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Fixed-angle elastic hadron scattering
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The scattering amplitude in the dual model with Mandelstam analyticity and trajee{s)y= «o— v In[(1
+Bvse—9)/(1+ Bs0)] is studied in the limits,|t| —, s/t=const. By using the saddle point method, a
series decomposition for the scattering amplitude is obtained, with the leading and two subleading terms
calculated explicitly] S0556-282(99)05117-9
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I. INTRODUCTION: WIDE-ANGLE SCATTERING 1 4
IN QCD Al(s,t)=i [T [dx1¢i(x) T({xi}s.0), 2
0i=1

Although attempts to apply perturbative QCD to wide-
angle elastic hadron scattering have been undertaken inV#hereX; represents collectively the fractional momenta of
number of paper§1-10], explicit predictions have been hadroni carried by its valence partons.
available only for elastic processes involving external pho- According to this concept, all of the partons collide in a
tons, such ag+y— hadrons, Compton scattering of had- Small region of the space-time of typical dimensiQn *.
rons, etc. The relevant contribution to the amplitude behaves according
Predictions based on perturbative QCD rest on three pre©o dimensional countingl,2], i.e.,
mises: (1) hadronic interactions become weak at small in-
variant separatiom<A5éD, (2) the perturbative expansion
in a¢(Q) is well defined, and3) factorization, implying that
all effects of collinear singularities, confinement, nonpertur-
bative interactions, and bound state dynamiCS can be iSOIatqgr n partons participating in hard Scatterir’g,representing
at large momentum transfer in terms of {ixeocess indepen-  hadronic mass scales, which make the amplitude dimension-
deny structure function$;,4(x,Q), fragmentation functions |ess.
Dwi(z,Q), or, in the case of exclusive processes, distribu-  An extension of this “single-scattering” scenario is the
tion amplitudesb(s;,Q). Consequently the hadronic scat- (double “independent-scattering” picture, due to Landshoff
tering amplitude takes the form [8], in which two pairs of partons scatter independently off
two scattering centers. According to this picture, the lowest
order diagrams contribute with

2|22
Al(S,t)“i?) f1(sit), (€

A= TT dux @ T00paiQIax). @

2\ (n—m+1)/2—-2
i fm(s/t), (4)

Am(S,t)"“(?

where®(x;,Q) is a universal distribution amplitude which
gives the probability amplitude for finding the valergpg or ~ Wheremis the number of independent scatterings. If so, the
qqq in the hadronic wave function collinear up to the scalemultiple scattering should dominate in the case of wide-

Q=s/2, andT is the hard scattering amplitude for valence angle scattering. _ _
quark collisions. A solution to this problem was pointed out in Ref§]

The technical complication which has made it particularly@nd[11], where it was shown that the Sudakov logarithms
difficult to compute the behavior of hadron-hadron ampli-associated with the rescattering diagrams do not cancel. In
tudes is the possibility of multiple scatterings. The standardhe leading logarithmic approximation they exponentiate to

factorized form for the elastic scattering of hadrdijsis suppress the typical double-scattering contribution by a fac-
tor
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1 Q |1-2cin@n two more subleading terms. Our technique allows further
A~ % , (5)  calculations of still higher orders, but the obtained first three
terms of the series already show a regular trend that may be
interpreted as the expansion in the running coupling constant
g(s)~1/Ins, valid at larges and |t|. This situation takes
r=2c/(1+2c), c=32/(33-2n;) place for any one trajectory with the logarithmic asymptotic.

’ ' The aim of the present paper is twofold. First, by identi-
andn; is the number of flavors. Interestingly, far=3 the  ¥ing the leading term of the asymptotiwide-anglg expan-
power turns out to b€ 38, nearly the same as the dimen- SiON of DAMA with that derived from perturbatlve _QC[.'.'B]
sional counting powe® ~* in the single-scattering scenario. W (entatively assume that DAMA in the wide-angle

Higher order diagrams were calculated, e.g., in Ref. asymptotic region is eguwal.en.t to .the qsymptot]cally free
however, soon it became evident that even the first ordgi€dime in QCD[18]. With this identification in mind, we
QCD correction involves an immense number of Feynmarpalculate within DAMA corrections to the leading term in
diagrams, so further attempts to go beyond the simple quari{'® Nope that their form may give some insight into the rel-
counting rule were abandoned. evant corrections in perturbative QCD that are known to be

It may be that perturbative QCD is not the relevéoitnot ~ Ve'y complicated.
the only physically interestingexpansion of the wide-angle . Cl€arly, the above identity has the chance to be true only
scattering amplitude. Recent developments in M-brases, 1N the vicinity of the wide-angle regioismall distances
e.g., Ref[22]) may open new prospects in the realization of Where perturbative calculations are assumed to be still valid.

a hypothetical duality between small and large distarioes The second aspect is purely phenomenological. Since,
equivalently, large- and small-angle scattefinghe search however, the experimental situation in the wide-angle region

for a relevant expansion parameter is of crucial importanc&/id not change for almost two decades, we are left with the
in this matter. earlier fits to the data.

