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Abstract:
In recent years, Deep Learning has shown great success across several areas. However, even,
though it might provide remarkable accuracy for many tasks, its application in some fields
faces a fundamental problem: its predictions are not interpretable. Attribution Methods
offer a possible solution in regards to this problem. To do so, they resource to results in
Game Theory in order to explain individual decisions made by Deep Learning algorithms.
In this work, we will be focusing, specifically, on the application of Attribution Techniques
to a subset of Deep Learning algorithms: Convolutional Neural Networks.
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Introduction

Motivation

Deep Learning can be roughly described as a set of computational techniques that are loosely
based on the biological brain and are used in order to approximate functions from obser-
vational data. In recent years Deep Learning has emerged as an overwhelmingly successful
field, and it currently is one of the main foundations behind disruptive technologies such as
self-driving cars or virtual assistants.

However, in spite of the fact that functions approximated by Deep Learning can achieve
high accuracy, they are regarded as black-boxes. That is, in general, we humans do not
understand what reasons drive the relationships between their input and output variables.

This tension between interpretability and accuracy is of increasing importance as applica-
tions of Deep Learning continue to expand accross fields such as Health Care where, arguably,
the reasoning behind facts are just as important, if not more, than facts themselves.

In recent years, several approaches have been developed with the goal of tackling this prob-
lem. Attribution Methods are one of them. Given an input point x ∈ Rn and function
f : Rn → R, the goal of Attribution methods is to determine how much influence does
each component of x have in the output value f (x). Thus they are often described as local
explanation methods.

Attribution methods are, a young field of study in which some of its most fundamental
questions have not been answered yet. Namely, it is still not clear how influence should be
defined in this context, nor how the performance of an attribution method can be measured.
However, several answers for these questions have already been proposed by the research
community, and in this work we will be addressing them.

Main Objectives

Our first goal with this project is to obtain all the preliminary knowledge that is necessary
in order to understand current research in Deep Learning and Attribution Methods.

Our next goal will be to review the main lines of work that have already been proposed. We
will not only attempt to study them separately but, instead, understand their connections
and present them in a way where these are highlighted.

Then, our next objective will be to understand the main challenges of applying these tech-
niques to a subset of the applications of Deep Learning: Computer Vision. This, together
with the previous one, have arguably been our main goals with this project.

Finally, our last goal will be to familiarize ourselves with some of the main deep learning
programming frameworks that are used nowadays. Then, use this knowledge to implement
several attribution methods and apply them to real images.



Organization of this work

This work is organized in three main chapters. In the first one, we provide the basic context
for all upcoming work. To do so, we start reviewing the basics of Machine Learning and we
progressively restrict our area of focus until reaching Convolutional Neural Networks, which
are the subset of Deep Learning in which we will be focusing.

The second chapter is devoted to doing an extensive review of the main two approaches that
have arised in regards to applying Attribution methods to Deep Learning and, specifically,
Computer Vision. This can be considered as the main chapter of our work.

Lastly, in the third chapter we explain some of the experiments that we have conducted
during the development of this project, and we provide some practical ideas on the insights
that we have obtained from them.
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Chapter 1

Preliminaries

1.1 Machine Learning

In this section, we aim to provide a brief overview of some of the main concepts involved in
Machine Learning and, more specifically, Supervised Learning. We are aware that is a broad
disciple that cannot be covered in a few pages. Thus, our goal will be to simply outline some
of its most basic topics in order to build a theoretical context for all upcoming work.

We will start introducing some basic definitions and notation on the basic setup of learning
algorithms. Then, we will proceed to explore some simple examples and, finally, we will
briefly cover the basic optimization concepts that we will be using in the rest of this work.

The Learning Problem

Machine Learning broadly consists in allowing computer to learn patterns from data by
itself, rather than following human-encoded rules. However, what do we mean exactly by
that?. In [7] the authors propose the following definition:

A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P, if its performance at tasks T, as measured by P, improves

with experience E.

Our objective with the rest of this section will be to further specify the free variables of this
definitions: T, E, P, for our problem in hand.

1



2 Preliminaries

Supervised Learning

Supervised learning is one of the three main types of learning problems in which Machine
Learning is divided 1, and it will be the task T, that we will focus our work on.

Its setup is the following: consider a set {(X(1), Y(1)), . . . , (X(n), Y(n))} of independent copies
of a random variable (X, Y), whose values are in (X ,Y). In general, X = Rm and, with Y ,
we will make a distinction between two possibilities:

• If Y = R, then we will refer to our task as regression.

• If, instead, Y is a discrete set S, then we will refer to our task as classification, and
we will refer to each element in S as a class.

In both cases, the task itself will consist in finding a mapping:

f : X → Y

such that for each sample observation (X(i), Y(i)) drawn from (X, Y), f (X(i)) = Y(i).

However, in general, it is assumed that it is not possible to find an exact mapping f and,
instead, the goal is to find find f such that f (X) = Y + ε. The term ε is another random
variable that accounts for several factors not considered in the observations, such as errors
in the measurements and non-considered relevant variables.

In practice, the goal of learning f is to be able to predict the value of Y, when only X can be
observed. As an example, instances of X might be pictures and Y might consist in a binary
value indicating whether the corresponding image contains a cat or not. If our machine is
able to build a reliable mapping f , it will have learned how to recognize cats.

We will generally refer to each component Xi of X as an input feature and, to Y, as the
target variable. In our previous example, pixels are input features, and our target variable
is a binary variable indicating whether each image is a cat or not. Typically, f is referred
to as the hypothesis.

We will denote by D := {(X(1), Y(n)), . . . , (X(n), Y(n))}, the set of observed instances of
(X, Y), and refer to it as dataset. We sill also denote by X the design matrix, consisting in
a matrix in Rn×m whose jth element in its ith row is given by Xi,j = X(j)

i . Observe that the
superindex (j) in X runs through observations and, the subindex i, through components or
input features.

We now turn to the problem of how to construct f with D.
1The other two are Unsupervised Learning and Reinforcement Learning. Roughly speaking, these consist

in, respectively, developing algorithms that are able to find structure in raw data and building algorithms
that allow machines how to learn from interactions with the world.
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Empirical Risk Minimization

The first step towards obtaining a mapping f consist in restricting our search of f to a set
H of parametric functions, which we will refer to as the hypothesis set. An example for H
could be {θtx + θ0 : θ ∈ Rm, θ0 ∈ R}, i.e., the set of linear funtions in Rm.

Hypothesis sets are chosen by the Machine Learning practitioner, according to the task in
hand. Different hypothesis sets are suited for different tasks. For instance, in the following
sections we will restrict our study to those hypothesis sets suited for computer vision. The
choice itself, cannot be considered part of learning process, as it is done by a human.

The learning process itself consists, instead, in determining the right parameters for the
hypothesys f and the dataset D. Given a choice of H parametrized by θ, let us now refer
to our function as fθ. How should θ be determined?

A natural approach is to aim for f (X(i)) to be close to Y(i), for each (X(i), Y(i) ∈ D. In order
to do so, we define a loss function L( fθ , X, Y). Loss functions are generally only asked to be
real-valued and non-negative, and are generally monotone functions of the distanceThis is
however, not always the case, and loss functions might not satisfy all properties required to
be a distance. between f (x) and y, where (x, y) are instances of (X, Y). Loss functions are
also defined depending on the task in hand. For regression, the usual choice is:

L( fθ , x, y) := ( f (x)− y)2

Which is known as the ordinary least squares or quadratic loss function. A natural choice
for classification problems is the misclassification error :

L( fθ , x, y) = 1( f (x)=y)

The notion of loss function allows us to now introduce the concept of risk.

Definition 1.1. Given a random variable (X, Y), a hypothesis f , and a loss function L, the
risk of f with respect to L, is defined as:

R( f , L) := EX,Y(L( f , X, Y))

The ultimate goal when learning f would be to chose θ so that:

θ := argmin
θ: fθ∈H

R( fθ , L)

However, in practice, computing R( f ) requires knowing the distribution P(X, Y) and esti-
mating this distribution might be an intractable task. Recall that X takes values in X = Rn.
In general, n might be in the order of 106 or even greater. Think, for instance, in the number
of pixels in a RGB image of resolution 1024× 1024. That is, in fact, a key difference between
Machine Learning and classical Statistics: the lack of assumptions, in general, about the
distribution of (X, Y).
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Since the real risk cannot be computed, in general, by estimating P(X, Y), the general
approach will be to consider, instead:

Remp( f , L) :=
1
|D| ∑

(X(i),Y(i))∈D
L( fθ , X(i), Y(i))

which we refer to as the empirical risk. Then, the goal becomes to find θ such that:

θ := argmin
θ: fθ∈H

Remp( fθ , L)

The principle consisting in making this choice for the hypothesis is called empirical risk
minimization. The theoretical result underlying this principle is the Law of Large Numbers
which guarantees, in our case, that the empirical risk Remp (i.e. sample average of L), will
almost surely converge to the actual risk R as the sample size n→ ∞.
Returning to our initial definition, the measure P with which we will be evaluating our task
T, will be empirical risk.

A natural question is whether empirical risk minimization is related to the classical paradigm
in frequentist statistics: maximum likelihood estimation. In regression problems, where L is
chosen as the ordinary least squares function we introduced above, the following proposition
provides an answer.

Proposition 1.2. Let {(X(1), Y(1), ε(1)), . . . , (X(n), Y(n), ε(n))} be a set of real valued i.i.d.
copies of a random variable (X, Y, ε), θ ∈ Rm and fθ a hypothesis such that, for every i,
fθ(X(i)) = Y(i) + ε(i). If we assume that ε(i) are i.i.d copies of a random variable ε ∼
N (0, σ2) for some σ2 ∈ R+, then, estimating θ with maximum likelihood estimation is
equivalent to doing it through empirical risk minimization with the ordinary least squares
loss function.

Proof. Observe that, the assumption:

ε ∼ N (0, σ2)

implies that:

Y|X; θ ∼ N ( fθ(X), σ2)

Where we denote with ’; θ’ the parametrization by θ 2. Now, since we are assuming that the
copies of (X, Y) are independent, the likelihood function can be written as:

L(θ) =
n

∏
i=1

p(Y(i)|X(i); θ) =
n

∏
i=1

1√
2πσ

exp
(
− (Y(i) − fθ(X(i)))2

2σ2

)
(1.1)

Now, if we consider the log-likelihood of θ, we obtain:
2We do not consider it as a given variable, since θ is not a random variable but a given parameter.
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log(L(θ)) = log

(
n

∏
i=1

1√
2πσ

exp
(
− (Y(i) − fθ(X(i)))2

2σ2

))

=
n

∑
i=1

log
(

1√
2πσ

exp
(
− (Y(i) − fθ(X(i)))2

2σ2

))
= n log

1√
2πσ

− 1
2σ2

n

∑
i=1

(Y(i) − fθ(X(i)))2

Therefore, maximizing the log-likelihood, is equivalent to minimizing:

n

∑
i=1

(Y(i) − fθ(X(i)))2

which is exactly the expression corresponding to the empirical risk of fθ with the ordinary
least squares loss function.

In Machine Learning, however, several others loss functions might be used and, as we said,
assumptions about the distributions of the random variables involved in the learning prob-
lem might be avoided. Thus, there might not even be a defined likelihood function associated
to the learning problem and, as a consequence, maximum likelihood estimation might not
always be an available option.

In the classification problems we will be introducing in the upcoming sections, however,
we will often be making probabilistic assumptions on the distribution P(Y|X), as this will
allow us to make use of differentiable loss functions, which we will be able to minimize with
standard techniques. In order to clarify how these assumptions might be made in practice,
we now introduce one of the most basic classification algorithms: logistic regression3. As
we will see in the next section, logistic regression will constitute the basic building block of
more sophisticated algorithms.

Example 1.3. (Logistic regression) Let D be a dataset consisting of n i.i.d copies of a ran-
dom variable (X, Y). Let the set of possible values for Y, Y , be {0, 1} and X = Rm.

Our goal with logistic regression will be to define a function g(x) that we will interpret
P(Y = 1|X = x). This will lead to a natural definition the mapping we are actually
interested on, f : X → Y as:

f (x) =

{
1 if g(x) > 0.5

0 otherwise

Doing so, allows us to avoid encountering the discrete optimization problem that we

3Ironically, the algorithm is called logistic regression even though it is a classification algorithm.
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would face if dealing directly with f and the classification error cost function4.

