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Abstract: This paper studies the Exact Cover problem through the lens of Adiabatic Quantum
Computation. It contains an introduction to the way an adiabatic computation solves a satisfiability
problem, as well as further discussion on how finding and exploiting symmetries hidden in the clauses
of the problem can create a speed-up over the conventional procedure.

I. INTRODUCTION

The inception of Quantum computation dates back to
the 1980s, but not until recently has the technology been
available to build reliable quantum computers. An adi-
abatic quantum computation is characterized by being
a procedure that not rely on the standard gate model.
This methodology, however, is equally universal. Only
a relative polynomial overhead is needed to encode the
adiabatic method to the gate model. The adiabatic the-
orem assures that starting from an easy to prepare initial
state, a slow enough evolution leads to the ground state
of the Hamiltonian where the answer has been codified.

This particular way of computing has become the main
tool used when solving optimization problems, one of
which is the Exact Cover problem. The difficulty when
solving this problem appears as its minimum gap energy
vanishes at a high number of qubits, therefore, a way
to improve the effectiveness of this adiabatic method is
coming up with strategies that widen said gap. One such
way of improving the gap energy is by exploiting possible
hidden structures in the Exact Cover problem, and using
them on the Hamiltonian to gain an advantage.

II. ADIABATIC QUANTUM COMPUTING

An Adiabatic Quantum Computation is governed by
two k-local Hamiltonians. The initial Hamiltonian, de-
fined as Hy, has a product ground state, and is character-
ized by being easy to prepare. The Problem Hamiltonian,
defined as Hp, is where the problem is encoded and con-
stitutes the output state of the Hamiltonian [1]. The two
before-mentioned Hamiltonians are linked by the adia-
batic parameter, also known as schedule, s. Establishing
the schedule as s () : [0,t¢] — [0, 1], the form the Adia-
batic Hamiltonian takes is:

H(s(t) = (1—s (&) Ho+s () Hp. (1)

Starting the system from the ground state of Hy, varying
the adiabatic parameter s sufficiently slowly, the adia-
batic theorem [2] proves that the final state of the Adia-
batic Hamiltonian H (s (¢)) will be approximately kept in
a ground state. This final state after the evolution will
then be the ground state of the Problem Hamiltonian
Hp.

The time needed to perform the adiabatic sweep and
still recover the ground state at the end of the evolution,
depends on the energy difference between the ground
state and the first excited state, referred to as the gap
energy. Should this gap become exponentially small, per-
turbations during the evolution might excite the initial
state to one with higher energy, and the output would no
longer remain in a ground state [2]. Defining the mini-
mum energy gap as:

A= min A = mi — 2
in (s) Jnin €1 (s) —e€o(s), (2)

the time, t¢, needed to compute a problem using an adi-
abatic approach scales with this quantity. The version of
the adiabatic theorem by Elgart et al. [3] yields a scaling
of t;y with the inverse of the minimum gap squared,

K

up to logarithmic corrections, with a positive constant K
in units of energy. For NP-Complete problems, this gap
energy, Eq.(2), vanishes exponentially, hence the diffi-
culty of solving this types of problems using an adiabatic
method. But should there exist a way to optimize that
minimum gap, the time needed to perform a computation
with the same precision would decrease.

III. EXACT COVER PROBLEM

The Exact Cover problem is a type of satisfiabil-
ity problem, and is classified as one of Karp’s 21 NP-
complete problems [4]. The Exact Cover problem is char-
acterized by only having one bit string that satisfies all
its clauses. Considering a number of n boolean variables,
that can take the value of either 1 or 0, the Exact Cover
problem is defined by a set of clauses, each consisting
of 3 of the before mentioned bits, labeled as 4, j and k,
that must satisfy the constraint z; + z; + 2z = 1. A set
of clauses that leads to a single set of {z1, 22, 23, ..., 21 }
that fulfill all of them at the same time is called an Ex-
act Cover problem. Checking all possible iterations of a
{21, 22, 23, ..., Zn } set to determine if one matches all the
clauses of the problem is exponentially hard to solve.
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IV. ADIABATIC IMPLEMENTATION OF THE
EXACT COVER PROBLEM

In order to solve an Exact Cover problem using the
tools provided by the adiabatic principle, from the ba-
sic Adiabatic Hamiltonian in Eq.(1), a suitable Problem
Hamiltonian Hp that codifies the clauses of the prob-
lem, as well as the initial Hamiltonian Hy are to be con-
structed. To highlight the effect the algorithm has on the
optimization, the schedule variable is kept linear, follow-
ing s(t) = % —t:]0,t7].

The adiabatic theorem does not state the form of the
initial Hamiltonian apart from having an easy to prepare
product ground state. The initial Hamiltonian Hy can
be taken either as a sum over o [5] or as the magnetic
field in the x direction [6]. In this instance, the initial
Hamiltonian takes the form of the latter,

Sa-ap), @

where the parameter d; is defined as the number of
clauses where each qubit ¢ makes an appearance. This
initial Hamiltonian has been chosen for ease of interpre-
tation. The addition of the number of appearances of
each qubit in the instance translates in an energy evolu-
tion over the adiabatic sweep with a more intuitive shape.
For an actual computation using a real quantum device,
the initial Hamiltonian, therefore the initial state, could
be adapted to the one the device finds easier to prepare.

