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It has long been proposed that the cell cycle is regulated by physical forces at the cell-cell and cell-

extracellular matrix (ECM) interfaces1-12. The evolution of these forces during the cycle has never 

been measured in a tissue, however, and whether this evolution impacts cell cycle progression is 

unknown. Here we quantified cell-cell tension and cell-ECM traction throughout the complete 

cycle of a large cell population in a growing epithelium. These measurements unveil temporal 

mechanical patterns that span the entire cell cycle and regulate its duration, the G1-S transition, 

and mitotic rounding. Cells subjected to higher intercellular tension exhibit a higher probability 

to transition from G1 to S, as well as shorter G1 and S-G2-M phases. Moreover, we show that 

tension and mechanical energy are better predictors of the duration of G1 than measured 

geometric properties. Tension increases during the cell cycle but decreases three hours before 

mitosis. Using optogenetic control of contractility, we show that this tension drop favors mitotic 

rounding. Our results establish that cell cycle progression is regulated cooperatively by forces 

between the dividing cell and its neighbors.  

 

The growth of epithelial tissues enables development, wound healing and tissue regeneration13, 

14. During these processes, regulation of cell proliferation is key to determine the shape, density 

and size of the growing tissue15, 16. The regulation of the cell cycle by soluble chemical factors 

and intracellular molecular pathways has been the subject of extensive study for decades17-19. 

Early work also established that the shape and adhesion of a single isolated cell is a potent 

regulator of DNA synthesis and cell growth20, 21. However, the extent to which the duration of 

the cell cycle is directly regulated by cell size22, by nuclear size23, by growth rates24, by 

cytoskeletal tension1 or by cell-ECM traction remains unclear.  

 

Much less is known about the mechanical regulation of the cell cycle in cell collectives such 

as epithelial and endothelial tissues. In these tissues, the shape and size of the cell during the 

cycle is not only dependent on its growth but also on the forces and constraints imposed by its 

neighbors. Experiments using patterned 2D and 3D tissues established that spatial differentials 

in proliferation can be predicted by local tissue shape and mechanics2, 5, 25. More recently, 

exogenous stretching of epithelial layers was shown to stimulate progression from G1 to S8 
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and from G2 to mitosis10. Later phases of the cell cycle, such as mitosis and cytokinesis have 

also been shown to be influenced by mechanical constrains11, by cell stretching6, and by the 

mechanical action of neighboring cells9. Altogether, these findings support the long-standing 

hypothesis that the cell reads out a force, a deformation, or their rates to decide whether it 

progresses through or exits the cell cycle7.  

 

Despite the increasing evidence for mechanical regulation of cell proliferation, the evolution 

of cell-cell and cell-matrix forces during the cell cycle has never been reported in an epithelium. 

Without this key information, the question of whether progression through the various phases 

of the cell cycle is mechanically driven remains unresolved. Here we provide a systematic 

analysis of cell-ECM traction forces, cell-cell forces, as well as cell and nuclear shape 

throughout the cycle of a large number of cells in an expanding epithelial monolayer. We show 

that cellular forces impact various phases of the cell cycle, including its duration, the G1-S 

transition, and mitotic rounding. 

 

Main 

 

As a model system for epithelial growth we used the expansion of a micropatterned colony of 

MDCK cells. We placed a polydimethylsiloxane (PDMS) membrane with a 300 µm-wide 

rectangular opening on top of a collagen-I-coated polyacrylamide gel (11 kPa in stiffness)26, 27. 

To monitor the cell cycle during growth of the colony, we seeded MDCK-Fucci cells on the 

pattern and allowed them to adhere and form a confluent monolayer. MDCK-Fucci cells 

express Ctd1-RFP during G1 and S phases and Geminin-GFP during the S-G2-M phases, 

which allowed us to monitor the state of each cell in the cycle6 (Fig. 1a,f). Four hours after 

seeding, the PDMS membrane was removed and cells migrated uni-dimensionally towards the 

newly available surface26, 27 (Fig. 1a, Supplementary Video 1). During the first hours of 

expansion, the monolayer flattened but no differences in height were observed between leading 

edge and bulk (Supplementary Fig. 1a-f). We used Traction Force Microscopy (TFM) to map 

traction forces at the cell substrate interface28 (Fig. 1b), and Monolayer Stress Microscopy 

(MSM) to map in-plane tension between and within cells (Fig. 1c)29. Cell traction and tension 

increased during the first hours of expansion, as previously reported27, but then decreased 

towards a plateau (Figure 1d-e, Supplementary Fig. 2a-c, Supplementary Video 1). In parallel 

with collective migration, cells divided frequently across the monolayer (Supplementary Video 

1). During the first ~12h of expansion, the average cell area increased smoothly. The cell area 

then remained constant until the end of the experiment (Fig. 1g-i). By contrast, the average cell 

area in monolayers in which cell cycle progression was arrested with thymidine and aphidicolin 

showed a continuous growth, reaching a 4-fold increase from the initial area (Fig. 1g-k, 

Supplementary Video 2). This result points to a mechanism by which MDCK monolayers 

coordinate their growth and division cycle to maintain a constant cell density.  

 

To investigate whether the duration of the cell cycle was mechanically regulated we followed 

120 cells from three independent monolayers throughout a complete cycle. The average 

duration of the cell cycle was 21.4 ± 0.4 h, of which 12.6 ± 0.3h corresponded to G1 and 8.8 ± 

0.1h corresponded to S-G2-M (Fig. 2a). On average, cell area exhibited a linear 5-fold increase 

during the cycle, which arises from both cell growth and spreading (Fig. 2b,c). We then asked 

whether a specific mechanical property promoted the transition from G1 to S. We reasoned 

that, if this was case, this mechanical property should be significantly different in cells that had 

transitioned to S than in cells of the same age (defined as time elapsed since anaphase) that had 

remained in G130. To test this rationale, we focused on the time points at which only a small 

fraction of the cells had transitioned to S, and plotted the average cell area, nuclear area, traction 
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force, and cellular tension for cells of the same age in G1 and S. Cells that had transitioned to 

S exhibited significantly higher cell and nuclear areas than those that had stayed in G1 (Fig. 

2d,e). Tension was also higher in cells in S than in identically-aged cells in G1 (Fig. 2f). By 

contrast, traction forces did not show significant differences in G1 and S (Fig. 2g). This analysis 

is consistent with previous studies showing that cellular and nuclear spreading favor the G1-S 

transition6, 8, but it also raises the possibility that tension favors progression from G1 to S. 