To further specify how to construct g, let us now introduce the logistic function, which is
defined as:

σ(z) := 1
1+e−z ,

for all z ∈ R. Observe that this function is defined σ : R → (0, 1), and is C∞(R). It is
also worth observing that σ(z) = 0.5, σ(z)→ 1 when z→ ∞ and σ(z)→ 0 when z→ −∞.

With logistic regression the hypothesis set for g will be H := {σ(θtx) : θ ∈ Rm+1}. As
usually done for convenience, given x ∈ Rm, we will be treating x as a point in Rm+1 such
that xm+1 = 1. This way, θm+1 represents the intercept term in θtx, and we do not need to
write it separately.

Intuitively, observe that the mapping obtained with logistic regression can be understood
as equivalent to determining an hyperplane θtx = 0 in X and then, for each point z ∈ X ,
assigning it 1 or 0 to depending on whether θtz > 0 or otherwise. In three dimentions, we
can picture this situation as separating two sets of points by a plane.

Now, how can we estimate θ? Since our assumption is that:

P(Y = 1|X; θ) = gθ(x)

then,
P(Y = 0|X; θ) = 1− gθ(x)

And this allows us to write compactly the distribution of X|Y; θ as:

p(y|x; θ) = (gθ(x))y(1− gθ(x))1−y

Thus, since we are assuming that the observations in D are independent we can write the
likelihood of θ as:

L(θ) =
n

∏
i=1

p(Y(i)|X(i))

=
n

∏
i=1

(gθ(X(i)))Y(i)
(1− gθ(X(i)))1−Y(i)

Now, we can simply determine θ by maximum likelihood estimation. However, instead of
maximizing the likelihood itself, it will be more convenient to maximize the log-likelihood.
This way, we obtain:

4Note, however, that this is not the only option available in order to avoid classification error loss
function, use other alternative techniques without any probabilistic assumptions. One such example are
Support Vector Machines, which we will not cover in our work.
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log(L(θ)) =
n

∑
i=1

p(Y(i)|X(i)

=
n

∑
i=1

Y(i)log(gθ(X(i))) + (1−Y(i))log(1− gθ(X(i)))

Once again, the maximization problem we have encountered through maximum likelihood
estimation can be interpreted equivalently as an analogous empirical risk minimization prob-
lem. In the next section, with neural networks, we will address how this setting can be
generalized to situations where Y contains more than two different classes.

Now, we turn to a problem we have already encountered twice but we still have not addressed.
Once we have defined an optimization problem, how can we solve it?

Gradient Descent and its Variants

Even though there are some cases where the optimization problems resulting from empirical
risk minimization5, have a closed form solution, this does not happen in general. Thus, the
general approach is to make use of iterative minimization algorithms. In Machine Learning,
the most commonly used one is Gradient-Descent.

Algorithm 1.4. (Gradient-Descent) Given a differentiable function F : Rn → R, a starting
point x ∈ Rn and two parameters ε, γ ∈ R+. The minimization algorithm of F with initial
point x is the following:

Initialize:
Define: x(0) := x
Define: i := 0

Do:
x(i) ← x(i−1) − γ∇F(x(i−1))

i← i + 1
While |x(i) − x(i−1)| >= ε.

It can be proved that, with a value of γ small enough, Gradient Descent yields a sequence
of points x(i) such that:

F(x(0)) ≥ F(x(1)) ≥ F(x(2)) ≥ F(x(3)) ≥ . . .

And by looking at the definition of the algorithm, we can see that, as long as the gradient
at iteration i is not zero, then the corresponding left inequality is strict.

Thus, for convex functions, where it is known that the gradient only reaches the value zero
in global extrema points, Gradient Descent, if applied with a parameter γ small enough, is
guaranteed to converge to a global minimum.

5For instance, in linear regression, if the design matrix is non-singular, we can use the normal equations
to obtain the parameters that minimize the quadratic cost.
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However, in Machine Learning, many cost functions that arise are non-convex and, thus
Gradient Descent could converge to local minima or saddle points.

In recent years, several techniques and tricks have been developed in order to avoid these
problems. However, the reason why some these work is generally still not clear. Specifically,
with the set of learning algorithms we will soon introduce, Neural Networks, there is a
clear lack of theoretical understanding of why the optimization techniques employed achieve
such great results. Nevertheless, issues related with the convergence of these optimization
techniques are out of the scope of our work and we will not address them any further.

We will, however, briefly introduce two common variants of Gradient Descent that are
generally used in practice to optimize cost functions when the amount of observations is
very large.

Consider a set of n observations D = {(X(1), Y(1)), . . . , (X(n), Y(n))} of a random variable
(X, Y). Let fθ be a hypothesis and consider a loss function L. The empirical risk for f and
L, takes the form:

Remp( f , L) = ∑
(X(j),Y(j))∈D

L( fθ , X(j), Y(j))

Thus, when trying to find the optimal value for θ, through gradient descent with a given
step parameter γ, at each iteration i, we encounter:

θ(i) = θ(i−1) − γ∇θ Remp( fθ(i−1) , L)

= θ(i−1) − γ∇θ ∑
(X(j),Y(j))∈D

L( fθ(i−1) , X(j), Y(j))

= θ(i−1) − ∑
(X(j),Y(j))∈D

γ∇θ L( fθ(i−1) , X(j), Y(j))

The third expression is the one that is actually computed. However, calculating the gradient
of the loss for each individual observation for the whole dataset, at each iteration can rep-
resent a big computational burden when the the size of the dataset is big 6, and computing
the derivative of the loss is expensive too 7. Thus, a general strategy that is used is, at each
iteration, computing the sum for only a subset of D0 ⊂ D8.

In the most extreme case, at each iteration, D0 contains a single element. This variant
receives the name of Stochastic Gradient Descent. Generally, D0 has more than one element
and, in this case, the variant receives the name of Mini-Batch Gradient Descent, in contrast
to Batch Gradient Descent, which is the name that is generally used in the Machine Learning
Community to refer to algorithm 1.4.

Optimization allows us to introduce the remaining element of our initial definition: the
experience E. With these iterative algorithms computers effectively improve over time its
performance on task T (i.e. supervised learning), as measured by the performance measure
P (i.e. empirical risk) since it is precisely the function that is being optimized.

6For instance, several milions of images.
7For instance, θ might have hundreds of milions of components.
8This subset is generally taken by randomly choosing it among the whole dataset without replacement,

in order to ensure that, during the process, all elements in D have been sampled an equal number of times.
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As a practical note, reaching optimization convergence in real world-applications of machine
learning, even with high-performing hardware, might take several days or even weeks of
computation. This process is generally known as training,.

As already noted, optimization in Machine Learning models is one of the areas of this field
that currently has the most open questions. However, these will not be our focus and we
will end here our brief overview of Machine Learning.

1.2 Artificial Neural Networks.

In this section, we will introduce the main set of learning algorithms that we will be studying
for the remaining of this work.

We will start by providing some background on the concept Computational Graph in order
to later present Multi-Layer Perceptrons, which can be understood as the most basic case
of Neural Networks. We will then introduce the most important theoretical result regarding
these algorithms: The Universal Approximation Theorem. Finally, we will conclude this
chapter introducing the Backpropagation algorithm, and the optimization process of Neural
Networks.

Computational Graphs

Computational graphs can be seen as a general way to represent compositions of functions,
and they provide a natural framework to represent Neural Networks.

There are several definitions available for Computational Graphs, and these can be for-
mulated to allow these structures to represent arbitrary operations. However, we are not
interested in general computational graphs, but only in these that we will be using with our
learning algorithms. Thus, we will provide a definition tailored to our needs.

Definition 1.5. (Computational Graph). Let G = (V, E) be a non-empty directed acyclical
graph (DAG). Let n be the number of leaf nodes in G 9. We associate the following parameters
at each node and edege of G:

• We associate a value wij ∈ R to each edge (vi, vj) ∈ E

• We associate a function σk : R→ R to each non-leaf node vk ∈ V, and a value bk ∈ R.

Now, for every x ∈ Rn, we can recursively define the following operations among nodes in
G:

• Let v1, . . . , vn be all leaf nodes in V. We assign, to each vi, vi ← xi

• For each non-leaf node vk ∈ V, let vk1 , vkm the set of all nodes such that (vki
, vk) ∈ E.

We assign, vk ← σk(∑
m
i=1 wki

vki
+ bk)

9Leave nodes are those vertices that have a single edge coming out of them. It is easy to see that
non-empty directed acyclical graph must have, at least, one leaf node.
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Example 1.6. (Logistic Regression Revisited) Recall that, for a learning problem where the
vector of input features takes values in Rn, i.e. X = R, the logistic regression hypothesis
has the form:

fθ(x) = σ(θtx) = σ
( n+1

∑
i=1

θixi
)

for some θ ∈ Rn+1 10 and σ being the logistic function. Thus, with the computational graph
definition we have provided, f can be represented as a graph in a simple manner:

...

x1

x2

x3

xn

σ
(

∑n
i=1 θixi + θn+1

)
θ1

θ2

θ3

θn

That is, we start assigning the components of x to leaf nodes, and then the only non-leaf
node gets assigned the value of f itself.

Multi-Layer Perceptrons

The only classification algorithm we have introduced so far, Logistic regression, has a clear
limitation: as already observed, it is essentially a linear function of its input features. In
order for our hypothesis to be able to encode more complicated relationships, we must be
able to build more complex functions.

With computational graphs and logistic regression in mind, we can think of an approach to
building such functions. The main idea will be to, combine functions such as the hypothesis
of logistic regression, and then compose these combinations.

Let’s formalize this idea. Given x ∈ R, and m vectors of parameters θ(1), . . . , θ(m) ∈ Rn+1,
we can define a mapping11:

10Recall the notation we introduced in the previous section, where the n + 1 term in x is set to 1 and
represents the intercept term in θ.

11as usual we for points in Rnwede f ineitsn + 1componenttobe1 f orconvenience.
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g : Rn −→ Rm

x → (σ(θ(1)Tx), . . . , σ(θ(m)Tx))

Where note that each component of g’s output takes the form of a logistic regression hy-
pothesis. Now, we can compose g with another such hypothesis h, determined by a vector
of parameters θ′ ∈ Rm+1, and obtain a mapping:

h ◦ g : Rm −→ R

x → σ
( m

∑
i=1

θ′i σ(θ
(i)Tx) + θ′m+1

)

And observe that (h ◦ g)(x) no longer is an essentially linear function of x. In fact, we
will soon see that, if we remove the outer σ from it, functions of the form of (h ◦ g)(x) are
universal approximators of n−dimensional real-valued differentiable functions.

Before doing that, though, let us further extend its class of functions and introduce some
notation. Observe that, if we represent h ◦ g as a computational graph, the output of g
can be seen as a set of nodes that have edges both coming in and out of them. Typically
the set consisting of these nodes is referred to as hidden layer. The set of leaf nodes which
are initially assigned the input components is referred to as input layer, and the set of root
nodes12 is referred to as an output layer. Functions such as as (h ◦ g) are a special case of
artificial neural networks13.

General neural networks can have more than one hidden layer. That is, once we have
defined a mapping g : Rn → Rm, we can consider a different set of parameter vectors,
θ(1), . . . , θ(l) ∈ Rm+1, and define an analogous mapping:

s : Rm −→ Rl

x → (σ(θ(1)Tx), . . . , σ(θ(l)Tx))

And then consider the composition s ◦ g. This process could be repeated several times, and
would yield a computational graph with as many hidden layers as functions of such kind.
This family of functions is known as Multi-Layer Perceptrons (MLPs), and are generally
considered as the most basic type of neural networks 14. We now show the representation
of the computational graph of a MLP with four hidden layers.

12those that do not have any edges coming out of them.
13from now on, we will be referring to them simply as neural networks.
14There is not, indeed, a stablished general definition of what an Artificial Neural Network is. In fact, it

is often the case that the term Neural Network and Multi-Layer Perceptrons is used interchangeably, even
though there are other families of functions that also are considered to fall into this category.
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Observe that the function corresponding to the transformation between two consecutive
layers with nodes x1, . . . , xn and y1, . . . , ym can be written as the composition of:

• A multiplication by a matrix A ∈ Rm×n, defined by: Ai,j := wi,j, where wi,j denotes
the parameter assigned to edge (xi, yj) in the computational graph.

