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Mass events ruled by collective behaviour are present in our society every day. Some of these
events require a large number of people interacting in contact networks or lattices. Could the
spatial orientation of the agents involved have an effect in promoting or hindering the emergence of
consensus states? To address this issue, we propose a simple model for a group of agents interacting
in a lattice where an attention-driving action can take place, and possibly spread globally. Computer
simulations are performed in order to describe the dynamics of the model and its implications in
social systems. The model yields a polarization between global activity or inactivity when orientation
dynamics are present, whereas mixed-states arise when they are not.

I. INTRODUCTION

The idea of using laws -in the physical sense of the
term- in order to describe human societies goes way back
to the early eighteenth century. Nonetheless, actual at-
tempts to describe social phenomena by means of a phys-
ical approach had to wait until the mid 1900s, when
similarities between statistical regularities and collective
behaviour of social and physical systems were pointed
out [1]. In the past few decades, the interest in descrip-
tions of social systems within the framework of statistical
physics have gained momentum. The availability of large
databases and computing power are some of the reasons
for it.

It appears natural in this scheme that Ising-like mod-
els must be present to some extent. Two excellent ex-
amples are the so-called voter and majority-vote models
[2], which try to simulate opinion dynamics working on
a group of agents that interact with each other. Both
these models can be embedded and simulated on a regu-
lar lattice. On the former model, each agent copies the
opinion of a neighbour [3], while in the latter the agent
takes the opinion of the majority of its neighbours [4].
These are both simple models that poorly reproduce real
social dynamics: social networks do not live in the geom-
etry of lattices or simplified graphs, and their interactions
are far more complex than the ones considered in these
models. However, their simplicity allow for a better un-
derstanding of their complexity and both models can be
solved analytically.

The problem that will be addressed in the present work
will be a close relative of the majority vote-model, and
will be defined with the aim of describing the dynamics
that can be observed when a crowded gathering of people
takes place (such as a concert or a demonstration) and a
group of people spontaneously undertake an action that
drives the attention of other people. This action could
be holding up a lighter, lighting with a mobile phone or
chanting a slogan. The focus will be set at the spatial ori-
entation of the agents and the attention-driving property
of the action: their field of view will determine the group
of agents with whom they interact, setting the state to

reproduce with a majority rule at the same time. A dy-
namical rule will favour the active agents to be looked
at.

Results will be computed for this dynamical orienta-
tion model, and a null model (i.e. without the orientation
dynamics considered). Their statistics in the stationary
state are to be compared.

II. THE MODEL

A. Dynamics

The model considers a two dimensional lattice with N
agents embedded in its nodes, with a certain geometry
to be specified. A state si, that is either 1 (active) or −1
(inactive), is assigned to each agent i. One of the nearest-
neighbours of every agent characterizes its orientation in
space, as if the latter was looking directly to the former.
This node will be designated by ωi. The group of agents
that happens to be ’in the field of view’ of a given node
will be called its potential neighbourhood. This group
includes the agent that is being looked at, ωi, and the
common neighbours of both ωi and i (see figure 1). The
potential neighbourhood of a node i will be notated by
Ωi.

The time is taken to be discrete. The state of si of
node i at time t + 1 is redefined according to the most
common state in its potential neighbourhood Ωi at time
t:

si(t + 1) =


+1 if

∑
j∈Ωi(t)

sj(t) > 0

−1 if
∑

j∈Ωi(t)
sj(t) < 0

(1)

Afterwards, its orientation wi may also change. The
rule that is implemented is not symmetrical between the
two states: those agents that are in the active state in a
time step t are more likely to be looked by its neighbours
at time t + 1. In more precise words:

• If sωi
(t) = −1, and there is one or more active

nodes in Ωi(t), one of these (j) is picked at random
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FIG. 1: A sample node i of the lattice considered in the
model, represented with its orientation wi and the

states of the nodes that are shown.

and wi(t + 1) = j. In other words, if the agent i
was looking at an inactive node at time t, but had
any active nodes in its field of view, one of these j
catches its attention and i rotates to look at j.

This procedure runs through the entire lattice, redefin-
ing both states and orientations of every agent at each
time step.

B. Choosing a geometry for the lattice

The most immediate geometry one can think of when
it comes to a 2D-lattice is a square lattice. However, the
choice made in the computation at the present work has
been a triangular lattice. The subsequent lines are an
attempt to justify this choice.

In the first place, the connectivity in a square lattice
equals four. With the description given for the model, the
number of agents in a potential neighbourhood would be
three. That means, essentially, that the ratio between
the number of neighbours in a certain potential neigh-
bourhood and the total is 75%. Most part of the neigh-
bourhood is taken into account, and the role of orienta-
tion would seem to be less relevant than with a higher
connectivity.