 

Since geometric and mechanical properties might be linked, we sought to determine the extent 

to which each one of them predicts cell cycle progression. As potential geometric predictors 

we considered the cell and nuclear areas shortly after the beginning of the cycle (A0
c  and A0

n , 

measured 60 min after cell birth), as well as their average over the full length of G1 (AG1
c  and 

AG1
n ), and over the first  hours of the cycle (A

c  and 𝐴
𝑛), where =6h is the latest time point at 

which all cells remained in G1. We also considered the average rates of change of cell and 

nuclear area over G1 (�̇�G1
c  and �̇�𝐺1

𝑛 ) and over  (�̇�
c and �̇�

n). Note that volume and mass were 

not experimentally accessible in our system and, therefore, growth rates reported in our study 

are changes in 2D projected areas of cells and nuclei. Given that cells are simultaneously 

growing and spreading, the relationship between area and volume is not straightforward31, 32. 

As mechanical predictors, we considered traction force and tension averaged over G1 (TG1
c  and 

G1
c ) and over  (T

c and 
c).  

 

We then tested whether these properties correlated with the duration of G1 (𝑡𝐺1) (Fig. 2h, see 

Supplementary Fig. 3a-b for a complete correlation matrix between all measured properties). 

Cell and nuclear area at the beginning of the cycle, as well as their time averages over  and 

over the duration of G1 did not correlate with 𝑡𝐺1 (Fig. 2h, Supplementary Fig. 4a-d). By 

contrast, the area growth rates of the cell and the nucleus correlated with 𝑡𝐺1with high statistical 

significance (p=2×10-5 and p=5×10-13, respectively) (Fig. 2l). This result shows that cells that 

grow faster in area divide earlier independently of their initial area. Importantly, tension also 

exhibited a high correlation with 𝑡𝐺1 (p=2×10-6) (Fig. 2m).  This was not the case for traction 

forces (Fig. 2h). Similar results were obtained by averaging mechanical properties between cell 

birth and the peak of Ctd1 signal of each cell (Supplementary Figure 3c,d). Tension and nuclear 

area growth rate also correlated negatively with 𝑡𝐺1 on softer substrates (2.4 kPa) and, to a 

lesser extent, on substrates coated with fibronectin, thereby supporting the generality of our 

findings (Fig. 3). Overall, this correlation analysis shows that both mechanical and geometric 

properties are excellent candidates to explain 𝑡𝐺1.  

 

To establish which of these properties is more predictive of 𝑡𝐺1, we carried out a model-

selection analysis33, 34. This analysis compares a set of statistical models and selects those that 

are more plausible according to the Bayesian Information Criterion (BIC, see methods). We 

first compared all models that are linear in one of the properties measured either at the 

beginning of the cycle or averaged over . We excluded properties averaged over the full length 

of G1 from this analysis, as these averages can include implicit 𝑡𝐺1 and lead to trivial 

predictions. This analysis showed that tension was the most predictive property of 𝑡𝐺1, 

followed by nuclear area growth rate and nuclear area (Fig. 2j). Thus, if one has experimental 

access to all 2D geometric and mechanical properties over the first 6h of the cycle, then the 

tension average of this period will be the best predictor of the duration of G1. 

 

We also asked whether combination of cellular properties could better predict 𝑡𝐺1 than single 

properties. To do so we tested all possible models involving the product of any pair of 

properties, irrespective of any a priori consideration with regard to their physical or biological 
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meaning (Fig. 2p, Supplementary Fig. 5). Our analysis concluded that the product between cell 

area and tension outperforms the predictive power of any single property by more than one 

order of magnitude (Fig. 2p,q). The product of tension by area has units of energy and is related 

to the mechanical energy associated with the growth of the cell during the first  hours of G1 

(𝐸
𝑐). A direct consequence of the predictive power of 𝐸

𝑐 is that cells with the same area should 

enter G1 earlier if they are subjected to higher tension. To test this prediction, we ranked the 

120 cells in area deciles and, for each decile, we computed the correlation between tension at 

6h and 𝑡𝐺1 (Fig. 2r). With the exception of the first decile (smallest cells), the correlation was 

always negative, confirming that within a population of cells with same area, those subjected 

to higher tension will progress faster in their cycle. This relationship cannot be explained 

through changes in cell height, as height and tension did not correlate for cells of the same area 

(Supplementary Fig. 1g-i). Finally, we explored all models that are multilinear on any pairwise 

combination of single properties and property products. None of these models had more 

predictive power than the best linear models of a single product of two properties 

(Supplementary Table 4). 

 

We next carried out an analogous analysis asking whether mechanical properties during S-G2-

M (labelled hereafter with the subscript SG2M) correlate with the combined duration of these 

phases of the cycle (𝑡𝑆𝐺2𝑀). Unlike the case of G1, none of the mechanical properties measured 

during S-G2-M correlated with 𝑡𝑆𝐺2𝑀 (Fig. 2i, left panel). By contrast, cell and nuclear area 

growth rates averaged over G1 correlated with 𝑡𝑆𝐺2𝑀 (p=4×10-4 and p=7×10-7, respectively) 

and so did cellular tension (p=7×10-7) (Fig. 2i right panel, Figs. 2n,o). This result suggests that 

the S-G2-M phases have mechanical memory of G1, in the sense that they are influenced by 

the mechanical state of the cell during that earlier phase (Supplementary Fig. 3e). Analysis of 

linear models involving a single mechanical property showed that nuclear area growth rate and 

tension averaged over G1 were the best predictors of 𝑡𝑆𝐺2𝑀 (Fig. 2k). Conversely, analysis of 

models involving a product between pairs of properties showed that the product between 

nuclear area growth rate and tension during G1 was the most predictive (Supplementary Fig. 

5). This product can also be interpreted in terms of energy because the average area growth 

rate during G1 and the area at the G1-S transition are highly correlated (Supplementary Fig. 

4e-g). In summary, our statistical analysis shows that mechanical properties such as tension 

and mechanical energy are powerful predictors of the duration of the different phases of the 

cell cycle, outperforming geometric features such as cell and nuclear areas and their rates of 

change.  

