b) Results for the NM 2.
c) It belongs to NM 3 simulations. All three plots have
been obtained from networks with K = 28, β = 0 and
α = 0.

In this figure (2) one can see a first time fill phe-
nomenon which is produced because nodes are empty
(Ai(0) = 0) at the beginning of each simulation, like
a water pipes system in a building. It implies that, at
the firsts time-steps, nodes experience a significant value
increase until the network is full of information, then it
begins to oscillate at the same rate of the input signal.
From this inflection point forward the network tends to
replicate the input signal behaviour. Analysing Figure 2
it is clear that the rapidity to reach an stable work rate
depends on the number of layers but no significantly on
the parameter p.
Figure 3 shows the activity for each output layer node.
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In this plots we can observe the effects of p variation over
the dispersion of nodes’ activity.

Figure 3: Activity of each node contained at the output
layer in a 5-layer network with K = 28, B = 0.4 and
α = 0, depending on the chosen percolation parameter p.

We have computed S for the output layer of NM 3
from all computations done without weights resampling.
At Figure 4 we show the results.

Figure 4: Mean of the standard deviation for the output
layer (l = 5) in NM 3 over all simulations performed
without weights resampling and modifying p, β and K.
The ordinate axis has been represented in logarithmic
form to allow us appreciate the small differences for the
highest K values.

From Figure 4we can see that the behaviour of S appe-
ars grouped by simulations with same p, and it is shown
how S diminish when p or K increase. Also, we can ob-
serve how the effect of the β variation is more intense for
higher K values, but it is not decisive. In the majority
of cases, for the same p and K, the best β value for mi-
nimize S is β = 0.4. It means that small-world network
properties contributes to the homogenization of the no-
des’ activity. With p = 0 we see that the behaviour is
erratic for small K values, and begins to have the ex-
pected values when K reach the higher value. It would
be explained due to the very small flux of information
in simulations with small number of edges between layer

neighbours and also with wij ≈ 0. That is, if information
doesn’t flow the nodes doesn’t change their values, so the
dispersion between nodes’ value would be small.
Once we have found this first relationships we have won-
dered if we can relate maximum (or minimum) values of
S with the parameters. At Figure 5 we have represen-
ted for all models the maximum (minimum) values of S
found for all layers over all simulations, depending on K.

Figure 5: Analysis of the standard deviation extreme va-
lues over all simulations. All points represent the most
favourable simulation results for the plotted variable de-
pending on the model, the layer and the K value. a)
Comparison of the minimum values. b) Maximum stan-
dard deviation mean values for each layer of each model.
c) Only last (output) layer maximum standard deviati-
on mean for each model. Data have been fitted with an
exponential functions (a · eb·x). The parameters of the
adjusts are the following:
M1→ a = 0.9891, b = 0.18 ± 0.03, R2 = −0.16 ± 0.03;
M2→ a = 0.9934, b = 0.08 ± 0.01, R2 = −0.19 ± 0.03;
M3→ a = 0.9972, b = 0.033± 0.003, R2 = −0.17± 0.02.

For the minimum values of S displayed at Figure 5a it
is clear that the more layers has the network, the less is
the dispersion between nodes. On the other hand, for the
maximum values of S it is shown at Figure 5b how the
number of the layer is clearly distinguishable because the
smaller layer number the bigger value for maxS. Also,
one can observe how for the NM 3 values are smaller
for the same layer number compared with the other two
models. It tells us that a layer between layers has less
dispersion than if it were the output layer. We think
that it is explained because of these layers have a double
input from their both predecessor and successor layers.
In subfigure c we can see how the relationship between
K and maxS has an exponential like form, but it is clear
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that for the layer 3 of NM 1 the fit doesn’t adjust well
the higher K values.

IV. CONCLUSIONS

Results have shown us that the variation of the
information flux through the NNs, built according to
the proposed model, depends on the studied parameters
with different grades of intensity.

The total number of layers determines the amplitude
of the output signal. It is weaker when L is bigger, be-
cause of the signal has to travel longer and it is speared
in more nodes. L also contributes to make the response
smooth as we have shown at Figure 2.
The number of connections among nodes in the same
layer, K, commands the amplitude and the velocity of
response of the layers to the inputs changes. When K
increases, the response becomes smoother.
As we have expected, percolation parameter p has a mo-
dulating role in how much information is able to reach
the output layer, and also in how the information is dis-
tributed inside the layers. With low p values it is possible
that only an small part of the network contributes to the
information propagation, which is compatible with the
lost of conscience under anesthesia as it is proposed on
[5]. It would be an interesting feature to study in further
researches because it is possible to associate with multi-
ple brain diseases, like alzehimer.
The Watts-Strogart parameter β doesn’t seems to affect
too much to the information flow, but it is significant how
when the network has small-world attributes the disper-
sion between the same layer nodes is minimum. It would
be related with the appearance of long range connections,
that distribute more the information. In fact, the results
on Figure 5a for the NM 3 for the higher K values have
been obtained from networks with p = 1 and β = 0.4.
Weights resampling introduce noise on the network. It
makes that the stochastic processes master over the
network properties. So, when α and p are small we found
a chaotic information propagation. All the results of Fi-
gure 5c for NM 3 have been obtained from networks with

α = 4 and 0 ≤ p ≤ 0.25.
We think that this paper could be an starting point to
apply this kind of analysis to trained NNs and study how
their accuracy results change by changing their topologi-
cal features.

V. APPENDIX

The source code of the developed Matlab/Octave
program that builds the NN and performs the simu-
lations is available under request to the author via e-mail.

Parameter Meaning

L
Number of layers, including the input

node.

T
Number of edge projections from each

node to the following layer.

Inod Number of nodes at the 2nd layer.

K

Number of layer neighbours connected

to each node before apply Watts-Strogartz

algorithm.

β Watts-Strogartz parameter.

p Percolation parameter.

c Memory parameter.

λ Memory parameter.

α Parameter for resampling periodicity.

Table I: Neural network parameters definition.
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