• An element-wise evaluation of the function σ in Ax.

So far, we have been considering σ to be the logistic function. Historically, this has been the
general practice, but there are other alternatives that currently are more popular: some ex-
amples are tanh(x), log(1 + exp(x)) and max(0, x). Generally, σ is known as the activation
function and its relevance is, that it introduces a non-linear function in the computational
graph. We will revisit activation functions in the next subsection.

It is worth observing that, in the output layer of the MLP we have represented, there are
several nodes in the output layer. This setting allows to approach classification problems
where there are more than two possible classes. In these cases, the vector resulting of an
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output layer with k nodes composed with a mapping: Rk → (0, 1)k. Where each component
of ρ(z) is defined as:

ρ(z)i =
ez

i

∑K
k=1 ez

k
This function known as softmax and is used in order to make the assumption that, in a
problem where the possible classes are {1, . . . , K}, if z is the output of our MLP, ρ(z)i =

P(Y = i|X). This allows us to define the cost function of the MLP through Maximum
Likelihood Estimation, just as we did with logistic regression, and yields a natural definition
of the final classifier as: argmax

i∈{1,...K}
{ρ(z)i}i∈{1,...K}.

The Universal Approximation Theorem

After this brief review of Multi-Layer Perceptrons, we now address the main result regarding
their approximation capacity.

Theorem 1.7. Let σ be a non-constant, bounded and monotonically increasing function
and In = [0, 1]n. For every continuous function f : In → R and ε > 0, there exists an
N ∈ N, vectors w1, . . . , wN , b1, . . . , bN ∈ Rn and scalars α1, . . . , αN ∈ R such that function
G, defined as:

G(x) :=
N

∑
i=1

αiσ(wt
i x + bi)

satisfies ‖G(x)− f (x)‖ < ε for all x ∈ In.

A first formulation of this result, with further requirements on σ was first proved by [5]
However, most recently, the result was proved without the requirement of σ being bounded
[23].

The proof if this result uses concepts from Fourier Analysis that are out of the scope of this
work. We observe, though, that it does not address two issues of much practical relevance:

1. Given a function to approximate f , can we determine a priori, which is the necessary
value for N, i.e. the number of hidden units, in order to achieve an error smaller than
ε?

2. Even if we somehow were able to determine a right value for N, how could we then
find the parameters of such function?

Furthermore, this result raises an important question: why should we consider MLPs with
more than one hidden layer if a single layer is already an universal approximator? We will
be able to provide a partial answer to this question in the next section.

Now, since nowadays neither question (1) nor (2) have been answered yet, in practice, we
will have to heuristically determine a value for N15 and then resource to the optimization
techniques introduced in the last section in order to learn the right parameters.

15In fact, the question of how many units to consider in the architecture of the network must be answered
for every hidden layer, whose number must also be determined heuristically.
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The Backpropagation Algorithm

In order use Gradient Descent and its variants on loss functions involving MLPs, we ob-
viously need to be able to calculate the gradient of these functions with respect to its
parameters.

A possibility would be to make use of a numerical approximation of the derivatives, by
using the finite differences method. However, this solution has time complexity o(n2) on the
number of parameters16, and is clearly undesirable. Instead, we will compute the analyitical
gradient. To do so, we will simply require, as tool, the chain rule of calculus for several
variables. This will allow us to recursively define the gradient in a computational graph
with time complexity o(n).

More specifically, given a loss function L we will derive the expression of its gradient with
respect to the parameters in f . In order to do that, we will first clarify some notation:

• We will denote by d the number of layers in the network, with layer 0 being the input
layer and layer d being the output layer17.

• For each layer l in the network, 1 ≤ l ≤ d, W l and bl will denote, respectively, the
associated matrix and intercept term, in the computational graph, between layers l− 1
and l.

• For a given input vector x, we will refer with al to its output in the computational graph
in layer l. That is, we define a0 = x, and for 1 ≤ l ≤ d, we define: zl = W lal−1 + bl

and al = σ(zl)

• Finally, we define, for each node j in layer l, δl
j =

∂L
∂zl

j

Proposition 1.8. (Backpropagation) Given a loss function L and a Multi-Layer Perceptron
with l layers such that its parameters are specified as in the above notation, their derivatives
can be computed with the following recursive formulas:

δd
j =

∂L
∂ad

j

∂σ

∂z

∣∣∣∣
z=zl

j

(1.2)

And for 1 ≤ l ≤ d− 1:

δl
j = ∑

k
δl+1

k W l+1
k,j

∂σ

∂z

∣∣∣∣
z=zl

j

(1.3)

∂L
∂wl

j,k
= al−1

k δl
j (1.4)

16In general, evaluating a neural network with n parameters requires o(n) operations, and this must be
done 2n times in order to obtain the full gradient

17Therefore, a network of d layers will actually have a total of d− 1 hidden layers.
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∂L
∂bl

j
= δl

j (1.5)

Proof. Let’s start with equation 1.2. By definition of δ, and the chain rule of calculus for
several variables:

δd
j = ∑

k

∂L
∂ad

k

∂ad
k

∂zd
j

(1.6)

But observe that, by definition of zl and al, ∂ad
k

∂zd
j
= 0 if j 6= k and, more explicitly, taking into

account the fact that al = σ(zl), we obtain equation 1.2.

Now, for 1.3 observe that by definition of δ, and the chain rule of calculus for several
variables:

δl
j =

∂L
∂zl

j
= ∑

k

∂L
∂zl+1

k

∂zl+1
k

∂zl
j

= ∑
k

δl+1
k

∂zl+1
k

∂zl
j

(1.7)

Now, since zl+1
k = ∑i W l+1

k,i σ(zl
i) + bl+1

k , when we derivate with respect to zl
k we obtain:

∂zl+1
k

zl
k

= W l+1
j,k

∂σ

∂z
∣∣
z=zl

j
(1.8)

And, thus, by substituting 1.8 in equation 1.7 we obtain 1.3.

Now, for 1.4, observe that:

∂L
∂W l

j,k
= ∑

i

∂L
∂zl

i

∂zl
i

∂wl
j,k

= ∑
i

δl
k

∂zl
i

∂wl
j,k

(1.9)

And, by definition of zl, if i 6= j then ∂zl
i

∂wl
j,i
= 0, and thus the expression becomes:

∂L
∂W l

j,k
= δl

k

∂zl
j

∂W l
j,k

(1.10)

In the other hand, since zl
j = ∑i W l

j,iσ(z
l−1
i ) + bl

j, we have
∂zl

j

∂W l
j,k

= σ(zl−1
k ) = al

k. Thus, if we

substitute this expression in 1.10, we obtain 1.4.

Now, for 1.5, observe that it is completely analogous to 1.4, with the only difference being

that we need to compute
∂zl

j

∂bl
j
instead of

∂zl
j

∂W l
j,k
. Thus, it suffices to note that, by definition of

zl
j, we have

∂zl
j

∂bl
j
= 1, which yields the result.
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With Backpropagation we have provided an efficient way to compute derivatives of MLPs
parameters with respect to its weights. This allows us to use this derivatives with Gradient-
Descent-based techniques in order to learn these parameters. With this algorithm, we
conclude our review of Neural Networks and Multi-Layer Perceptrons.

1.3 Convolutional Neural Networks and Deep Learning

In this section, we will introduce a subset of functions within Neural Networks that has been
particularly successful for Computer Vision problem: Convolutional Neural Networks.

We will start by providing a brief introduction to the problem of image recognition. Next,
we will introduce the convolution operator and see how it is related to Convolutional Neural
Networks. We will then provide some motivation on why this subset of neural networks is
useful for image recognition and, to end up, we will provide a result regarding the role of
depth in these networks.

Image Recognition

Image Recognition is a particular case of Supervised Learning where X , the set of possible
values for our random variable X, consists of digital images of a fixed size and the set of
possible values for the target variable, Y , consists of labels indicating attributes of those
images, such as the presence of objects.

For humans, Image Recognition is a naturally eas task, as it is one of our basic perception
abilities. However, the way computers see digital images is through the RGB format. That
is, as three-dimensional matrices M ∈ {0, . . . , 255}n×m×3. The first two dimentions account
for spatial localization: n, the number of rows, corresponds to height in the image, m and
the number of columns, to width. For each 1 ≤ i ≤ n and 1 ≤ j ≤ m, Mi,j can be understood
as a spatial location in the image, which is known as pixel. The third dimension, consists
of 3 different values for each pixel that encode its color with a value for each of the three
RGB channels. Black-and-white images are defined analogusly as 2-dimensional matrices in
{0, . . . , 255}n×m, with pixels consisting in a single value instead of three.

The main challenge that Image Recognition faces is that there is not a clear way to translate
semantic concepts for humans into values in these 3-dimensional matrices, and viceversa. For
instance, once an an object is present in an image, humans understand that transformations
such as changes in the lighting of the image and deformations, rotations or translations
of the object do not alter its presence. However, from the computer point of view, these
transformations consist in intricate modifications of the values in an array. Since there are
an intractable amount of them, rule-based systems, thus, do not seem as an encouraging
approach. In contrast, approaches consisting in making use of classical statistics encounter
another challenge: treating such high-dimensional random variables.

In recent years, Neural Networks and, specifically, the kind that we are about to introduce,
Convolutional Neural Networks (CNNs), have revolutionized this field, and have yielded
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results that, a few years ago would not have been thought to be achievable. Namely, they
have surpassed human performance in several tasks and are one of the key components in
technologies such as the one behind self-driving cars.

CNNs are defined as Neural Networks such that one of its layers is a Convolutional Layer.
We now to introduce this type of layer.

The Convolution Operator and Convolutional Layers.

A convolution is an operator, denoted with ∗ and defined, for two continuous functions f
and g, as:

( f ∗ g)(t) =
∫

f (a)w(t− a)da

Convolutions satisfy several desirable properties, such as commutativity and associativity
and they are distributive with respect to addition.

In this work, we will be referring to their discrete version, which is analogously defined, for
two discrete functions f and g, as:

( f ∗ g)(t) = ∑
a

f (a)w(t− a)

for the case in which f and g are one-dimensional functions. If they are 2-dimensional
functions, convolutions are defined as:

( f ∗ g)(t1, t2) = ∑
a1

∑
a2

f (a1, a2)w(t1 − a1, t2 − a2) (1.11)

In our problem in hand, we will be considering an operation similar to convolutions between
three-dimensional matrices. In order to do so, given an array, we start by defining a mapping
from its indices to its values. Specifically, we do that by, given an array M ∈ Rn×m×d,
considering a mapping IM:

IM : N×N→ Rd

Defined as:

IM(i, j) =

{
Mi,j if (i, j) ∈ {1, . . . , n} × {1, . . . , m}
0 otherwise

Now, observe that, for each 1 ≤ i ≤ n and 1 ≤ j ≤ m, IM(i, j) is a vector with d components.
We will consider a variation of 1.3 that will consist in, given the mappings corresponding to
two three-dimensional matrices M1 ∈ Rn1×m1×d and M2 ∈ Rn2×m2×d, IM1 , IM2 modifying it
in the following manner:

(IM1 ∗̃IM2)(t1, t2) = ∑
a1

∑
a2

IM1(a1, a2)
T · IM2(t1 − a1, t2 − a2) (1.12)

where · denotes the standard dot product.
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In order to obtain an array back from this operation,(IM1 ∗̃IM2), we define Amax(n1,n2)×max(m1,m2)

as:
Ai,j = (IM1 ∗̃IM2)(i, j)

With our case in hand, however, we can assume that one of the matrices, for instance M2,
is such that n1 > n2 and m1 > m2, that is: its height and width are both smaller than M1’s.
The usual practice is to also discard indices n1 − n2 + 1, . . . , n1 and m1 −m2 + 1, . . . , m1 of
the output matrix A. That is, we only its positions corresponding to operations between all
elements in M1, and all elements in M2.