 

To study in further detail the mechanical regulation of cell division, we focused on the time 

evolution of local tension during the full length of the cell cycle. For each time point, we 

averaged tension in three concentric regions around each cell of interest (Fig. 4a,b). The first 

region covers the area of the cell of interest (green area in Fig 4a,b), and the second and third 

regions are the two annuli consecutively concentric to that cell (red and blue areas in Fig. 4a,b, 

respectively). To average out intercellular variability and to isolate variations associated with 

the cell cycle from global mechanical trends of monolayer expansion, we computed ratios of 

tension between pairs of regions (Fig. 4c). A tension ratio between regions i and j was then 

labelled as ij, where indices i and j run from 1 to 3 (Supplementary Video 3). Throughout the 

cycle, 23 was close to unity, indicating the absence of systematic long-ranged tensional trend 

in the neighborhood of the dividing cell (Fig. 4d). By contrast, 12 and 13 showed systematic 

departures from unity. At the beginning of the cycle, 12 and 13 decreased slightly for ~1 hour. 

Afterwards, they increased steadily through most of the cycle. Three hours before mitosis, 12 

and 13 begun a progressive decrease and attained their minimum value at mitosis (Fig. 4d). 
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13 dropped further than 12 indicating that tension in the immediate neighbors of the dividing 

cell decreased more than in distant cells.  

 

This slow decline in tension suggests a regulatory mechanism that precedes mitosis. To 

investigate such mechanism we studied how mitosis is affected by tensional differences in the 

local environment of the dividing cell. To do so, we resorted to optogenetics to selectively 

increase or decrease tension in the neighbors of the dividing cell. We generated mosaic 

monolayers in which 10% of the cells expressed Fucci and the remaining 90% were engineered 

to either increase (MDCK OptoGEF-Contract) or decrease (MDCK OptoGEF-Relax) tension 

upon illumination with low doses of blue light35  (Fig. 4e,g). When tension in the neighbors of 

a dividing cell was optogenetically increased, mitotic rounding slowed down (Fig. 4e,f). By 

contrast, when tension in the neighbors was decreased, rounding time accelerated (Fig. 4g,h). 

Previous work at the single cell level showed that preventing mitotic rounding by placing an 

object in contact with a dividing cell delays mitosis and causes mitotic defects such as spindle 

misassembly and pole splitting11. This delay was attributed to the need of the mitotic cell to 

generate an additional force to round up against the object. Our work suggests that increased 

tension in the neighbors of the mitotic cell also delays mitosis by preventing rounding. The 

drop in intercellular tension observed well before division might thus be a regulated process to 

ensure proper rounding and the absence of mitotic defects. 

 

We next focused on the time evolution of traction ratios Tij throughout the full length of the 

cell cycle (Fig. 5a,b). Unlike tension ratios, traction ratios T12 and T13 were constant during 

most of G1 and S-G2. This result is consistent with recent findings in single cells showing that 

tractions plateau between late G1 and S phases12 (Fig. 5b). As cells rounded up for division, 

T12 and T13 exhibited a peak flanked by two periods of low traction (Fig. 5b,d). By contrast, 

single MDCK cells fully relaxed their tractions during rounding until respreading of daughter 

cells (Fig. 5c,d). To explore how tractions can develop under a rounding cell, we turned to 

mosaic monolayers in which 80% of the cells expressed Lifeact-GFP and the remaining 20% 

expressed Lifeact-Ruby. Confocal stacks revealed that neighbors of the dividing cell wrapped 

around it to maintain a largely continuous interface throughout mitosis (Fig 5e-g)36, 37. During 

cytokinesis, the dividing cell and its neighbors co-ingressed, and actin accumulated in the 

regions of the neighbors adjacent to the cleavage furrow (Fig. 5e, Supplementary Video 4)9. 

Imaging of the basal plane during division showed that as the dividing cell detached from the 

substrate and rounded up its neighbors extended cryptic actin-rich protrusions underneath it 

(Fig. 5e, Supplementary Video 4). Protrusions retracted after cytokinesis, thereby allowing 

daughter cells to spread. The time course of the protrusion/retraction cycle coincided with the 

generation of radial traction forces pointing away from the dividing cell (Fig. 5j-l). E-cadherin 

localized at the interface between the basal surface of the dividing cell and the apical surface 

of neighboring protrusions (Supplementary Video 5, Fig. 5h,i). Together, these results raise the 

possibility that coordinated protrusion and retraction of neighboring cells assists rounding of 

the mother cell and re-spreading of its daughters.  

 

Cell mechanics has long been implicated in the regulation of cell proliferation1-12, 22, 38, but how 

cellular forces evolve through the cell cycle, and whether this evolution is associated with the 

duration of each of its phases has been unknown thus far. Here we showed that cell-cell forces 

impact various phases of the cell cycle, including its duration, the G1-S transition, and mitotic 

rounding. We showed, further, that tension of the dividing cell relative to that of its surrounding 

neighbors increases smoothly through most of G1, S and G2. After an initial spreading phase, 

MDCK monolayers maintained a largely constant density, which suggests coordination 

between cell growth and division machineries during tissue expansion. This type of 
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coordination has been observed in a variety of tissues during development and homeostasis19, 

31, 39, which has led to the idea that cells read out their size to control progression through the 

cycle6, 24, 30. In the specific case of epithelial monolayers, previous experiments provided 

evidence that the G1-S and G2-M transitions are regulated by exogenous control of the cell 

area6, 8, 10. Here we confirmed that cell and nuclear areas, as well as their rates of change, predict 

progression through the cell cycle. More importantly, we found that tension and mechanical 

energy have a higher predictive power than geometrical properties; for a given cell area, cells 

under higher tension display a shorter G1. Together these results point to distinct mechanisms 

by which cells probe area and tension to progress through their cycle. The nature of these 

mechanisms and how they might be integrated to control the duration of G1, S and G2 are 

major questions that our study raises for future investigations.  
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Figures 

 

Figure 1: MDCK monolayers expand at constant density.  

 

a–c, Fluorescence images of Fucci cells (a), tractions Tx (b) and tension σ (c) at 0 h and 33 h 

after removing the PDMS membrane. t, time. d,e, The monolayer mean traction modulus (d) 

and tension (e) during epithelial growth (n= 3 independent experiments). f, Normalized (norm.) 

fluorescence intensity of the green (geminin) and red (Cdt1) fluorescence channels (n= 120 

cells from 3 independent experiments). The grey dashed line represents the transition point 

between G1 and S phases. For averaging, the time axis of each cell was interpolated to the 

average duration of the cycle. g–i, The mean number of nuclei (g), the monolayer area (h) and 

the area per cell (i) in monolayers expanding in control conditions and after arresting cells at 

the G1–S transition (n= 3 experiments per condition). j,k, Phase-contrast and fluorescence 

images 33 h after removing the PDMS membrane for the control (j) and the cell cycle arrest 

cases (k). Scale bars, 100 µm. All shaded areas in the graphs represent the s.d. Data in a–c,j,k 

are representative of n= 3 independent experiments. 