With a triangular lattice, however, the connectivity is
six, and the analogous ratio is 50%. On the one hand,
it seems pleasing to allow for more possible orientations,
being that the one thing is being explored; on the other
hand, this ratio seems more reasonable if one thinks of a
real field-of-view for humans (we have a frontal field of
view).

The model could be as well implemented in other ge-
ometries, but it has not been the interest in presenting
the results on the present work.

III. RESULTS

The model have been implemented on a lattice as de-
scribed above of N = 104 nodes with periodic boundary

conditions (PBC). Different initial conditions have been
used. The initial orientations have been set totally ad
random in every case. The initial states for the lattice
have been fixed using two different rules, which are spec-
ified in their corresponding subsections.

A. Random initial states

In the lines that follow, the initial condition of the
states is that an agent is active with probability p, and
otherwise inactive with probability 1− p. This could be
representative of certain real situations, in which people
attending an event have information that an action will
take place (in a concert, for example, holding up a lighter
when the artists start to play a certain song). The more
people are aware of the action, the greater p would be.

1. Single realizations and time evolution

(a) t = 0 (b) t = 3

(c) t = 10 (d) t = 50

FIG. 2: The configuration of the
active(white)/inactive(black) states are plotted in

different time steps in a single realization, with initial
probability of activation p = 0.1 for the whole lattice.
In (a), the initial configuration shows a homogeneous
distribution. From (a) to (b), the most common state

grows in number, and the formation of small clusters of
the active state can be seen from (b) to (c). Some of
these clusters grow as time goes forward (d), an will
lead to a global cluster of actives agents of the size of

the entire lattice, at the stationary state.
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In Figure 2, the lattice state configuration of a single
realization for the model with the orientation dynamics is
pictured at different time steps. Initially, each agent has
been set to have a probability p = 0.1 of being active.
The initial time evolution (t = 3 is shown in subfigure
(b)) makes the homogeneity disappear, making the most
common state (in this case, the inactive state) even more
present. Small clusters of the minority state prevail in

(a) Dynamical model

(b) Null model

FIG. 3: Histogram depicting the distribution of the
stationary magnetization per agent at p = 0.1 for (a)
Dynamical model and p = 0.3 for (b) Null model, for
1000 realizations. The magnetization is computed in
analogy with ferromagnetic systems, summing the

states over the complete lattice. There is a break in the
horizontal axis in figure (a), as the stationary states are

polarized between global activity or inactivity, and
therefore the middle part of the histogram is empty.

Comparatively, the stationary magnetization in figure
(b) is distributed around a sole value.

this case. As time goes on, these clusters can evolve in
two different fashions: they either start to grow in size or
remain small. The latter case corresponds to local cycles,
in which the orientations and states of a vicinity of nodes
causes their states to indefinitely alternate.

The interesting case is the former, which leads to global
activation of the entire lattice, as the only way a cluster
could stop growing would be that all the immediately sur-
rounding agents be oriented in such a way that none of
the cluster’s nodes are in their potential neighbourhood.
This is increasingly unlikely as the cluster grows, as the
orientation dynamic favours the agents to turn towards
active nodes in the lattice. To establish some physical
correspondence between this dynamic and the social sys-
tem that models, it could be said that the action will
spread globally if there is, initially, some group of people
that are active and looking to each other, so that they
keep being active even if their state is in clear minority in
global terms. Enough mutual support makes the action
spread.

Thus, a reasonable question would be: how probable
is that at least one such active nuclei forms and spreads
over the entire lattice? It seems logical that this must
depend, firstly, on the initial probability of being active
p. For greater p, the initial density of active agents is
bigger, so it is more likely that such a cluster will form.

The histogram in Figure 3a shows the distribution of
the stationary magnetization per agent m of 1000 real-
izations at p = 0.1. As it turns out, the distribution is
polarized between global activity or inactivity. Approxi-
mately 5% of the realizations ended with global inactivity
(m̄ close to -1) in a sharp fashion. This would mean that
the probability of one or more clusters forming and grow-
ing for this conditions is around 0.95. These remaining
realizations are distributed close to m = +1. The fact
that the distribution at the globally active realizations
is not sharp is due to the formation of stable inactive
clusters when the system is close to the stationary state.

There is a huge contrast between this results and the
ones obtained for the null version of the same model (see
Fig.3b). If orientations are initially set at random, and do
not change throughout the simulation, the system evolves
so that clusters of the same state are formed. However,
unlike in the oriented-dynamical case, this clusters never
get to grow afterwards. The system rapidly tends to a
stationary state of mixed active/inactive agents, being
the initially most frequent state even more frequent at
the stationary state than before. This fact can be spotted
in Figure 3b, as the values are distributed around a sole
value (m = 0.88 approximately in the case p = 0.3).