This setting allows us to understand this operation as sliding M2 through all the spatial
locations specified above in M1 and computing a weighted average18 in a neighborhood
of each possible position (i, j) ∈ {1, . . . n1 − n2} × {1, . . . m1 − m2}. We can visualize this
situation with the following example:



0 1 1 1x1 0x0 0x1 0
0 0 1 1x0 1x1 0x0 0
0 0 0 1x1 1x0 1x1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0


∗̃

 1 0 1
0 1 0
1 0 1

 =


1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0



Where the matrices are, from left to right, M1, M2 and A. In this example, however the
matrices are two-dimensional. We could picture the general case by repeating the operation
for each slice in the three-dimensional matrix M1 and M2, and then adding each resulting
matrix.

These operations are often applied in Computer Visionand outside of neural networks, in
order to extract local features of images. For instance, M1 might be a color image of
dimensions 1024× 1024× 3 and M2 might be a 3-dimensional array of dimensions 3× 3× 3,
somehow designed to highlight edges in M. The result of (IM1 ∗̃IM2) would then be a
1021× 1021 array, where positions corresponding to pixels in M1 containing edges would
have higher intensity values19.

The operation we have been described is, in a nutshell, what Convolutional Layers consist
in. Generally, we consider the values of nodes in a computational graph as an array M in
Rn×m×d, and another array K ∈ Rn′×m′×d, as before, such that n > n′ and m > m′. K is
referred to as a kernel of filter. After we have done that, we then apply, element-wise, an
activation function σ, to the result. As noted, the result from this operation yields a two

18where we understand that the elements being averaged are those in M1, and the weight coefficients are
values in M2

19In order to avoid the resulting array to have smaller height and width, there are techniques available,
named padding, but we will not be fully addressing these practical considerations
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dimensional matrix in R(n−n′)×(m−m′). The general practice, is to repeat the process s times,
with a different kernel of the same size each time, and thus, obtain a total of s matrices
in R(n−n′)×(m−m′), which are referred to as feature maps. Then, these are concatenated in
order to form a single matrix F ∈ R(n−n′)×(m−m′)×s. F, then becomes the new hidden layer
in the computational graph.

We now provide some general motivation on why these layers are generally thought to have
an advantadge over fully connected layers.

Advantages of Convolutional Layers

In [7], its authors highlight three following reasons as the main ones explaining the success
of the layer we have just introduced:

• Sparse Connectivity : Observe thatconvolutional layers can be seen as a special case of
fully connected layers. Recall that, in the latter, for a given network f , each node in
layer l was the result of a linear combination of all nodes in the previous layer. That is,
in the computational graph of f had edges from all nodes in the previous layers to it.
With convolutional layers, the situation is totally analogous, with the only difference
being that edges between nodes in consecutive layers are further restricted: for nodes
in layer l resulting from applying a kernel K ∈ Rk1×k2×k3 to layer l − 1, there are
exactly k1k2k3 edges going from nodes in the previous layer into it. This reduced
number of parameters allows for much fewer computations and parameters than in
fully connected layers and thus, for a fixed computational budget greater depth than
in an MLP. As we will soon see, this a is a key advantage.

• Parameter Sharing : Recall that, at each hidden layer, all units in the same feature map
have been computed with the same kernel, i.e. the same parameters. The intuition
behind this fact is that there is no need to use different parameters in order to find
the same feature around an image. This fact allows to greatly reduce the amount of
memory necessary to deploy the network

• Equivariance to translation: This property refers to the commutativity of convolutional
layers with respect to translations in the input image. That is, for an three-dimensional
matrix M, consider, its corresponding mapping, as defined in the previous subsection
IM, now define a translation on it as g(I(i, j)) = I(i − a, j − b), for some a, b ∈ N.
Now, if f is a convolutional layer, then f satisfies f ◦ g = g ◦ f .

Convolutional Layers and Depth.

In Neural Networks’ Section we saw that MLPs with a single layer can approximate any
continuous function arbitrarily well in a compact subset of Rn. However, in practice, deeper
architectures are virtually always preferred. In the case Convolutional Neural Networks, it
has been consistently shown empirically that, given a dataset, adding more convolutional
layers seems to increase the achievable accuracy. The apparent relevant of depth in these
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learning algorithms have earned them the general name of Deep Learning, which is currently
used, almost interchangeably, with Neural Networks.

A natural question is whether there is some theoretical result justifying the success of deep
architechtures over shallow ones. Poggio i his article [14] provide some results in this direc-
tion, which we will very briefly review.

In their article, they consider a class of functions that they define as hierarchichally local
compositional functions. A f : Rn → R is said to be of such class if there is some natural
number d < n and a family of functions S f := {g : g : Rd → R}. Such that S f can be
written solely, as a composition of functions in S f . A natural subset of these functions are
tree-like structured functions, of which Convolutional Neural Networks are a particular case.

The main result provided by the authors consists in observing that, in order to achieve
an approximation error of ε, shallow networks 20 need o(ε−n). Instead, shallow networks
require only o(nεd), where d is defined as the size of its largest filter.

The question then becomes, if the task of vision can be understood as a function of such
type. It turns out that a possible answer to this question can be obtained throguh Neuro-
science. It turns out that the type of connections (i.e. compositional relationships) defined
in Convolutional Neural Networks are similar to those present in biological neural networks,
which suggests that the answer to this answer might be affirmative and thus, the explanation
in [POGGIO] might be plausible.

Pooling Layers and Sample Architectures

There is one more type of layer that is generally present in Convolutional Neural Networks:
pooling layers.

Pooling layers are used in order to reduce the spatial dimensions of hidden layers21. There
are two main sub types of such layers: average pooling and max pooling. In both cases, given
a 3-dimensional matrix M ∈ Rn×m×d representing a hidden layer in a neural network f . For
each 1 ≤ k ≤ d a pooling layer f‘ with stride s applied to M is defined as,

fp(M)i,j,k := g({Mi′ ,j′ ,k : 1 + s(i− 1) ≤ i′ ≤ si and 1 + s(j− 1) ≤ j′ ≤ sj})

where g is the max function if fp is a max pooling layer, and a standard average function in
case it is an average pooling layer.

That is, for each feature map in M, we are dividing it in squares of side s and computing
either its maximum value, or its average.

Pooling layers are not an essential part of Convolutional Neural Networks and recently, [24],
its authors have shown that it is possible to obtain results comparable to the state-of-the-art
without resourcing to them. As an alternative, they propose using strided convolutional
layers, which can be seen as analogous operations to pooling, but substituting g by applying
a kernel to the corresponding, in the layer, of g’s input.

20such as the one considered in the Universal Approximation Theorem
21i.e. the two first dimensions of their corresponding matrices



1.3 Convolutional Neural Networks and Deep Learning 21

However, standard convolutional networks generally follow this design guideline:

1. Successive pairs/triplets of one/two convolutional layers followed by a pooling opera-
tion. This sequence is often referred to as the feature extraction part of the network.

2. Some fully connected layers until the output layer is reached. This sequence is often
referred to as the classification part of the network.

Nevertheless, general Deep Learning is a quickly moving field, and different exotic and
successful architectures are proposed with high frequency, and these often do not match the
patterns we have just described. An example of such is [9].

We will revisit most of the concepts we have introduced in this chapter in the upcoming
chapters and, now, we conclude our preliminary work and begin with our main area of focus:
Attribution Methods for Deep Convolutional Networks.



Chapter 2

Attribution Methods for Deep
Networks

In the previous chapter, we provided some basic context on the general setting of Deep
Learning Algorithms. We will now start our study on the main work of this chapter.
We will start by reviewing recent work on obtaining general interpretabilty for Deep
Networks. After that, we will introduce some basic definitions and then proceed to
study the attribution techniques in two separate groups: Gradient-Based Techniques
and Perturbation Based techniques.

2.1 An overview of recent research on Deep Learning in-
terpretability

In recent years, several techniques have been developed with the goal of making Deep Net-
works predictions more interpretable. These can be roughly divided into two categories:
those that attempt to understand what concepts a network has learned, and those that at-
tempt visualize where in the input the network can find them. We provide a brief overview
of them below:

• In the first group, several authors attempt to understand each hidden unit’s function
inside a network. They do it with two main approaches:

– Optimisation-based techniques: [12] take as input a trained network f and a target
hidden unit j at layer l, and consider fl,j: f ’s restriction at the output of this unit.
Then, they set the optimization problem:

argmax
x∈R

fl,j(x) + λ‖L(x)‖

Where the second term is a regularization penalty that constrains x to have

22
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natural image statistics. Thus, they obtain a visual explanation of what the
network is looking for.

– Monitoring-based techniques: in [4], its authors have built a dataset named BRO-
DEN, consisting in a wide variety of images representing instances of concepts
such as textures, colors, objects, etc. Given a trained network, they feed it all im-
ages in BRODEN and monitor how each hidden unit is activated through them.
They observe, empirically, that responses in certain units in upper layers of the
network are specific to some of human-concept labeled images. Thus, they con-
jecture that these units are actually encoding concepts that would be intuitive for
humans. More recently, in [6], its authors have developed Net2vec, where they
attempt understand how the combination of several units encodes a single human
concept.

• The second group consists of Attributions methods, which are the main focus of this
work. These techniques’ goal is not to understand a single unit’s function, but rather
its relationship with units in lower layers in the network1 . More specifically, given
a function f and an input x ∈ Rn, their goal is to construct a vector x̂ ∈ Rn that
quantifies the influence of each component in x.

Lastly, there is a natural way to combine both sets of techniques. Recently, in [13] its authors
have studied a wide range of possible interfaces to combine visualisations of units’ activations
in higher layers in the network, with localisations of these at the input pixels. With these,
these interfaces attempt to tackle the whole interpretability problem at once: their goal is
to shed light on what patterns the network is seeing and which pixels are responsible for it.

2.2 Basic definitions2

In the previous section, we got a general idea of what attribution methods do, and how they
relate to other techniques within the scope of Neural Networks interpretability.

Although, some relatively successful applications of attribution techniques have already
appeared, this is still a young field of research, and it is still facing many challenges regarding
both its theoretical foundations and practical applications. Specifically, different authors
provide different views regarding how they should be defined. Here we have tried to leverage
them and provide a general framewor.However, once we get to Perturbation-Based Methods,
we will have to adapt these definitions.

We start by providing a general definition on what an attribution function3 is.

Definition 2.1. Let f : Rn → R. An attribution of f is a function Ff : Rn → Rn. We will
refer to each component Ff i, as the attribution of Ff for f at xi

1These could be a individual pixels which, we recall, are the network’s 0th layer
2It turns out that the problem of attribution has been already tackled in Game Theory, in the context

of Cost Sharing literature. Some of the definitions we will provide below and techniques that will appear
later in this chapter have its origin in this field.

3Although some authors have defined attributions as vectors [25], we believe that defining them as
functions whose output are those vectors allows us to study properties in them that are function-specific
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Observation 2.2. Recall that a Neural Network f can always be written as a composition
of several functions: fm ◦ fm−1 ◦ · · · ◦ f0 and that, for a given function fi, its output compo-
nent fi j is referred as the jth unit in layer i. As we noted in the previous section, attributions
can be considered, in particular, over a specific unit and subset of layers in a network. That
is, given a network f , we could consider functions of the form fl j ◦ fl−1 ◦ · · · ◦ fk to build
attributions on them.

Observation 2.3. We will later see that some techniques to construct Ff , constrain its
output to be in R+n. However, other methods do not, as it is among its heuristics to
distinguish input components between those having positive and negative influence on the
output.

Observation 2.4. As with any functions, we can ask attributions to fulfill continuity and
differentiability. However, as we will see in the following sections, these will not be satisfied
by some techniques.

We now turn to the problem of characterizing zero-valued components in attributions. The
next definition provides the most basic axiom in this direction:

Definition 2.5. Let f : Rn → R such that it does not depend on one of its input compo-
nents i, and let Ff an attribution of f . Ff satisfies the Dummy property if, for all x ∈ Rn,
Ff i(x) = 0

The property above provides a sufficient condition for an attribution’s component to be zero.
Next, we will state a necessary one but, before that, we will introduce further heuristics.

Recall that our goal with attributions is to quantify the influence of each component of x on
f ’s output. Thus, for each i ∈ {1, . . . , n}, Ff i(x) 6= 0 should not only reflect that f depends
on x ith component but rather the fact that a specific change in its particular value would
have an influence in f ’s output. For functions that can be locally constant, this notion is
different that mere dependency. We exemplify this fact below:

Example 2.6. Let f (x, y) = max(0, x) + y and (x0, y0) = (−50, 0). Despite the fact that
f cleary depends on both of its input components, it is clear that switching x0 for any
x′ < 0, will not affect f ’s output regardless of its particular value.