 

Figure 2: Cell tension and mechanical energy predict the duration of the cell cycle. 

  

a, The duration of the cell cycle, G1 and S–G2–M phases. b, The cell area at the beginning of 

the cycle (0 h), after 2 h, at the G1–S transition, 3 h before division and at the end of the cycle 

(final). c, Time evolution of the cell area for two representative cells (brown and blue). G1 and 

S–G2–M phases are labelled with different intensities. The dashed line represents the mean 

area for all the cells (for averaging, the time axis of each cell was interpolated to the average 

duration of the cycle). d–g, The mean cell area (*P= 0.048) (d), the nuclear area (**P= 0.007) 

(e), tension (*P= 0.013) (f) and traction (not significant (NS), P= 0.227) (g) for the cells in G1 

and cells in S–G2–M 8.5 h after the beginning of the cycle (Mann–Whitney two-tailed test). 

h,i, Pearson's linear correlation coefficients between the durations of G1 (h) or S–G2–M (i) 

and the population averaged cell properties. j,k Bayes factors of the predictive models that are 

linear in one property. A lower Bayes factor indicates higher plausibility (for example, if the 

Bayes factor of a model B with respect to the most plausible model A is 10, this means that 

model A is 10-times more likely than model B). Bayes factors of the linear models used to 

predict G1 durations from the averages of cell and nuclear properties over the first 6 h of the 

cycle are shown (j). Bayes factors of the linear models used to predict S–G2–M durations from 

the averages of cell and nuclear properties over G1 are shown (k). l,m, The G1 duration as a 

function of the mean cell area growth rate (l) and the mean tension (m) during G1. n,o, The S–

G2–M duration as a function of the mean cell area growth rate (n) and the mean tension (o) 

during G1. p, Bayes factors of models that predict G1 durations and that are linear in the 

product of two properties. q, The G1 duration as a function of the mechanical energy. r, 

Pearson's linear correlation coefficients between the duration of G1 and cellular tension 6 h 

after the beginning of the cycle, σ6ℎ
𝑐 . Correlations are computed for each area decile 6 h after 

the beginning of the cycle, 𝐴6ℎ
𝑐 . All graphs include n= 120 cells from 3 independent 

experiments. The dashed lines in l–o,q represent linear fits. The error bars in a,b,d–g represent 

the s.d and dotted lines represent mean. 
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Figure 3: Tension and nuclear area growth rate correlate negatively with 𝒕𝑮𝟏 on softer 

substrates and on substrates coated with fibronectin 

 

a, Phase-contrast images at 0 h and 33 h after removing the PDMS membrane. Images are 

representative of n= 3 independent experiments. Scale bar, 100 μm. b,c, The monolayer mean 

traction (b) and tension (c) during epithelial growth. d, The duration of the cell cycle, G1 and 

S–G2–M phases. e, The G1 duration as a function of the mean nuclear area growth rate during 

G1 (r= –0.46). f, The G1 duration as a function of the mean tension during G1 (r=−0.34). Panels 

a–f were in soft gels. g, Phase-contrast images at 0 h and 33 h after removing the PDMS 

membrane. Images are representative of n= 3 independent experiments. Scale bar, 100 μm. h,i, 

The monolayer mean traction (h) and tension (i) during epithelial growth. j, The duration of 

the cell cycle, G1 and S–G2–M phases. k, The G1 duration as a function of the mean nuclear 

area growth rate during G1 (r=−0.41). l, The G1 duration as a function of the mean tension 

during G1 (r=−0.17). Panels g–l were in fibronectin-coated gels. All graphs include n= 60 cells 

from 3 independent experiments. The error bars (d,j) and the shaded areas (b,c,h,i) represent 

the s.d. The dotted lines (d,j) represent the mean. The dashed lines in e,f,k,l represent linear 

fits. 

 

Figure 4: Cell tension increases during the cycle but decreases before mitosis. 

 

a, Illustration of the three ROIs used to average forces. b, A phase-contrast image highlighting 

the three ROIs for one representative cell (16 h after lifting the PDMS membrane). The black 

lines represent the monolayer outline. Scale bar, 100 µm. c, Tension overlapped on a phase-

contrast image. The black lines indicate the contour of the three ROIs. Scale bar, 20 µm. d, The 

median of the tension ratios σ𝑖𝑗 (n= 120 cells from 3 independent experiments). The time axis 

of each cell was interpolated to the average duration of the cycle. The grey dashed lines 

represent the transition between G1 and S and the beginning of anaphase. The shaded areas 

represent the s.e.m. for σ13 and σ23. The s.e.m. for σ12 is not shown for clarity. The ratios σ𝑖𝑗 

were averaged on the time points of interest (grey horizontal bars) to perform the statistical 

tests (*P= 0.034, *P= 0.033 and *P= 0.026, from left to right), using two-tailed Mann–Whitney 

test. The dashed horizontal line is a reference indicating a ratio of 1. e, Illustration of the 

experimental design to increase contractility in the neighbours of the dividing cell. A Fucci cell 

is surrounded by optogenetic MDCK optoGEF-contract cells (left panel). The green channel 

shows Fucci nuclei in G2 and CIBN-GFP-CAAX expressed in neighbouring cells (middle 

panel). The red channel shows neighbouring cells expressing optoGEF-RhoA (mCherry) (right 

panel). Scale bar, 30 µm. f, Rounding times of Fucci cells in the control case and under 

increased contractility of the neighbours (control: n= 40 cells; activation n= 39 cells from 3 

independent experiments). ***P< 0.0001, twotailed Mann–Whitney test. g, Illustration of the 

experimental design to decrease contractility in the neighbours of the dividing cell. A Fucci 

cell is surrounded by optogenetic MDCK optoGEF-relax cells (left panel). The green channel 

shows the Fucci nuclei in G2 and mito-CIBN-GFP expressed in neighbouring cells (middle 

panel). The red channel shows neighbouring cells expressing optoGEF-RhoA (mCherry) (right 

panel). Scale bar, 30 µm. h, Rounding times of Fucci cells in the control case and under 

decreased contractility of the neighbours (control: n= 77 cells; activation n= 44 cells from 4 

independent experiments). ***P< 0.0001, two-tailed Mann–Whitney test. Images shown in 

b,c,e are representative of n= 3 independent experiments. Images shown in g are representative 
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of n= 4 independent experiments. In (f,h) error bars represent s.d. and dotted lines lines 

represent the mean. 