To map the solution of an Exact Cover instance to
the Problem Hamiltonian, Hp, a series of Hamiltonians
associated to each clause of the problem, H¢, must be
defined. By introducing the operator Z as

1-—o07

Z = ,
2

()

that returns the value 0 or 1 depending on the value of
o?, the Hamiltonian associated to a clause C;jj, is defined
as:

Hey, = (Zi+ Z; + Zx — 1)°, (6)

ijk
with indexes {i, j, k} reflecting the three different qubits
in the given clause Cj;;. The eigenstates that satisfy the
ground state of this Hamiltonian correspond to the solu-
tion that satisfies the clause, all other combinations, on
the other hand, reach higher energies, since the quadratic
nature of Eq.(6) penalizes the non-fulfilling combinations
with a positive energy. This operator Z is also introduced
by Farhi et al. [7] although the final clause Hamiltonian
is written in a different way.

Since an Exact Cover instance is governed by the ful-
fillment of all clauses, the Problem Hamiltonian Hp can
be then constructed in the following way:

> He (7)

C€&instance

Hp =
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The ground state of the Problem Hamiltonian is still the
eigenstate with zero eigenvalue, as all the clauses con-
tribute with a positive energy in the event of not being
satisfied.

A. Optimization Algorithm

The Exact Cover problem requires a single solution to
be found, this is a hint that a certain structure is nec-
essary to vanish all the other possible states. Exploiting
this structure is how a quantum computer can gain a
computational edge over a classical machine. The num-
ber of clauses needed to cover the space of possibilities
increases with the number of qubits in the system. This
means that with a high probability, there is bound to be
a high repetition of the same qubits in the clauses. This
fact leads to the conclusion that some clauses might be
more important regarding the difficulty of the problem.
Indeed, the hardest clause is the one that finally closes
the system and makes it converge on the unique solution.
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FIG. 1: Average minimum gap of the weighted and non-
weighted Hamiltonians as a function of the number of qubits.
The average is done over 200 different instances. The gap gain
starts small, as with less clauses the structure is harder to be
exploited. With an increasing number of qubits the minimum
gap energy grows; reaching, and slightly surpassing, 10%.

The importance of a clause in a particular instance is
marked by the repetition of its members throughout all
other clauses. Using the variable d; introduced at the cre-
ation of the initial Hamiltonian Hy, the number of times
the qubit ¢ appears among all clauses, the weight assigned
to each clause can be calculated using the equation

Wci,jk = (di + dj + di — 3) , (8)

where 3 is subtracted to the sum of the number of appear-
ances of the three qubits in order to achieve the repetition
within the other clauses. The better results are achieved
if the weights are calculated this way, each clause only
seeks repetitions outside of itself.

Barcelona, June 2018
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The weights are then normalized, so that the maxi-
mum energy reached by the weighted Hamiltonian re-
mains the same as the non-weighted one. This normal-
ization process is of utmost importance to check the va-
lidity of the algorithm, since an unrestrained adding of
energy to the Hamiltonian, in the form of non normalized
weights, would increase the energy of the first excited
state and give a false impression of a wider gap, not
provided directly by the algorithm. The clauses of the
original Hamiltonian can be considered to have an equal
weight of 1, so the sum of all calculated weights should
also adhere to the same value. Normalization should then
follow:

n°clauses
ZCGinstance c
so that:
Z we = nlclauses. (10)
Ceinstance

It is easily checked that in the event of maximum energy
both Hamiltonians result in the same eigenvalue, since
the sum of all weights remains the same and the eigen-
value of the squared sum of operators Z, in both Eq.(6)
and Eq.(11), results in the same value in any clause of
the instance. An effective way to check if the process
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FIG. 2: Comparison of the evolution of the first two eigenval-
ues during the adiabatic sweep, between a non-weighted and
a weighted Hamiltonian for a 10 qubit Exact Cover instance.
The behavior is almost exactly identical except for the zone
where the gap is reduced to the minimum value, near s 0.7.
Even though the gap increases, the maximum energy reached
by both Hamiltonians remains the same.

has been successful, not only normalizing the maximum
energy of both Hamiltonians, but also the lower energy
states, is the comparison of the energy with both the
weighted and non-weighted Hamiltonians seen in Fig.(2),
that solidifies that the normalization process used is ac-
curate.

Simply adding this weight as a multiplicative term in
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Eq.(6) results in a weighted Clause Hamiltonian

He,;, = we,,, (Zi + Z; + Zy, _1)27 (11)

ijk
that can then be summed over in the same way as Eq.(7)
for a final Problem Hamiltonian with the same output
state for the ground state.