We would like to capture this intuitive notion in a formal property, but how can we account
for it? Our main obstacle is specifying which changes in the input we will be considering.

One possibility is to define an additional input vector x′ in the domain of f , which we will
refer to as reference4. Then we can extend Definition 2.1 so that Ff now becomes a function
Ff : Rn ×Rn → Rn, that takes both a vector x that we want to explain and a reference
point x′ in the same domain. This allows us to state the following property, called sensitivity
in [25]:

4The introduction of a reference adds a free parameter to all attribution functions and, as we will see,
its choice has an impact on both the theoretical properties in the function and its practical use. We will
address how to approach its choice later in this chapter
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Definition 2.7. Let f : Rn → R. And Ff an attribution of f . Ff satisfies sensitivity if, for
every pair of reference and point x, x′ ∈ Rn satisfying the following:

• There is an index j ∈ {1, . . . , n} such that xj 6= x′j and xi = x′i for all i ∈ {1, . . . , n} \
{j}

• f (x) 6= f (x′)

Then Ff j(x, x′) 6= 0.

An additional requirement that we can ask Ff to fulfill is the following5:

Definition 2.8. Let f : Rn → R. And Ff an attribution of f . Ff satisfies completeness if,
for every pair of reference and point x, x′ ∈ Rn, the following equality holds:

n

∑
i=1

Ff i(x, x′) = f (x)− f (x′)

Observation 2.9. In [25], the authors claims that completeness is a stronger property than
sensitivity, as if an attribution Ff satisfies the former, then it must also satisfy the latter.
We do not support this claim and provide a simple counter-example for it below.

Example 2.10. Let f : R2 → R, defined by f (x0, x1) := x0 + x1. For each x, x′ ∈ R2

we define Ff (x, x′) := ( f (x)− f (x′), 0). Ff trivially satisfies completeness. However if we
consider as input point and reference (0, 0) and (0, 1), respectively, sensitivity is clearly not
satisfied, as f (0, 0) 6= f (0, 1), and the only non-equal component between input point and
reference equals 0 in its corresponding attribution component.

Sensitivity and Dummy fully characterize zero-valued attributions components. Although
these are important axioms, they do not address one of the most important topics in at-
tributions: the relative magnitudes of its components. Intuitively, we would not only like
attributions’ components to be zero-valued in non-relevant variables, but we would rather
want them to be larger in those components having the most impact on the output6. Namely,
we will have to study how to quantify the impact of an input component at a specific point.
In order to approach these concepts in a formal manner, we will require further specifications
on our approaches to construct attribution functions.

Thus, we will stop our introductory theoretical study here and, from now on, additional
properties of attribution functions will not be considered as general axioms any further but,
instead, will be studied specificaly for every considered approach.

5The need for the following property will be further motivated in the next section, with example 2.13.
6It could be argued that this issue is somehow addressed by a combination of completeness and sensitivity

properties. When both are satisfied we can ensure that only relevant components receive nonzero attribution,
and the sum of these equals the difference f (x)− f (x′). However, this observation still does not consider the
address the relative magnitudes of non-zero attributions.
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2.3 Gradient-Based Techniques

In this section we will explore one of the main sets of attributions methods: those that use,
either implicitly or explicitly, the network’s gradient.

We will start by motivating the use of the gradient through the study of linear models, and
this will allow us to later introduce the Integrated Gradients [25] method .

After that, we will study several techniques that exploit Neural Networks structure through
recursive relevance propagation algorithms. We will finish this section by presenting an
unified framework for these methods as variations of the Backpropagation algorithm.

Attributions in Linear Models

Linear Models are generally regarded as the simplest possible approach to Supervised Learn-
ing and thus, they are a good starting point to begin our practical study of attributions.
In contrast to Deep Networks, they are generally regarded as models with full algorithmic
transparency. With the following proposition, we provide a natural way to define attribution
functions on them.

Proposition 2.11. Let w, b ∈ Rn and f : Rn → R defined by f (x) := wtx + b. For
every reference point x′ ∈ Rn the attribution function defined by Ff (x, x′) := (wi(xi −
x′i), . . . , wn(xn − x′n)) satisfies dummy, sensitivity and completeness . Furthermore, it is also
continuous and differentiable with respect to both x and x’ in the whole of its domain.

Proof. Sensitivity, dummy, continuity and differentiability are trivially satisfied by construc-
tion. To prove that completeness also holds, observe that, for every x, x′ ∈ Rn, we have the
following equalities:

n

∑
i=1

Ff i(x, x′) =
n

∑
i=1

wi(xi − x′i)) = wtx− wtx′ = (wtx + b)− (wtx′ + b) = f (x)− f (x′)

Observation 2.12. In the attribution function above, setting the reference to be x’ = 0,
provides a very intuitive use case: each component is assigned its corresponding term in
the total sum: the larger the term, the larger the contribution.

The simplicity with which we can define an attribution function with linear models, provides
motivation for the following idea: can we locally approximate arbitrary functions through
linear models and then apply proposition 2.11 in order to obtain a well behaved attribution
function? We explore this idea in the following subsection.



2.3 Gradient-Based Techniques 27

From Taylor Approximation to Integrated Gradients

It is well-known that differentiable functions f : Rn → R can be approximated in a neigh-
borhood of a point x′ by its first order Taylor Expansion:

f (x) ≈ f (x′) + (x− x′)t∇ f (x′) (2.1)

We know that this approximation’s error (concretar?) term is o(x2), and it depends on the
distance between x and x’. The latter fact sheds light on an important heuristic over the
choice of the reference x’: it should be close to the point we want to do attributions on.

Moreover, the presence of the error in the approximation carries a disadvantage regarding
fulfillment of completeness by the attribution function we can build from it. Indeed, if we de-
note with ε the error term of (2.1) , then applying definition 2.11 to our linear approximation
yields that:

n

∑
i=1

∂xi
∂ f (x)

(xi − x′i) = (x− x′)t∇ f (x′) = f (x)− f (x′)− ε

Thus, the error term determines the amount in which completeness is not satisfied. We
provide an example of how that can be undesirable for functions that are highly non-linear
locally:

Example 2.13. Let f be a simple logistic regression function with the following form:

SIGNES!!!! f (x0, x1) =
1

1 + e10x1
=7 σ(−10x1)

. For every reference point (x′0, x′1), its first order Taylor expansion is:

f (x0, x1) ≈ σ(10x1) + 10σ(10x′1)(1− σ(10x′1))(x1 − x′1).

Thus, if we take, for instance, (x0, x1) = (0, 1) and (x′0, x′1) = (0,−3), from applying
definition 2.11 we obtain the attributions vector (0, 3.74·10−12).

Observe that our function, f , only depends on x1, and we have used a reference and
input points, two points that are at opposite sides of the separating hyperplane x1 = 0
and rather close. Thus, we would expect our attributions to assign a high score to x1’s
component but we obtain, instead, a near-zero value, as a consequence of the error term
of the local approximation. This high error is due to the fact that some functions such as
the sigmoid are near-constant at most of their domain. Therefore, gradients evaluated at
those points are close to zero and, as consequence, the resulting attributions from using
them in linear approximations are also close to zero.

7Following the notation of chapter COMPLETA!!!, we refer to the logistic function with σ. Recall that
its derivative takes the form σ′(x) = σ(x)(1− σ(x))
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Observation 2.14. Despite the fact that completeness will generally not be satisfied by
attributions functions using the above procedure, with the right choice of x’, sensitivity
will hold. There is a simple reason for that: if f (x) is not locally constant with respect to
any of its variables at a neighbourhood of x, then, for every x’ in this neighborhood, all of
its partial derivatives will be non-zero and, thus, each of the attributions components will
be non zero if, and only if, x− x′ is non-zero at that component.

Our last example had the goal of motivating why sensitivity is not enough for attributions to
meet our intuitive expectations, and why ensuring completeness fulfillment should be among
our goals. The technique we are about to introduce has a simple yet effective solution to
guaranteeing the satisfaction of completeness.

We start by introducing its linear approximation approach 8

Definition 2.15. Let f : Rn → R be a differentiable function, x′ ∈ Rn and, for all x ∈ Rn,
let γx : [0, 1]→ Rn be the line path defined by γx = x′+λ(x− x′). We define the Integrated
Gradients linear approximation of f at x with reference x′ as: REVISAR!!!!!!!!!!!! No té sentit

IG f (x, x′) := f (x′) +
∫

γx
∇ f ◦ γx(u)du = f (x′) + (x− x′)t

∫ 1

λ=0
∇ f (x′ + λ(x− x′))dλ

Observation 2.16. AIXÒ A LA PROP DE MÉS ABAIX, AQUESTA INT ÉS CALCULA-
BLE The line integral above might not have an analytical solution in general, however,
it can be numerically approximated as a finite sum. In practice, if f is a deep network,
evaluating it is computationally expensive and, thus, applying Integrated Gradients has a
significant computational cost.

Observation 2.17. It is easy to see that when f is a linear function, the above calculation
returns f itself. Indeed, let f (x) := wtx + b, then ∇ f = w and thus, for the integral we
have

∫ 1
λ=0∇ f (x + λ(x− x′))dλ = w. Therefore, the full expression becomes:

IG f (x, x′) = f (x′) + (x− x′)tw = f (x′) + f (x)− f (x′) = f (x)

Now, the previous definition allows us to apply Definition 2.11 on it and, as the following
proposition states, this provides an attribution that satisfies completeness regardless of the
choice of x′.

Proposition 2.18. Let f : Rn → R be a differentiable function, x, x′ ∈ Rn and let ˆf (x, x′)
= be f ’s Integrated Gradients linear approximation, i.e. for every i ∈ {1, . . . , n}:

wi =
∫ 1

0

∂ f (x′ + λ(x− x′))
∂xi

8The formulation we will provide below does not coincide with the one stated in [25] as its authors directly
provide a final attributions vector. However, we believe that considering separately a linear approximation
function and then applying definition 2.11 to it makes for a clearer justification.
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Then the attribution Ff (x, x′) := (wi(xi − x′i), . . . , wn(xn − x′n)), which we will refer to as
the Integrated Gradients Attribution, satisfies satisfies dummy, sensitivity and completeness.
Furthermore, it is also continuous and differentiable with respect to both x and x’ in the
whole of its domain.

Proof. Dummy is obviously satisfied by construction, and continuity and differentiability
come are consequences of the fact that f is differentiable. Let γx : [0, 1] → Rn be the line
path defined by γx = x′ + λ(x− x′) and recall that the Fundamental Theorem of Calculus
for Line Integrals ensures that:

∫
γx
∇ f ◦ γx(u)du = f (γx(1))− f (γx(0)) = f (x)− f (x′)

Thus, it follows that:

n

∑
i=1

wi(xi − x′i) = (x− x′)t
∫ 1

λ=0
∇ f (x + λ(x− x′))dλ =

∫
γx
∇ f ◦ γx(u)du

= f (x)− f (x′)

Lastly, sensitivity follows as a consequence of completeness and the fact that each component
i in the attribution function has the factor (xi − x′i) on it.

We observe from Proposition 2.18’s proof that its only assumption on the path, γx, is that
it must be continuous and, therefore, we could generalize the result for any continuous path
between x and x′. Thus, a natural question arises: is there any advantage in considering a
straight line path over other alternatives? It turns out that the answer is affirmative, but
before stating why, we need the following two definitions.

Definition 2.19. Let f : Rn → R and x ∈ Rn. Let us denote by x̂i,j a vector whose all
components are as x’s except for the ith and jth, that have been swapped. We say that
components i and j are symmetric in f if, for all x ∈ Rn, f (x) = f (x̂i,j).

Definition 2.20. Let f : Rn → R and x, x′ ∈ Rn and let Ff (x, x′) be an attribution of f .
We say that Ff is symmetry preserving if, whenever components i and j are symmetric in
f , then for all x, x′ ∈ Rn such that xi = xj and x′i = x′j, Ff i(x, x′) = Ff j(x, x′).

Now we are ready to announce the following proposition.

Proposition 2.21. From all the possible choices for γx in Proposition 2.18, a linear path
is the only one that produces attributions that are symmetry-preserving.