 

Figure 5: Neighboring cells generate traction forces under the dividing cell during 

mitosis.  

 

a, Traction overlapped on a phase-contrast image. The black lines indicate the contour of the 

ROIs used to compute traction ratios 𝑇𝑖𝑗. Scale bar, 20 µm. b, The median of the traction ratios 

𝑇𝑖𝑗 (n= 120 cells from 3 independent experiments). The time axis of each cell was interpolated 

to the average duration of the cycle. The grey dashed lines represent the transition between G1 

and S and the beginning of anaphase. The shaded areas represent the s.e.m. for 𝑇13 and 𝑇23. 

The s.e.m. for 𝑇12 is not shown for clarity. The ratios were averaged on the time points of 

interest (grey horizontal bars) to perform the statistical tests (***P= 0.0007 and ***P= 0.0009 

(from left to right), two-tailed Mann–Whitney test). The dashed horizontal line is a reference 

indicating a ratio of 1. c, Tractions during division of a single MDCK cell overlaid on phase-

contrast images. The origin of the time axis (0 min) is defined as the last time point in which 

only one nucleus was visible. Scale bar, 20 µm. d, Time evolution of the mean traction during 

the division of a cell in isolation or in a monolayer. The dashed line represents the beginning 

of anaphase (n= 120 cells from 3 independent experiments for cells in monolayers and n= 14 

cells from 3 independent experiments for isolated cells). The shaded areas represent the s.e.m. 

e,f, Basal, medial and apical fluorescence images of a dividing LifeAct-Ruby cell (f) 

surrounded by LifeAct-GFP cells (e). Scale bars, 10 µm. g, The merge of panels e and f. Scale 

bar, 10 µm. h, The projection of six medial and six basal planes of an E-cadherin-RFP cell in 

metaphase (asterisk), surrounded by E-cadherin-GFP neighbours. Scale bar, 22 μm. i, The xz 

projection for the cell in panel h along the blue dashed line. Merge (top), RFP (centre) and GFP 

(bottom) are shown. Scale bar: horizontal, 5 µm; vertical, 3 µm. j, Inverted LifeAct-GFP 

images corresponding to the basal planes shown in panel e with overlaid traction vectors. Scale 

bar, 10 µm. k,l, The mean radial traction (k) and the GFP normalized fluorescence (l) under 

LifeAct-RFP cells in expanding monolayers (n= 40 cells from 3 independent experiments). The 

dashed lines represent the beginning of anaphase. The dashed horizontal line is a reference 

indicating zero radial traction. The shaded areas represent the s.e.m. All images are 

representative of n= 3 independent experiments. 
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Materials and methods 
 

Cell culture 

 

All MDCK cell lines were cultured in minimum essential media (MEM) with Earle’s Salts and 

l-glutamine (31095-029, Thermofisher) supplemented with 10% fetal bovine serum (FBS; 

10270-106, Thermofisher), 100 units ml−1 penicillin, 100 µg ml−1 streptomycin and 292 µg 

ml−1 l-glutamine (10378-016, Thermofisher). Cells were maintained at 37ºC in a humidified 

atmosphere with 5% CO2. MDCK Fucci stable cell line was a gift from Lars Hufnagel6. For 

the optogenetic experiments we used MDCK cells stably expressing CIBN-GFP-CAAX and 

optoGEF-RhoA, and MDCK cells stably expressing mito-CIBN-GFP and optoGEF-RhoA 
35. 

 

Preparation of polyacrylamide gels 

 

Glass-bottom dishes were activated by using a 1:1:14 solution of acetic acid/bind-silane 

(M6514, Sigma)/ethanol. The dishes were washed twice with ethanol and air-dried for 5 min. 

For 11kPa (2.4kPa) gels, a 500µl stock solution containing HEPES 10mM, 93.75µl (68.75µl) 

acrylamide 40% (161-0140, BioRad), 25µl (11µl) bisacrylamide 2% (161-0140, BioRad), 

2.5µl 10% ammonium persulfate diluted in water (161-0700, BioRad), 0.25µl TEMED and 

12µl of 200-nm-diameter far red fluorescent carboxylate-modified beads (F8807, 

ThermoFisher) was prepared. A drop of 18 µl was added to the centre of the glass-bottom 

dishes and the solution was covered with 18-mm-diameter GelBond film (Lonza) coverslips 

(hydrophobic side down) that were custom cut by an electronic cutting tool (Silhouette Cameo). 

After 40 min polymerization, the coverslip was removed and gels were functionalized using 

sulfo-sanpah. Briefly, a 80µl drop of sulfo-sanpah (22589, Thermo-Scientific) was placed on 

the top of the polyacrylamide gel and activated by UV light for 3 min. Sulfo-sanpah was diluted 

in miliQ water to a final concentration of 2mg/ml from an initial dilution 50mg/ml kept at -

80ºC. Gels were then washed twice with miliQ water and once with PBS for 5min each. 

Afterwards, gels were incubated with 200µl of a collagen I or fibronectin solution (0.1mg ml−1) 

overnight at 4ºC.  

 

Microfabrication of the PDMS membranes 

 

SU8-50 masters containing rectangles of 300×2500 μm were fabricated using conventional 

photolithography. Uncured PDMS was spin-coated on the masters to a thickness lower than 

the height of the SU8 feature (35 μm) and cured for 4h at 60 °C. A thicker border of PDMS 

was applied at the edges of the membranes for handling purposes. PDMS was then peeled off 

from the master and kept in ethanol at 4 °C until use. 

 

Cell patterning 

 

Before seeding the cells, PDMS membranes were incubated in a solution of 2% Pluronic F-

127 (Sigma-Aldrich) in PBS to prevent damage of the gel coating caused by the PDMS 

membranes. At the same time, the gels coated with collagen were washed twice with PBS, 

covered with cell media and kept in the incubator. 

 

One hour after incubation of PDMS membranes in 2% Pluronic solution, the membranes were 

washed twice with PBS and air dried for 20 min. After removing the media, the gels were air 

dried for 4min. The PDMS membranes were then deposited on the surface of the gels and air 
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dried for 2min. A small volume (8 μl) containing 40,000 cells was placed on the exposed region 

of the polyacrylamide gel defined by the PDMS membrane. Aftert 30 min, the unattached cells 

were washed off and 200 μl of medium were added. Four hours after seeding the cells 

(overnight for the gels coated with fibronectin), 2 ml of medium were added and the PDMS 

membranes were carefully removed with tweezers before the beginning of the experiment. 