The gain achieved by the algorithm seams to stabilize
around 10% judging by the data in Fig.(1). However, for
10 qubits and over the gain starts to slowly increase as
the qubits in the system grow in number. This incre-
ment reaches over 2% at 18 qubits. This fact is highly
non-trivial, as the gap is assumed to always decrease as
more qubits are added to the system, but as the clauses
for more qubits also increase, the structures that the algo-
rithm uses to speed-up the problem become more robust
as well, hinting at a possible gain at larger number of
qubits. With that being said, further testing in a higher
number of qubits is required to verify this hypothesis.
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FIG. 3: Average minimum gap of the weighted and non-
weighted Hamiltonians as a function of the inverse number
of qubits, averaged over 200 different instances. The 4 qubit
value is used for the linear regression but is omitted in this
representation for clarity. The gap has a clear linear rela-
tion with the inverse number of qubits in both cases. The
weighted Hamiltonian, however, has a less steep slope; evi-
dence that the algorithm applied provides a better gain in
gap energy than just a constant value.

B. Adiabatic simulation of the weighted
Hamiltonian

In order to test the gain that the algorithm achieves,
a simulation of an actual adiabatic evolution is imple-
mented using the tools provided by the Qutip library in
the computing language Python. The program that out-
puts this simulation is built following lectures linked to
the documentation of said library [8]. For both the origi-
nal and weighted Hamiltonians, with an equal parameter
for the adiabatic sweep in both of them, the probabilities
of finding the final state in the ground state are shown

Barcelona, June 2018
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FIG. 4: Probability of finding the ground state of the Adi-
abatic Hamiltonian as a function of t; for a non-weighted
and a weighted Hamiltonian. Data taken from a simulation
of an Exact Cover instance of 14 qubits. As time increases
the probability grows in both cases, but the gain is much
more significant for the weighted Hamiltonian at every step.
In this particular instance, a more satisfying probability is
found with a weighted Hamiltonian in half the time spent on
the computation.

in Fig.(4). Following the reasoning put forward by Farhi
et al. [9] the first time shown is the one after achieving
a probability of p = % of finding the ground state. It can
be argued that beyond this probability one can consider

the adiabatic evolution to have been successful.

C. Further modifications

The results above show that the algorithm applied
heads in the right direction in exploiting possible struc-
tures in the Exact Cover problem. However, a better
optimization of the time required for the adiabatic sweep
may be achieved with some further fine tuning. A more
precise control over each qubit might yield even better
results. Providing the cancellation needed to achieve the
desired ground state of the Problem Hamiltonian is ac-
complished, a non-trivial characterization of the repeti-
tion in the clauses may possibly result in an even wider
gap energy.

Another advantage the proposed algorithm provides,
is the fact that it acts independently of the variable that
governs the adiabatic sweep. For the purpose of this
demonstration, the schedule variable grows linearly from
0 to 1. Any process of optimization that is applied to
the variable s is perfectly compatible with the above al-
gorithm. Proposing a function s(t), with a smoother be-
havior where the energy gap reaches the minimum value,
is one way to add an extra layer of preciseness to the
output state of the Hamiltonian.

To further prove the versatility of this procedure, it
could also be improved via a third method. By adding

Treball de Fi de Grau

a catalyst Hamiltonian H; [1] to the Adiabatic Hamil-
tonian, Eq.(1), in a way that only appears during the
intermediate stage of the evolution,

H(s)=(1-s)Hy+sHp+ s(1—s)Hs, (12)

another speedup can be achieved. Even a randomly cho-
sen catalyst Hamiltonian can help [10], but with concrete
knowledge of the problem an even better option can be
implemented. A steering Hamiltonian can be added to
the original Adiabatic Hamiltonian in the way depicted
in Eq.(12). This Hamiltonian opposes the spin-flip ex-
citations that cause the switch from the ground state
to the first excited state during the evolution, in the way
proposed in the recent paper by Barig Ozgiiler et al. [11].

V. CONCLUSIONS

e A moderate speed-up has been achieved for the
time needed to solve an Exact Cover problem. That
means that, as it was proposed, a resemblance of a
structure exists in the Exact Cover problem. The
symmetry exploited has amplified the minimum
gap energy quite a bit, but there is no guarantee
that this particular procedure is the limit. A much
finer control could yield better results. A further
study on the weight space could uncover much finer
correlations that could point towards a more exact
way to proceed in the weighting of the Hamiltonian.

e This method of optimization is totally non-
intrusive to other forms of potential speed-up. This
makes it perfectly applicable to any program that
solves the Exact Cover problem and is looking for
a better performance. Other methods mentioned,
ranging from spin steering to controlled alterations
to the schedule variable, will only add to the effec-
tiveness of the algorithm.

e The code created to solve the Exact Cover prob-
lem is a universal way to solve any of them, pro-
vided a set of clauses is given. This means that it
could be easily implemented in a universal library
for quantum computing, such as QIBO, giving the
algorithm a platform from which it could be con-
nected to an actual quantum annealer or a quantum
simulator. This fact could give easy access to this
problem solving tool to anyone interested in using
it.

Code: https://github.com/igres26/exact_cover_
gap_analysis
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