Lastly, there is one last advantage with using the Integrated Gradients Attribution: since it is
a function of f ’s gradient, it does not depend on the specific computational implementation
of f . This might seem as an very basic condition but as we will see in the next section, it is
not satisfied by some methods.
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Avoiding the use of the referencepoint: Grad*Input and SmoothGrads

So far, we have described the use of a reference point as desirable, in the sense that it allows
to consider the satisfaction of two properties: sensitivity and completeness. However, as
observed, it also raises an important question: what makes for a good reference?

There are techniques that avoid the reference point and instead, compute the gradient of
the network and a given point, and then multiply this result, elementwise, with the point
itself. Even though there is not a clear theoretical justification for proceeding in such way,
we will see in Chapter 3, that this technique obtain similar result to the ones of Integrated
Gradients. We refere to this technique as Gradient*Input [asd].

A variation of this method, consists in given x, σ ∈ Rn, some natural number m and a
network f : Rn → R, computing attributions by defining Ff (x) as:

Ff ,i(x)
m

∑
i=1

∂ f (x)
∂xi

+ zi

where zi ∼ (N)(xi, σi). Intuitively, this technique approximates the expected value of Gradi-
ent*Input in a neighborhood of x, while assuming that each component in X, its associated
random variable, follows a normal random distribution. This technique is known as Smooth-
Grads[22].

Exploiting Neural Networks’ Structure

In the previous subsection, we considered attributions for arbitrary functions, and we did
not make any assumptions on their properties or structure other than continuity or differ-
entiability.

However, recall that, for the task we have in hand, the class of functions used in practice
is generally narrowed down to those studied in Chapter 2: Convolutional Neural Networks.
Therefore, we can ask the following: can we obtain better attributions by restricting our
study to Neural Networks?

This question was first tackled by (CITA: Fergus et al) with Deconvolutional Networks,
which consist in an heuristically defined variation of the Backpropagation Algorithm that
has empirically shown to produce sharper saliency maps than the gradient itself. More
recently, more sophisticated approaches have appeared (Torralba, GRAD-CAM, Guided
Backpropagation). Although some of these approaches have shown empirical success, they
will not be considered in our work, since they are not only Neural Network-specific, but also
require some strong assumptions on the specific architecture of the Network.
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2.4 Perturbation-Based Techniques

In the last subsection, we introduced several attribution techniques that were based on the
idea of obtaining a local linear approximation of a network via its gradient at a given point.
In this section, we aim to change the point of view, and consider a different approach that
discards information about the gradient and, instead, obtains attributions by measuring the
effect of perturbating regions of the image

It could be argued that there are, at least, two main issues regarding the techniques we
introduced in the last chapter:

• Partial derivatives only expose the effect of changes at an infinitesimal level, and it
is not clear how meaningful these are for our purpose. In particular, none of the
techniques shed any light on providing theoretical results regarding the interpretation
of relative magnitudes of attributions components

• First order partial derivatives only address changes in individual components, whether
these are pixels or intermediate units. They lack the capacity to capture interaction
among those.

Perturbation-based methods aim to address these issues. Broadly speaking, instead of con-
sidering the impact of infinitessimal changes in individual input components, they attempt
to measure the effect of abrupt changes in several pixels at a time.

The first line of work in this direction was presented by [27]. In this article, the authors
consider a partition of the image’s pixels by dividing it adjacent squares of equal sizes. Then,
for each square on the image, they proceed to change the values of its corresponding pixels
to a predetermined uninformative value9 , such as 0, and evaluate this modified version on
the network f . Even though they obtain some interesting results, this technique has a major
limitation: it does not consider in any way how changing the values of different regions at
the same time affects the network’s output. The methods we are about to introduce, address
this issue by drawing its techniques upon of Game Theory.

A different approach to local linearization

We start by observing that considering modifications of points in high-dimensional spaces
is a challenging task:

• Let n be the number of dimensions of the space. If we consider a single alternative
value for each component, we obtain, as a result, 2n different points, which quickly
turns any algorithm intractable

• Furthermore, how should we determine each individual component’s alternative value?

The first issue, combined with the first limitation we observed in this subsection’s introduc-
tion, motivate perturbations to be considered at several components at the same time. As

9We will further specify the relevance of this value later in this chapter.
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for the second point, it does not have clear answer yet, and different options are used in
practice, such as a 0 value or the mean over the whole image.10

In order to formalize these ideas and clarify what, exactly, we will be referring to when
talking about perturbations, we introduce the following definitions.

Definition 2.22. (Segmentation) Let x ∈ Rn×m×d, M a finite subset of N and G := (V, E)
a graph defined by V := {1, . . . , n} × {1, . . . , m} and E := {(vi, vj) : |vi − vj| = 1}. Let hx
be a function:

hx : V →M

satisfying that, for every p ∈ hx(V) the set Sp := {v ∈ V : hx(v) = p} is connected. We
will refere to S a superpixel of x. The partition S := {Sp : p ∈ hx(V)} will be referred to as
a segmentation of x.

Observation 2.23. Broadly speaking, segmentations attempt to determine connected im-
age regions in a meaningful way. Algorithms used for building image segmentations make
for a broad area of study in Computer Vision that is beyond the scope of our work.

Definition 2.24. (Mask) Let x ∈ Rn×m×d, r ∈ R, and let hx be a function corresponding
to a segmentation S of x. Without loss of generality, we can assume that hx takes, exactly,
the values {1, . . . , l} for some l ∈N. Let mx,hx ,r be a function:

mx,hx ,r : {0, 1}l → Rn×m×d

x′ → mx,hx ,r(x′)

defined by:

mx,hx (x′)i,j,k

xi,j,k if x′h(i,j) = 1

r otherwise

For each x′ ∈ {0, 1}l , we will refer to the output image mx,hx (x′) as x masked by x′ via S.

Observation 2.25. Intuitively, this definition states that, given a segmentation of an
image that determines l different superpixels in it, perturbations in the image will consist
in setting the values of a whole superpixel to a fixed value r. And this setting, allows us
to consider perturbations as points in {0, 1}l , where the ith component of a point being 0
indicates that the corresponding superpixel is perturbated.

Observation 2.26. The relationship between images and its masks via a given segmen-
tation is clearly not surjective. However, it is injective and, thus, provides a bijection:

mx,hx ,r : {0, 1}l → mx,hx ,r({0, 1}l)
10In our practical experiments, we have explored several alternatives, including not assigning a single

value to all modified components but, instead, shuffling its values or assigning them random values. All
options have resulted in near-equal effects and, thus, we do not believe that, in practice, the alternative
value that is set on the modified component plays a relevant role.
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Furthermore, if we considered both sets as metric spaces equiped with the euclidean
distance, then the map mx,hx ,r defines an isometry between them.

The above observation provides a key insight into the new approach we are about to in-
troduce. Broadly speaking, perturbations as we have defined them, allow us to work in
a discrete metric space with a reduced number of dimensions where, the notion of locality
has little to do with a neighborhood of the image point in Rn×m×d, which hardly has any
meaning for humans but, instead, the same image with few of its regions deleted11.

In this context, our question becomes the following: given a function f and an image x,
how can we build a linear approximation f̂ in {0, 1}l that locally approximates f ◦ mx,hx ,r
around (1, . . . , 1)? If we are able to build a meaningful one, we will be then able to apply,
analogously as we did with gradient-based methods, proposition 2.11 and, thus, obtain
attributions over a vector of superpixels. However, how can we build such linear functions
so that it is somehow meaningful for our purpose?

The LIME method

The LIME (Local Interpretable Model-agnostic Explanations)[16] technique provides a first
attempt towards building the linear approximation we introduced above.

Its approach consists in uniformly sampling points in {0, 1}l in order to build a design
matrix X, and then fitting a linear model for these samples with a weighted version of the
least-squares function. Specifically, if f : Rn×m×d → R is the function that is trying to be
explained around a point x′ ∈ Rn×m×d and S is a segmentation of x′ given by hx′ , whose
codomain is {1, . . . l}, let f̂ : {0, 1}l → R be the linear approximation of f ◦mx′ ,h′x ,r that is
trying to be estimated. Then, the proposed cost function has the following form:

L( f ◦mx′ ,hx′ ,r
, f̂ , X, πx′) := ∑

x∈X
πx′(x)( f̂ (x)− f (mx′ ,hx′ ,r

(x)))2 (2.2)

Where πx′(x) is a non negative decreasing function of the euclidean distance between x and
x′, the point we’re doing attributions on, that will be, in general, (1, . . . , 1). The authors
suggest the use, for a given positive scalar σ, the function:

πx′(x) := exp(−|x− x′|4
σ

) (2.3)

Which is referred to as the exponential kernel12. This function is used in order to encourage
the function f̂ to have increased accuracy near closest points to x′.

Observe that, πx′(x) ≥ 0 and it does not depend on the parameters of f̂ . Therefore, if we
write f̂ (x) as ∑l

i=0 wixi + b, as long as we sample, at least l + 1 points in {0, 1}l and we
assume linear independence between columns in X, the solution to the optimization problem:

argmin
w1,...,wl ,b∈R

L( f , f̂ , X, πx′) (2.4)

11The notion of actually deleting pixels in an image actually makes no sense, as pixels cannot disappear
but, instead, change its value. However, by setting entire regions of an image to a fixed value, the goal is to
eliminate the semantic content of that region and simulate its absence.

12In this case, evaluated in the euclidean distance between x and x′
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can be found by simply modifying the classical normal equations in the following way: if H
denotes a diagonal matrix where its ith diagonal element is the image of hx at X’s ith row,
then the vector of parameters w of our linear model can be found by the calculation:

w = (XtHX)−1XtH f (mx′ ,hx′ ,r
(X) (2.5)

where we have abused notation and denoted with f (mx,hx ,r(X)) the vector resulting of ap-
plying row-wise, f ◦mx,hx ,r to matrix X.

However, this approach rises, at least, two major questions:

• Does this approximation technique satisfy any desirable properties for our goal?

• Are those dependant of the choice of πx′? And if so, how can we make a non-arbitrary
choice for it?

Shapley Values and the SHAP technique

At the beginning of this chapter, with gradient-based techniques, we mentioned that attri-
bution techniques generally draw upon the problem of cost-sharing, in Game Theory. The
setting we have provided with perturbation-based methods is analogous to the one of Finite
Coalitional Games. Broadly speaking, these attempt to determine, how the cost of some
task (i.e. a function f ) should be split among those individuals who take part on it (i.e.
non-zero input components given a point in {0, 1}l), so that shares among participants (i.e.
coefficients of a linear model) satisfy some axioms.

We will soon see that, by considering a set of four simple axioms which seem quite adequate
for our task in hand, there is a unique solution for the problem. In fact, we will see that they
mostly consists on adaptations to the properties introduced with Gradient-Based Techniques
to our new framework, which no longer makes use of a reference point. Before stating these
axioms, we introduce some notation to simplify all the following statements.

Given x ∈ Rn×m×d, r ∈ R, a segmentation S given by a function hx taking values in
{1, . . . , l}, its corresponding mask function mx,hx ,r, and a function f : Rn×m×d → R:

• For every subset I ∈ P({1, . . . , l}), v(I) will denote a point in {0, 1}l whose only
non-zero components are those indexed by values present in I. Formally:

v(I)i =

{
1 if i ∈ I

0 otherwise

That is, we refer to v(I) as a point in {0, 1}l corresponding to an image whose only
non-perturbed pixels are those such that hx assigns them a value present in I. Note
that v clearly is is a bijective function between P({1, . . . , l}) and {0, 1}l.

• For every subset I ∈ P({1, . . . , l}), we will write fx(I) to denote ( f ◦ mx,hx ,r ◦ v)(I).
That is, f applied to the perturbed image mx,hx ,r(v(I)).
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The goal of this notation is to allow us to refer to perturbed images as sets of non-perturbed
superpixels, for which we can evaluate f on. This allows us to smoothly adapt the concepts
from Coalitional Games that we are about to consider.

In the context of Coalitional Games, Cost Sharing is an area of study whose goal is to
measure the impact of the presence of an agent in the outcome of task. Formally, the task
f is defined as a function P(S)→ R for some finite set S. Intuitively, S represents a set of
players, and the goal is to determine how each individual player contributes to the outcome
of f . In our case, our task is f , whose domain is not a power set and, instead, has a fixed
number of components. With the perturbation framework we have introduced, we have
simply built an artifact that allows us to refer to a given image x as a set of superpixels,
whose elements’ absence is defined a perturbation of them. Thus, for a given image, we
can naturally refer to its perturbations as sets and, with these, consider a locally discretized
version of f , fx, that allows us to adapt the framework from Coalitional Games.