Time-lapse recording started approximately 1h after removing the PDMS membrane. The 

interval between image acquisition was 10 min and a typical experiment lasted for 40h. A row 

of 9 images was acquired for each pattern with a ×40 objective and then stitched with a 

MATLAB script. 

 

 

G1/S cell cycle arrest 

 

To arrest cells at the beginning of S-phase, a cocktail of 2mM thymidine (T9250-1G, Sigma) 

and 5µg/ml aphidicolin (A0781-1MG, Sigma) was added to the media of MDCK Fucci cells 

24h before the beginning of the experiment (in the cell culture flask). The patterning procedure 

was identical to that of control cells but cells were seeded with double the density to 

compensate for the lack of proliferation during 4h seeding. To quantify the number of nuclei 

we used a custom-made MATLAB software based on a sequential thresholding of the image 

to capture nuclei with distinct levels of intensity. Cell area was computed by dividing the 

monolayer area by the number of nuclei. 

 

Time lapse imaging 

 

Multidimensional acquisition routines were performed on an automated inverted microscope 

(Nikon Eclipse Ti) equipped with thermal control, CO2 and humidity control using 

MetaMorph/NIS Elements imaging software.  

 

Spinning-Disk imaging 

 

An inverted Nikon microscope with a spinning disk confocal unit (CSU-WD, Yokogawa) and 

Zyla sCMOS camera (Andor) was used for high-resolution image acquisition. 

 

Traction microscopy 

 

Traction forces were computed using Fourier transform based traction microscopy with a finite 

gel thickness28. Gel displacements between any experimental time point and a reference image 

obtained after monolayer trypsinization were computed using home-made particle imaging 

velocimetry software28.  

 

Monolayer Stress microscopy 

 

Monolayer stresses were computed using monolayer stress microscopy29. Monolayer stress 

microscopy uses traction forces and force balance demanded by Newton’s laws to map the two-

dimensional stress tensor σ in the monolayer. By rotating these stress components at each point 

in the cell sheet, we computed the magnitude of the two principal stress components σmax and 

σmin and their corresponding, mutually perpendicular, principal orientations. For each point in 

the monolayer, we then computed the average normal stress within and between cells defined 

as 𝜎 = (σmax + σmin)/2. This is the value reported in the paper as tension. Boundary conditions 

during migration were those described previously27.  



14 
 

 

Monolayer height measurements 

 

To measure monolayer height while monitoring the state of the cell in the cycle we used a 

MDCK cell line expressing Fucci and CIBN-CAAX-GFP. z-stacks were acquired every 30 min 

using a ×60 oil objective. To image the full width of the monolayer, we tiled 6 fields of view 

in a row at every time point. To compute monolayer height, we first divided the monolayer 

image in adjacent 14x14µm (xy) square regions. We then averaged intensity values in each 

region for each plane, thereby obtaining a profile of intensity in the z-direction. We computed 

the monolayer height as the width at half-maximum of the z profile (that is, half of the distance 

between the maximum intensity and the background level). To report the xz-profile shown in 

Supplementary Fig. 1f we averaged monolayer height in the y direction. The monolayer volume 

was calculated by integrating monolayer height along x and y.  

   

Nucleus and cell shape tracking 

 

To track individual cells within the monolayer a custom-made MATLAB software was used. 

First, the position of the nucleus of interest was acquired manually in the frame before division, 

defined as the last frame in which one single nucleus could be distinguished. Then, proceeding 

backwards in time until the beginning of the cell cycle, each new position of the nucleus was 

obtained by 1) binarizing the images with a threshold (in a small ROI centered at the nucleus), 

2) labeling the binarized nucleus and, 3) overlapping the labeled image with a dilatation of the 

nucleus of interest in the previous analyzed timepoint. The nucleus overlapping with the 

dilatation was defined as the nucleus of interest and its position and mask were recorded. 

Finally, using the same method but this time proceeding forward in time, and starting again in 

the division frame, the tracks of the two daughter nuclei during the first hour after division 

were obtained. In this case, each new region was centered between the two nuclei. After 

obtaining the nuclei tracks, a custom-made MATLAB software was used to manually draw the 

shapes of the cells during the cell cycle.  

 

To define the G1-S transition timepoint, the mean fluorescence intensity in the nucleus was 

computed. Red and green channels were normalized separately (by the mean of top 15% 

intensity values) and the transition timepoint was defined as the timepoint in which the two 

curves intersected. Using this procedure, 40 complete cycles (20 for the soft gels and 

fibronectin experiments) were analyzed per experiment. All analyzed cells started the cycle in 

the first 6h of experiment.  

 

The nuclear and cell shape masks were used to compute the area and area growth rate of the 

nucleus and the cell.  

 

Averaging cell properties 

 

All properties at each timepoint were obtained from the nuclear and cell shape masks. The 

initial areas 𝐴0
𝑐  and 𝐴0

𝑛 were defined as the area 60 min after the beginning of the cycle. For the 

prediction of 𝑡𝑆𝐺2𝑀 initial areas were defined as the area at the G1-S transition. 

 

We defined the area growth rate at each time point i as: 

 

�̇�𝑖 =  
𝐴𝑖+1 − 𝐴𝑖

𝑡𝑖+1 − 𝑡𝑖
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Traction and tension at each time point were defined as the mean of these properties over the 

cell area. For fibronectin coating and soft gel experiments, cell properties were averaged on a 

circle of 24µm radius centered at the cell nucleus.  

 

Linear model-selection analysis  

 

To establish which properties are more predictive of the duration of the G1 and the S-G2-M 

phases, we carried out a systematic model comparison. In particular, we considered all models 

that are linear in one of the measured properties or in a product between two properties. We 

also explored all models that are multilinear on any pairwise combination of single properties 

and property products. To estimate the plausibility of each model the Bayesian information 

criterion was used (BIC)34. All models were compared to the most plausible one (the model 

with lowest BIC) using the Bayes factor, which is given by33: 

 

BF(A, B) = p(D|A) / p(D|B)  ~= exp [(BIC(B) - BIC(A)) / 2], 

 

where p(D|A) is the probability of the observed data given model A. Therefore, the Bayes factor 

gives the ratio between model plausibility (when all models are considered a priori equally 

plausible). For example, if the Bayes factor of a model B with respect to the most plausible 

model A is 10, this means that A is 10 times more likely than B. 