2. Averaging over realizations

In this subsection, the shape of the mean magnetiza-
tion per agent as a function of the initial probability is
computed using a Monte-Carlo simulation. The plot that
is obtained is that of Figure 4a.
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(a) Dynamical model

(b) Null model

FIG. 4: Mean magnetization per particle as a function
of the initial probability of activation p. Each point is
the mean value of 200 realizations and there are 100
points for each plot. Only values for p ∈ [0, 0.6] were
computed for plot (a) Dynamical model, as for larger

values the curve is approximately a constant. Note that
plot (b) belongs to the null model, in which states +1

and -1 are symmetrical.

With m = ±1 being absorbing states, the cases p = 0
and p = 1 are trivial. For values in the interval (0,0.5),
approximately, there is a slightly increase in the mean
magnetization, mainly due to the increasing probability
of an active cluster being formed in the initial time steps.
There is a rapid increase in magnetization as p shifts
between p = 0.05 and p = 0.1. The probability of a
cluster that takes on the whole lattice becomes eventually
1 for some value slightly above p = 0.1.

Being this probability essentially unity, the behaviour

of the system is driven mainly by the amount and size of
the inactive clusters in the stationary state. The possi-
ble explanation for the relative maximum present around
p = 0.1 is that the two mechanisms -probability that the
system shifts to global activation and size of the inac-
tive clusters in the stationary state- are both important
around that range of p values.

An easy way to picture the typical outcomes for dif-
ferent values of p is to build the directed graph of the
system (i.e. a directed edge is considered from each node
to the node it is looking at). The inactive regions are
composed by small connected components while the ac-
tive ones are distributed between the number of initial
active clusters that made the action spread (if the out-
come is globally active). For relatively small values of p,
such as p = 0.1, typically 1 or 2 giant connected compo-
nents form that sum up to most of the lattice (see Fig.
5a). For greater values, many small connected compo-
nents are present (Fig. 5b). A possible explanation for

(a) p=0.1

(b) p=0.6

FIG. 5: The graphs for the stationary states for two
realizations, (a) p=0.1 and (b) p=0.6. In the former,

there is a single giant connected component of the 98%
of nodes, while in the latter, the graph appears sparse,
with many small connected components. In both cases,

more than 98% of the nodes are active.
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the shape of figure 4a is as follows: the probability of an
active nuclei forming eventually gets to be almost unity.
However, the number of these nuclei keeps growing as
p increases, and as a consequence, the more sparse the
oriented graph is. The ratio between the inactive and
active connected components changes as there are more
connected components, and more initially active agents
as p gets bigger.

B. Initial nucleation conditions

If a small group of people is organized to start an ac-
tion, how likely is that this action will spread globally?
This issue is addressed in this section by setting the fol-
lowing initial conditions: a small nuclei of 7 nodes -a
central one and its nearest neighbours- is active initially,
and all the others are inactive. This is, somehow, a way
to force the nucleation process that was observed in the
previous section with random initial conditions.

FIG. 6: Histogram depicting the stationary
magnetization for the initial nucleation conditions, for a

total of 1000 realizations.

Figure 6 shows the outcomes at the stationary state
for 1000 realizations in these conditions. It turns out
that the system reaches consensus, in either activity or
inactivity with an almost one to one ratio. This points
out the importance of the nucleating process, since it is

to be noted that 7 agents can change the opinion state of
the whole lattice (of N = 104 agents) with a probability
around 50%.

IV. CONCLUSIONS

We have given some visualization tools in order to ex-
plore some of the key features of this oriented majority-
vote model. The computer simulations run with random
initial conditions point out the formation of active nu-
clei in the lattice as a key feature to yield global activity
in the lattice. The probability of such active clusters
being formed shapes the global statistics of the system:
the number that are formed in the very first time steps
determine the stationary-state magnetization.

By introducing this simple orientation dynamics, the
outcomes are polarized between global activity or inactiv-
ity, while the null model allows for mixed active-inactive
states. With the introduction of a small initial nucle-
ation (7 neighbour agents active out of 104), the system
is already driven to global activation by the orientation
dynamics in a considerable number of cases (∼ 50% of the
cases). Thus, spatial orientation is a possible mechanism
for the emergence of global behaviour in mass events.

At this point, many further work can be visualized.
From the one hand, an analytical description of this or
a similar model would help to elucidate the characteris-
tics of such a model, with the aim of describing orienta-
tion dynamics as a pathway for collective behaviour. On
the other hand, the model allows for a huge diversity of
modifications to explore a variety of phenomena. Spon-
taneously allowing for long-range interactions between
agents or introducing some random noise in the states or
orientations are some of the possibilities.
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