This framework allows us to introduce Shapley Values. Shapley Values provide a solution to
the Cost Sharing problem by, given a real function f whose domain is P({1, . . . , l}), Shapley
Values, defining a mapping:

φ f : P({1, . . . , l})→ Rl (2.6)

that satisfies a set of axioms that we will soon state. Observe that this setting matches
exactly the one we defined for attributions at the beginning of the chapter. With the only
difference being that we are making assumptions on the domain of f and that is something
we have already addressed. Furthermore, we will see that Shapley Values’s axioms allow us
to obtain the same result by either directly defining φ f as our attributions or as a vector of
coefficients for a linear model as the one considered by the LIME technique.

Given a set A ∈ P({1, . . . , l}), we will define φ f (A) as the vector of coefficients of the linear
model in {0, . . . , 1}l. As we will see, this will be equivalent as simply defining an attribution
function Ff (x) := φ fx ({1, . . . , l}).

Now, we proceed to announce the set Shapley Values’ axioms. Let f : Rn×m×d → R,
x ∈ Rn×m×d and r ∈ R. Let S be a segmentation of x, given by a function hx taking values
in {1, . . . , l}, and let mx,hx ,r be its corresponding mask function. Following the notation we
recently introduced, the function we will be approximating is fx, i.e. f ◦mx,hx ,r ◦ v. We state
the following axioms on φ fx :

Axiom 2.27. (Efficiency)13

fx({1, . . . , l})− fx(∅) =
l

∑
i=1

φ fx ,i({1, . . . , l}) (2.7)

This property is analogous to Completeness, which we considered with Gradient-Based tech-
niques. It asks attributions to add up to the fx’s output at {1, . . . , l}, which corresponds

13In Coalitional Games Theory it is assumed that the task f satisfies f (∅) = 0. Thus, the term f (∅)

does not appear when announcing the Efficiency axiom. However the prove about the fact that Shapley
Values satisfy this axiom, proves, indeed, that it satisfies our version of it. Thus, we can simply avoid the a
assumption with the simple modification of the axiom.
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to the full image, minus fx’s output at ∅, which corresponds to a fully perturbed image.
It could be argued that the empty set plays here a role analogous to the reference point’s
from Gradient-Based techniques. In [10] they name this axiom Local Accuracy. The reason
is that, if we interpret the components of φ fx as coefficients of a linear model f̂ in {0, 1}l,
taking the form f̂ (z) := ∑l

i=1 φ fx ,izi + fx(∅) for z ∈ {0, 1}l, then this axiom requires f̂ to
be exact at (1, . . . , 1) i.e. the complete image.

Axiom 2.28. (Carrier) If there is a set D ⊂ P({1, . . . , l}) such that:

fx(C) = fx(C ∩ D) for all C ∈ P({1, . . . , l})

Then, for all k ∈ {1, . . . , l} such that k /∈ D:

φ fx ,k(E) = 0 for all E ∈ P({1, . . . , l}) (2.8)

This axiom plays a role analogous to Dummy ’s in Gradient-Based Methods. It is, in fact,
called Dummy by [26] and [17]. Intuitively, it states that components in φ fx corresponding
to elements that don not contribute to fx’s output should be zero.

Now, observe that, the two axioms together that we have announced so far, justify an
observation that we anticipated earlier: with Shapley Values, either defining attributions as
φ f directly or as coefficients of a linear model in {0, 1}l and then using proposition 2.11
yields, indeed, the same result.

Axiom 2.29. (Symmetry) If there are two elements i, j ∈ {1, . . . , l} such that

fx(C ∪ {i}) = fx(C ∪ {j}) for all C ∈ P({1, . . . , l})

Then, for all E ∈ P({1, . . . , l}:
φ fx ,i(E) = φ fx ,j(E) (2.9)

This axiom is completely analogous to the Symmetry-Preserving property we considered in
the Gradient-Based technique Integrated Gradients. It basically requires elements that have
an equal role in fx’s outcome, to have equal an equal value in its corresponding components
φ fx .

14

Axiom 2.30. (Linearity) If there exists two functions: g, h with the same domain and
codomain as f such that f = g + h, then, for all E ∈ P({1, . . . , l}):

φ fx (E) = φg(E) + φh(E)
14That is no coincidence as, in fact, Lloyd Shapley was the original author for both techniques and defined

the former as an extension of the latter. Justifying this relationship would involve exploring further concepts
in Game Theory that are beyond the scope of this work.
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We also announced a linearity-preserving property for gradient-based methods, and this
axiom is self-explanatory.

Observation 2.31. The four axioms we described are the classical ones as described
in the original work of Lloyd Shapley [20]. However, after this work was published,
there has been some discussion relating alternative axioms. Specifically, it is proved in
[8] and [10], that the following axiom implies Linearity and Carrier (proved by [8]), and
Symmetry(proved by [10]):

Let f1, f2 be two functions with the same domain and codomain as fx and i ∈ {1, . . . , l},
such that for every set S ∈ P({1, . . . , l} \ i):

f1(S ∪ {i})− f1(S) ≥ f2(S ∪ {i})− f2(S)

Then, φ f 1({1, . . . , l}) ≥ φ f 2({1, . . . , l})

This axiom is interesting as it allows for comparison of magnitudes of Shapley Values
components between different functions: roughly speaking if an input component of one
of the function always contributes more to an increase of the function, that function’s
Shapley Value in that component will be larger.

We now proceed to announcing the main result of this section:

Theorem 2.32. (Shapley Theorem) Given a function f : P({1, . . . , l}) → R, there is
exactly one mapping:

φ fx : P({1, . . . , l})→ Rl

that satisfies Axioms 1, 2, 3 and 4. It is given, for each S ∈ P({1, . . . , l}) by:

φ fx ,i(S) := ∑
C∈P({1,...,l}\{i})

|C|!(l − |C| − 1)!
l!

( fx(C ∪ {i})− fx(C))

Observation 2.33. The expression above can be considered as a sum over:

• All possible orderings of the elements in {1, . . . , l}

• All possible subsets for each ordering

that assigns an uniform probability to each different case. [3], [26], name the quantity
( fx(C ∪ {i})− fx(C)) the marginalized contribution of {i} with C and argue that Theorem
2.32 simply calculates the expected value of the marginalized contribution over the uni-
form distribution defined above.
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Proof. We will provide a sketch of the proof. The first part consists on checking that the
definition given by Theorem 2.32 is, satisfies Axioms 1 to 4, this fact can be easily done and
simple proofs can be found in [17].

We will focus on the claim about uniqueness. Given a function f : P({1, . . . , l}) → R, for
S, T ∈ P({1, . . . , l}), define:

fT(S) =

{
0 if S ⊂ T

1 otherwise
(2.10)

In order for an attribution map FfT to satisfy Carrier and Symmetry Axioms, it must be
defined as:

FfT (S) =

{
0 if S ⊂ T

1/|T| otherwise
(2.11)

Now, we will prove that any function f ′ with the same domain and codomain as f can be
written uniquely as a linear combination of functions as the ones we just described:

f ′ = ∑
T∈P({1,...,l})

λT fT

for some λ ∈ R2n
. Since f ′ has 2n components, it suffices to see that the elements in the set

{ fT}T∈P({1,...,l} are linearly independent. Assume there is some λ 6= 0 such that:

0 = ∑
T∈P({1,...,l})

λT fT

Let S be a set in P({1, . . . , l}) with minimum cardinality such that λS 6= 0. Observe that,
for every set R ∈ P({1, . . . , l}), R 6⊂ S, and therefore fR(S) = 0 by definition 2.10. Thus,
we obtain:

λS = ∑
T∈P({1,...,l})

λT fT(S)

Which yields a contradiction, since we assumed 0 = ∑T∈P({1,...,l}) λT fT(S).

Now, it is clear that, if Ff satisfies linearity then it must be written as a unique linear
combination of attributions corresponding to scaled versions of functions defined in 2.11. It
is clear that, following the notation in 2.11, for each pair of sets S, T ∈ P({1, . . . , l}) the
efficiency axiom enforce FλT fT = λT FfT . Thus, Ff admits a unique expression as a sum of
such functions, which can only be the one determined by Shapley Values.
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Relationship with LIME and computational considerations

At the beginning of this section we considered two questions about the LIME technique.
Roughly speaking, we asked ourselves about: (1) which properties did the LIME technique
satisfy and, (2), how could make a non arbitrary choice for hx. Let us follow the notation
and examples used in that chapter.

Theorem 2.32 provides a straightfoward answer for (1): uniqueness of shapley values implies
that, as long as the sample size and choice for hx does not make LIME ’s linear coefficients
coincide with Shapley Values 15, they will not satisfy all Shapley Values’ axioms.

A more hopeful view can be achieved by turning to (2). In [10], the authors prove that,
with the right choice of hx′ and considering as a sample all possible points in the the given
discrete input set, applying the LIME technique is in fact, equivalent, to calculating Shapley
Values.

Proposition 2.34. Consider the notation introduced in LIME’s subsection, with {0, 1}l

being the domain of the considered functions and x′ := (1, . . . , 1) the considered point.
The only choice of πx′ that allows the LIME technique’s coefficients to satisfy Shapley
Values’ axioms is:

πx′(x) = |v(x′)|−1

(
|v(x′)|
|v(x)| )|v(x)|(|v(x′)|−|v(x)|)

for every x ∈ {0, 1}l , and considering the design matrix X to have as rows, all possible
values in {0, 1}l .

This proposition opens the door for some practical considerations. Shapley Values have one
major disadvantage and it is having computational complexity exponential on the cardinality
of the set considered. In practice, with Convolutional Neural Networks which are also
expensive to evaluate, that translates into exact computations of Shapley Values, with a
segmentation of an image consisting in 10 superpixels, taking up to 10− 15 minutes on a
regular laptop. Needless to say, segmentations with amounts of superpixels much higher
quickly becom intractable. This is clearly undesirable and thus, several alternatives have
been considered regarding how to compute approximate Shap Values.

Approximations are generally based on making some further assumptions about the function
considered treating the computation as an expected value approximation. However, it is not
clear whether these apply to Convolutional Neural Networks. Instead, the LIME technique
avoids these hypothesis ans simply takes a sampling-based approach. Although Proposition
2.34 ensures that these approximations will fail to satisfy Shapley Values’ axioms, it could be
argued that it somehow justifies that these approximations are headed in the right direction.
However, these are just speculative claims, and further theoretical results would be necessary
in order to fully justify them.

15which is obviously going to be false, in general



Chapter 3

Practical Experiments

In this chapter, we will implement the main methods that we have studied theoretically. By
doing so, we will try to get further insights in the behavior of these techniques.

We will start by briefly introducing the general setting of our experiments and then, we will
proceed to study separately, analogously as we did in the previous chapter, Gradient-Based
techniques and Perturbation based techniques.

All the code used for these experiments is available at https : //github.com/gbraso/attribution_methods.

3.1 Frameworks Used and General Setup

Keras and Tensorflow

The programming language of choice for this work has been Python. Python has several li-
braries designed, specifically, for scientific programming and processing large datasets, which
can significantly simplify our tasks in hand.

Specifically, this programming language allows us to work with two of the main libraries
used for Deep Learning : Keras [1] and TensorFlow [11]. The latter is a framework that is
essentially designed to do operations on computational graphs and and intensive computation
in n-dimensional matrices 1. In particular, it has built-in Automatic Differentiation2 for
these graphs. Thus, it allows us to avoid manually deriving formulas such as the ones
involved in backpropagation. We note that, without tools such as TensorFlow, modern neural
architectures would simply not be feasible to implement in practice, as they would require
the practitioner to manually compute up to several thousands of millions of derivatives for
each iteration step in Gradient-Descent.

1which are often called tensors in computer science, thus, the name TensorFlow.
2That is, once we define an expression, it is able to automatically calculate its symbolic derivative in an

efficient manner.
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Keras is a high-level library3 that is built on top of TensorFlow, and allows for quick
implementations of Neural Networks. For instance, it considers layers as objects, and allows
the definition of neural networks as a sequence of such objects. However, Keras does not
directly allow some of the operations that we need to use in order to implement Gradient-
Based techniques. Fortunately, Keras and Tensorflow functionalities can naturally coexist
and interact with each other: for instance, we are able to compute derivatives of a network
defined with Keras, through TensorFlow in a straightforward way.