 

Tension and Traction ratios 

 

To average forces in the three ROIs for each timepoint and cell, a custom-made MATLAB 

software was used. To average across the cell population, the time axis of each cell was linearly 

compressed or expanded so that the duration of G1 and S-G2-M was the average of all cells 

(G1 duration of 760min and S-G2-M duration of 530min). The ratios were then calculated for 

each cell and averaged afterwards. 

 

Optogenetic experiments 

 

The optogenetic system used here was described previously35. Briefly, the system is based on 

overexpressing a RhoA activator (DHPH domain of ARHGEF11) fused to a light-sensitive 

protein CRY2-mcherry. The resulting protein is called optoGEF-RhoA. Upon illumination, 

CRY2 changes conformation and binds its optogenetic partner CIBN.  

 

To increase contractility, optoGEF-RhoA was forced to localize at the cell surface, where 

RhoA is located, by targeting CIBN-GFP to the plasma membrane. To decrease contractility, 

optoGEF-RhoA was forced to localize at the mitochondria, by targeting CIBN-GFP to the 

mitochondrial membrane. Optogenetic experiments were performed using a stable MDCK 

cell line35.  

 

For experiments, the gels were air dried for 15 minutes after the media was removed. A drop 

of 10µl containing a mixture of 90% optogenetic cells and 10% Fucci cells was deposited on 

top of the gel. After 30 min, 2ml of media were added and the cells were left in the incubator 

overnight. The following day, dividing Fucci cells surrounded by optogenetic cells were 

imaged, both in activation and in control conditions. A laser of 488 nm was used to activate 

optogenetic cells. In the control case, time lapse images were acquired using only brightfield 

(green light filtered) and 561 nm laser. Cells were imaged for eight hours with time intervals 
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of 4 min. Experiments were performed using a spinning disk microscope using a ×100 

objective. Rounding time was defined as time from nuclear envelope breakdown to anaphase. 

 

Single Cell experiments 

 

Single cell imaging was acquired with ×40 objective with a timeframe of 6min. 

 

Lifeact imaging experiments 

 

LifeAct experiments were performed micropatterning the cells with the same protocol than the 

Fucci expansions but with a mixture of 80% LifeAct-GFP and 20% LifeAct-RFP cells instead. 

The interval between image acquisition was 5 min and a typical experiment lasted 15 h. Images 

were acquired with ×40 objective. Shapes of dividing cells were acquired manually with a 

custom-made MATLAB software. Radial traction and green fluorescence were then averaged 

over time by using these masks. High resolution LifeAct images were acquired with a Spinning 

Disk microscope and a ×60 objective.  

 

Cadherin imaging experiments 

 

Cadherin experiments were performed in glass, with Spinning Disk and ×60 objective. 

 

Statistics and Reproducibility 

 

Statistical comparisons were performed by using non-parametric Mann-Whitney’s test or 

Bayesian analysis as indicated in each figure caption. All observations were reproducible and 

the number of experimental repeats is indicated in each figure caption. 

 

Data availability 

The data that support the findings of this study are available from the corresponding authors 

on reasonable request. 

Code availability 

Code used in this article can be made available upon request to the corresponding author. 

 

 



a

100μm

GemininCdt1

0

600

-600

t = 33h
t = 0h

Tr
ac

tio
n 

Tx

Pa

Te
ns

io
n 

σ 

0

200

-200

Pa

400

b

c

d e f

g h i
Time (h)

Te
ns

io
n
σ 

(P
a)

0 3 6 9 12 15 18 21 24 27 30
100

200

300

400

500

600 Cdt1
GemininG1 S-G2-M

10 20 30 40 50 60 70 80 90
100110120

Nu
cle

ar
 in

te
ns

ity
 (n

or
m

.)

20304050607080901001101200 3 6 9 12 15 18 21 24 27 30
200
300
400
500
600
700
800

Time (h)

Tr
ac

tio
n 

|T
| 

(P
a)

j k

t = 33h

t = 33h

Control G1/S arrest

Control
G1/S arrest

0 4 8 12 16 20 24 28 32 36

100
200
300
400
500
600
700

Time (h)

N
um

be
r n

uc
le

i

Control
G1/S arrest

0 4 8 12 16 20 24 28 32 36

800
1200
1600
2000
2400
2800

Time (h)

(µ
m

2 )
Ce

ll 
ar

ea

Control
G1/S arrest

Time (h)

 (m
m

2 )

0 4 8 12 16 20 24 28 32 36
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
on

ol
ay

er
 a

re
a

0 2 4 6 8 101214161820
0.0

0.2
0.4
0.6
0.8
1.0
1.2

Time (h)

Figure 1



cστ
nAτ

nAτ
cA0

cAτ
cAτ

nA0
cTτ

100

101

102

Ba
ye

s f
ac

to
r G

1
. .

nAG1
cσG1

cAG1
nA0

cTG1
nAG1

cA0
cAG1

100

101

102

103

104

105

106

Ba
ye

s f
ac

to
r S

G2
M

. .

h i
G1 (h) S-G2-M (h)

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

r (Pearson’s correlation coe�cient)

AG1

AG1

AG1

AG1

σG1

TG1

S-G2-M (h)

Aτ

A0

AG1

Aτ

A0

AG1

Aτ

AG1

Aτ

AG1

στ

σG1

Tτ

TG1

ce
ll 

ar
ea

nu
cl

ea
r a

re
a

fo
rc

es

.

.

.

.

.

.0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

r (Pearson’s correlation coe�cient)

m n o

c
σ τ

·
c

A τ
c

σ τ
·

c
A 0

c
σ τ

·
c

A τ
c

σ τ
·

n
A τ

c
σ τ

·
n

A τ c
T τ

·
c

A τ
c

T τ
·

n
A τ

c
T τ

·
c

A 0
c

T τ
·

c
A τ

c
σ τ

·
n

A 0

100

101

102

103

104

Ba
ye

s f
ac

to
r G

1

. . .

p

Aτ

A0

ASG2M

Aτ

A0

ASG2M

Aτ

ASG2M

Aτ

ASG2M

στ

σSG2M

Tτ

TSG2M

ce
ll 

ar
ea

nu
cl

ea
r a

re
a

fo
rc

es

.

.

.

.

j

k

l

d

G1
SG2M

200

400

600

800

1000

1200

1400 *

Ce
ll 

ar
ea

 8
.5

h 
(μ

m
2 )

f

G1
SG2M

0

100

200

300

400

500

600 *

Te
ns

io
n 

σ 
 8

.5
h 

(P
a)

g

G1
SG2M

200

400

600

800

1000

ns

Tr
ac

tio
n 

T 
 8

.5
h 

(P
a)

a

cell cycle G1 SG2M
4
8

12
16
20
24
28
32

D
ur

at
io

n 
(h

)

0 3 6 9 12 15 18 21 24
0

200
400
600
800

1000
1200
1400
1600

Time (h)

mean

cell2G1

cell1G1
cell1SG2M

cell2SG2M

c

Ce
ll 

ar
ea

 (μ
m

2 )

0 100 200 300 400 500 600

8

12

16

20

24

cσG1(Pa)

G1
 d

ur
at

io
n 

(h
)

0 25 50 75 100 125 150

8

12

16

20

24

cAG1 (µm2/h)

G1
 d

ur
at

io
n 

(h
)

0 25 50 75 100 125 150

6

9

12

15

cAG1 (µm2/h)

SG
2M

 d
ur

at
io

n 
(h

)

100 200 300 400 500 600

6

9

12

15

cσG1 (Pa)

SG
2M

 d
ur

at
io

n 
(h

)

b

Ce
ll 

ar
ea

 (μ
m

2 )

0h
+2h

G1-S 
-3h

fin
al

0
300
600
900

1200
1500
1800
2100

e

G1
SG2M

40

80

120

160

200

240 **

N
uc

le
ar

 a
re

a 
8.

5h
 (μ

m
2 )

. .

c

c

c

c

n

n

c

c

c

c

c

c

c

c

c

n

n

n

n

n

n

n

n

n

n

c

c

c

c

c

c

c

c

c

q

0.0 0.1 0.2 0.3

8

12

16

20

24

   (µJ)

G1
 d

ur
at

io
n 

(h
)

E τ
c

Figure 2

r

120-285

286-344

347-383

400-483

483-503

511-573

575-633

636-700

703-832

841-1767
-0.8

-0.6

-0.4

-0.2

0.0

       ( µm2)A6h 
c

r (
σ 6h

  vs
  t

G1
)

c



a

100μm

t = 33h
t = 0h

b c d

e f

cσG1(Pa)nAG1 (µm2/h)
.

2.
4 

kP
a

g

100μm

t = 33h
t = 0h

h i j

k l

cσG1(Pa)nAG1 (µm2/h)

Fi
br

on
ec

tin

0 3 6 9 12 15 18 21 24 27
200
400
600
800

1000
1200
1400
1600
1800

Time (h)

Te
ns

io
n
σ

 (P
a)

0 3 6 9 12 15 18 21 24 27
150
200
250
300
350
400
450
500
550

Time (h)

Tr
ac

tio
n 

|T
| 

(P
a)

0 5 10 15 20 25 30

8

12

16

20

24

G
1 

du
ra

tio
n 

(h
)

400 800 1200 1600 2000 2400

8

12

16

20

24

G
1 

du
ra

tio
n 

(h
)

0 3 6 9 12 15 18 21 24 27
100
200
300
400
500
600
700
800
900

Time (h)

Te
ns

io
n
σ

 (P
a)

0 2 4 6 8 10 12

6

9

12

15

18

21

G
1 

du
ra

tio
n 

(h
)

.

cell cycle G1 SG2M
4
8

12
16
20
24
28
32
36

Du
ra

tio
n 

(h
)

0 3 6 9 12 15 18 21 24 27
200
250
300
350
400
450
500
550
600
650

Time (h)

Tr
ac

tio
n 

|T
| 

(P
a)

200 400 600 800 1000 1200
3
6
9

12
15
18
21

G
1 

du
ra

tio
n 

(h
)

cell cycle G1 SG2M
4
8

12
16
20
24
28
32

Du
ra

tio
n 

(h
)

Figure 3



t = 16h

a

c

1
2

3

cell

b

d

σ12
σ13
σ23

anaphaseG1 S

e f

400

300

200

100

0

Tension σ (Pa)

0 2 4 6 8 10 12 14 16 18 20 22

0.8

0.9

1.0

1.1

1.2

Time (h)

Te
ns

io
n
σ i

j

* * *

Figure 4

g h

optoGEF-RhoACIBN-GFP-CAAX 

fucci

90% opto-contract + 10% fucci cells

MDCK fucci

MDCK OptoGEF-Contract

***

control activation

20

40

60

80

Ro
un

di
ng

 ti
m

e (
m

in
)

optoGEF-RhoAMito-CIBN-GFP

fucci

90% opto-relax+ 10% fucci cells

MDCK fucci

MDCK OptoGEF-Relax

***

control activation

20

40

60

80

100

120

Ro
un

di
ng

 ti
m

e 
(m

in
)



0 2 4 6 8 10 12 14 16 18 20 22

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Time (h)
Tr

ac
tio

n 
T i

j

a b

c

200

j

d

outline dividing cell

g

l

Traction |T| (Pa)

900
800
700
600
500
400
300
200

1

2

3

G1 S

T12
T13
T23

anaphase

-1.0 -0.5 0.0 0.5

25

50

75

100

125

150

250

275

300

325

350

375

400

425

Time (h)

Tr
ac

tio
n 

|T
| 

(P
a)

Traction |T| (Pa)
single cell
monolayer

dividing cell

ba
sa

l p
la

ne
m

ed
ia

l p
la

ne
ap

ic
al

 p
la

ne

t = -39min t = 0min t = 12min t = 33min

neighboring cells

ba
sa

l p
la

ne
m

ed
ia

l p
la

ne
ap

ic
al

 p
la

ne

t = -39min t = 0min t = 12min t = 33min

ba
sa

l p
la

ne
m

ed
ia

l p
la

ne
ap

ic
al

 p
la

ne

t = -39min t = 0min t = 12min t = 33min

h

1600
1400
1200
1000
800
600
400

Traction T (Pa)ba
sa

l p
la

ne

t = -39min t = 0min t = 12min t = 33min
k

1.4

2.0-2.0 -1.0 0.0 1.0

1.0

1.1

1.2

1.3

Time(h)

G
FP

 in
te

ns
ity

 (n
or

m
.)

-2.0 -1.0 0.0 1.0 2.0

0

20

40

60

80

100

Time(h)

Tr
ac

tio
n 

T r (P
a)

ba
sa

l p
la

ne
m

ed
ia

l p
la

ne

ECadh RFP ECadh GFP

i

XZ
 p

ro
je

cti
on

e
Time (min) 0-36-48 362412-12

si
ng

le
 c

el
l 1150

950
750
550
350
150

Traction T (Pa)

f

******

Figure 5

*