ImageNet and the VGG16 network

Some years ago, Deep Convolutional Networks protagonized a historical breakthrough at
ILSVRC (ImageNet Large Scale Visual Recognition Competition)[18]. The dataset involved
in this competition, ImageNet, is generally considered as the standard benchmark for general-
purpose computer vision tasks. It consists in a total of 1.4 milions images, divided in 1.2
milions of images used for training trainning set, and 200000 used to evaluate their accuracy
(test set

These images are labelled through total of 1000 classes. Some of these classes can be highly
fine-grained. For instance, 120 of them correspond to different breeds of dogs.

In 2014, the winning team presented a network named VGG16 [21], and achieved a 70.4%
accuracy on the test set. This network has a total of 21 layers, of which 13 are convolutional,
3 are fully connected and the remaining 5 are max pooling layers.

The VGG16 network has a total of 1.38 millions of trainable parameters. In a regular
computer, training such network on such large dataset, would simply not be possible. Luckily
for us, this network, with the parameters trained by its creators, can be downloaded by the
general public. In fact, Keras contains a module where it is readily available, and this has
allowed us easy access to it.

General Approach and Visualizations Employed

Quantitatively evaluating attributions’ performance is an intricate task. Generally speaking,
we do not have direct access to any ground truth that we can compare attributions to. More
specifically, when attributions results do not match our intuitive expectations, it is not clear
if the problem is related to the network itself, or the attribution technique. Furthermore, it
is not even clear if there is any problem at all, since attributions might look strange to us,
but accurately perceive network behavior.

Some approaches have been introduced in order to evaluate howmeaningful attributions out-
puts are. In [grad_eth], its authors propose to, given an array of attributions, perturbate
the values of pixels in the image in a sequence sorted by the values of its corresponding at-
tribution components, and observe how the output of the network changes for this sequence.
Intuitively, we would expect a rapid drop in the class- probability for which attributions
were computer

3by high-level, we refer to the fact that it allows for more abstract operations.
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However, we will not be reproducing this approach but, instead doing a qualitative analysis
of the main techniques we have studied, in order to get a better understanding of how they
work, in practice. Specifically, we will be mainly tackling two issues: the relevance of the
layer in the network at which attributions are computed, and the role that the reference
point plays in Gradient-Based techniques.

In order to visualize attributions, we will be plotting heatmaps corresponding to them. To
do so, given a 3-dimensional matrix of attributions, we will add its elements through its
third dimension, in order to assign a value to each element in the spatial domain. We will
then will consider two alternatives:

• If the attributions have been computed at the input layer of the network, (i.e. at pixel
level) we will simply plot the image corresponding to the array obtained in the anterior
step, with a colormap applied to it.

• If the attributions have been computed at the an intermediate layer of the network,
we will simply plot the image corresponding to the array obtained in the anterior step,
then, resize it to match the image dimensions, and plot the translucid corresponding
heatmap on top of the image preprocessed to be black and white .

In the first case, plotting the heatmap on top of the image yields unclear visualizations. In
both cases, the colormap we have considered, is red for attribution values that are positive
(i.e. with high impact), translucid for values close to zero, and blue for negative values (i.e.
with high negative impact).

3.2 Gradient-Based Techniques

On the relevance of the layer at which attributions are computed

In all the articles we have reviewed, except for [19] and [13], Gradient-Based techniques are
applied at pixel level, that is, the gradient of the network is computed with respect to the
nodes of its input layer. We have empirically observed that this approach is generally able
to produce heatmaps that distinguish shapes and objects from the image background.

However, when there are several objects present in the image, we have empirically observed
that attributions are not class-specific: that is, regardless of the output node whose gradient
we compute, attributions look very similar, and highlight parts of the image that seem to
be non-relevant for the predicted class. We can observe this fact in figure [COMPLETA],
where, regardless whether we compute the gradient corresponding to the class french bulldog
o egyptian cat, the heatmaps we obtain highlight both objects. This fact has been previously
observed in [19] and [28].

Another observation about computing attributions at pixel level, is made in [2]. In this
article its authors do the following experiment: starting from the last layer in the network,
they set parameters to random values, layer by layer, in a cascade fashion. They observe
that this process minimally affects the attributions obtained, suggesting that these, in fact,
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Original Image Gradient * Input Smooth Grads
Integrated
Gradients

Figure 3.1: We compare how different attribution methods explain different classes. Rows 1
and 3 correspond to attributions for the class beagle, which is the one that recieves maximum
probability. Rows 2 and 4, correspond to attributions to the class egyptian cat. Rows
1 and 2 correspond to attributions at pixel level, and the last two rows correspond to
attributions computed at layer 19 in VGG16, the last convolutional layer. In this example,
only attributions at the higher level achieve produce a meaningful heatmap.

any information specific to the parameter values of the network in hand. We provide an
example of this fact in figure 3.3 in the appendix of this work.

Our claim4, is that attributions at higher layers in the network are both more sensitive
to changes in network’s parameters (see Figure 3.4 in consecutive layers and class-specific.

4Which is solely backed by intuition and experimental results.
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In order to back this claim, we have computed attributions for several images, at the last
convolutional layer of the network VGG16. This operation yields a 3 dimensional matrix of
size 7× 7× 512. We then add all components in the third dimension in order to obtain a
heatmap of size 7× 7. We then obtain a heatmap of the same size of the image by proceeding
as described in the introduction of this chapter. Ilustratory examples of these claims can
be found in figure 3.1. Additional examples can be found through interactive visualizations
provided in our github repository.

Intuitively, as already mentioned in the previous chapter, we believe that attributions at
pixel level account for changes that have, conceptually, little meaning. Instead, if we take
into account the results presented in [12], which suggest that higher level layers encode more
abstract features, then it makes sense that changes in the intensity in which these features
are percieved by the network make for more meaningful attributions. As an example of how
this reasoning might materialize, we could consider that in order to explain why a network
sees a cat, the answer should be approached regarding how clearly it sees ears, eyes and
noses, and not by how sensitive it is to changes in values of individual pixels. Still, this is
just intuitive reasoning.

It turns out, that this approach to building heatmaps from attributions in higher layers had
been already proposed before we did these conclusions. It was first introduced in [19], in
which the authors extend an idea first presented in [28].

3.3 Perturbation-Based techniques

Computing Shapley Values faster by getting advantage of intermediate layers

Arguably, the main drawback of computing Shapley Values is the computational burden
it represents. Recall that, for a segmentation of an image in n superpixels, it requires
o(2n) evaluations of the network. For deep convolutional networks, whose evaluation can
be expensive, this translates into requiring several minutes to explain a single image on a
regular laptop, which is clearly is undesirable.

However, by taking advantage of our knowledge of the network’s structure, we can signif-
icantly reduce this computing time. In order to do so, we have computed attributions at
the last convolutional layer of the network, which we recall, has size 7× 7× 512. We have
considered a trivial segmentation, where we consider, as superpixels, each spatial location
in the layer, which consists in 512 values. The perturbations we have considered consist in
setting all the values in a superpixel to 0. Once we have computed the Shapley values for
these superpixels, we obtain a heatmap by proceeding as before. An example of the results
of this experiment can be seen in Figure 3.2.

Observe that this procedure can be undestood as considering a grid-like segmentation of the
input image in 7× 7 = 49 superpixels consisting in equally sized squares, corresponding to
the receptive fields of the units in the last layer. And then, instead of perturbating these
pixels directly, perturbating the values in units corresponding to the last convolutional layer.
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Original Image SLIC segmentation Layer 19

Figure 3.2: Our setting is the same as in Figure 3.1. The second column corresponds to
computing Shapley Vales with a segmentation, at pixel level, obtained with a standard
technique named Slic. The third column corresponds to computing them at the last convo-
lutional Layer of the network. Rows 1 and 2 correspond to explanations of, classes Beagle
and Egyptian Cat, respectively.

We note that computing Shapley Values at higher levels allows evaluations of the network
to be significally less computationally expensive, by avoiding several layers of computation.
In figure 3.2, we have computed attributions directly at layer 19 thus, skipping the first 18
layers of the network, which are also those that involve the most operations, despite have
less parameters. In this particular case, obtaining attributions at a higher layer took 16s, in
contrast of obtaining them through a regular segmentation, which took over 19 minutes. It
could be argued, however, that there is a drawback of this trick : it does not allow to obtain,
directly, sharp segmentation.

It is also worth to note that segmentations obtained throguh Shapley Values at higher layers
of the network are generally similar tot hose obtained through gradient methods. In general
however, the latter involve significantly less operations and thus, are arguably a better option
in practice. Anyway, the absence of both established theoretical connections between both
sets of techniques and quantitative performance metrics makes these comparasions rather
vague.



Conclusions

One of the main objectives of this work was to provide an extensive review of attribution
techniques that have been proposed in recent years. Not only that, but understanding their
connections and presenting them in a unified manner, if possible.

Attempting to do so, has been a remarkably challenging task, mainly for a reason: the lack
of a unified set of properties and definitions regarding what an attribution is, and what
it should satisfy. We have approached this task by: (1) considering Gradient-Based and
Perturbation-Based techniques separately, and (2), in each case considering the union of
most properties suggested by different articles. In both cases, however, it has turned out
that there was a single method satisfying them all: Integrated Gradients among Gradient-
Based techniques, and Shapley Values among Perturbation-Based techniques.

Nevertheless, we have empirically observed that these techniques do not always seems to
perform well. This arises a question. How can we account for good performance?5 It is
natural to be inclined to favor those attributions producing the most intuitive heatmaps,
but we should bear in mind that it is not our intuitions that we are trying to reproduce, but
those of the network in hand. Since these are not available to us, in order to evaluate the
network, we believe it is necessary to resource to meaningful theoretical results. Specifically,
we believe that these should be given in regards of the quality of the approximation that
attribution methods construct.

The theoretical properties that Integrated Gradients and Shapley Values satisfy, certainly
seem necessary but hardly sufficient. We believe, thus, that progress in this field should be
made in the direction of searching for additional desirable theoretical properties that could
shed some light on what an attribution should satisfy.

These observations take us to our next point: should we aim to build a general purpose
theory for attribution methods or, instead, should we restrict it to both the problem and
algorithm in hand? We believe that the answer might be the latter. First of all, it is not
clear whether influence in Computer Vision problems, for instance, has the same meaning
as in other domains. Specifically, some assumptions can be done in Computer Vision that
are likely not to make sense in other domains, for instance, the possibility to group several
components in the input and assume that they play a role together, such as we did with
perturbation based problems. Furthermore, neither is it clear that we can apply the same

5Arguably, accounting for bad performance can be done through observations such as that Gradient-
Based methods, applied at lower layers, lack sensitivity to the parameters in the network.
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techniques in high-dimensional spaces, such as those of images, that we could apply in other
domains.

In regards of assumptions concerning the algorithm in hand, we believe that they can prob-
ably lead the way to meaningful results. More specifically, in neural networks getting ad-
vantage of information provided by the activations of units in intermediate layers, might be
a promising line of research. In some, sense, we have exploited such information with our
practical experiments, by computing attributions at higher layers of the networks. However,
we believe that much deeper information can be extracted from intermediate layers. Luckily,
there has already been some research in this direction [15].

To conclude, we believe that our main goals were achieved, as we now feel confident about
our knowledge of current approaches to attributions applied to Deep Learning and Computer
Vision. Furthermore, we believe that we are now in a position to resume our research into
some encouraging directions and, hopefully, getting a little closer to opening the black box
of Deep Learning.
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Appendix

Additional Figures

Original Image Gradient * Input SmoothGrads Int. Gradients

Figure 3.3: A given image in ImageNet whose class, bold eagle is predicted correctly by the
network VGG16. Heatmaps in the top row correspond to attributions computed with the
regular network. Those in the bottom row correspond to heatmaps obtained in attributions
where we have set the parameters in the last four years in VGG16 to random values.
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Original Image Gradient * Input SmoothGrads Int. Gradients

Figure 3.4: The same situation considered in figure 3.3 with attributions computed at the
last convolutional layer of VGG16.