In this paper we solve an “inverse problem”: we use the _ -6t US now calculate the “perturbative” expansion of
known explicit expression of the dual amplitude with Man- PAMA. We write the elastic scattering amplitude for spin-
delstam analyticit DAMA ), which has correct wide-angle €SS particles in the following symmetric forfa6]:
scaling behavior. By identifying it with that resulting from _ -~ _
the quark counting rules, we then calculate two subleading Alstu)=C(s=WID(s,H) =D(ub], ®
terms in the expansion of the known full dual amplitude andyhereC is a constant and
study the behavior of the resulting series.

Aqep

where

1 X —a(s') 1—x —a(t’)
II. WIDE-ANGLE BEHAVIOR OF THE DUAL AMPLITUDE D(s,t)= fo dx( g) ( 9 ) : @)
WITH MANDELSTAM ANALYTICITY
Heres'=s(1—-x), t'=tx, andg is a dimensionless pa-

Wide-angle scaling behavior within tf8matrix approach . . .
was discussed in ReffL3], where by means of a logarithmic _rameterg>1. Only one leading trajectory was included and

Regge trajectory an interpolation from the “soft” Regge be- it was chosen in a simple, but representative form

havior to the “hard” scaling regime was suggested. The mo- —
tivation of the logarithmic trajectory came from earlier pa- a(s)=ay—yIn m , (8)
pers [14], where a class of dual models requiring a 1+ B1so

logarithmic trajectory was suggested.

The logarithmic asymptotic behavior of the trajectory andwhich accounts both for the threshold and the asymptotic
the large-angle scaling behavior are uniquely related also in ehavior and is nearly linear for very smd|,|s|<s,. For
different class of dual models, called dual amplitudes withsimplicity we have included only the leading trajectories in
Mandelstam analyticgl5,16. The link between this class of both channels: the Pomeron trajectory in thehannel and
models in the scaling limit and the parton model in the infi-the exotic trajectory in the channel. While the parameters
nite momentum frame was studied in REE7]. In all those  of the Pomeron trajectory are well known, only a little is
papers only the leading asymptotis,|t|—, s/t=const)  known about the exotic trajectory. Fortunately, this has no
term was treated. The results of different approaches vary igubstantial effect on our results, since our goal is the func-
such details as the form of the scaling violatiorormally,  tional form of the series and its individual terms rather than
logarithmig, the form of the angular dependentf®), and fits to the data. Given the scarcity of the data and the free-

the way active quarks are counted. dom available in the model, the wide-angle behavior of
In this paper we calculate the subleading terms in thé>)AMA cannot be determined completely. _
preasymptoticlarges and|t|) behavior of DAMA. Since the Let us consider the asymptotic behavior of Eg.in the

model is realistic enough in the sense that it satisfies thémit s,|t|—, s/t=const. For the Regge trajectories we
general requirements of the theofsee Refs[15,16), we have

believe that our result is universal and thus it may be used as

a guide, e.g., in QCD calculations. a(s)=a(0)— %/In 52

Y
i .~ +ims;—5Ins=—a—
Apart from the leading term, we have explicitly calculated m s=-a-h, (9

2 2
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y ¥ t\ oy Substituting the results fdd (s,t) andD(u,t) into Eq.(6)
a(t)=a(0)=3In 52—5"1( - g) —5Ins=—b—A, and changing the variables we get the expression for the full
(10) amplitude as a function of the and ¢ variables[see Eq.
(B14) in Appendix BJ:

with
A(s,0) Cas * f()1(s,0) (18
Sl ~ Sy 1
a=—a(0)+ 2In &~imy, Jyins
¢ where A, N, f(0), I(s,0) are given by the expressions
b=—a(0)+ Z|n 52+ Z|n( _ _) , (B13), (B15—(B17).
2 2 S To summarize, we have expanded the wide-angle scatter-
ing amplitude in a power series of 1dland have evaluated
B\/S—o y explicitly the coefficients of the first two termgeyond the
6=——=, A=7lns. (1)  leading ong
1+ Bso 2
From here ongs,t,u will be dimensionless variables, mea- !ll. COMPARISON WITH THE DATA AND DISCUSSION
sured in units of,. OF THE RESULTS

In this domain the saddle point method can be used to
calculate the integral in Eq.7) [21]. To do this we can
rewrite Eq.(7) in the following form:

New experimental data on wide-angle scattering are not
likely to appear any more because of the simple reason that
as energy increases more particles tend to fly in the forward
L direction and there is no chance to detect, e.g., the proton-
D(s,t)=(2g) 2 b=2 g7 Zif g(u)erMWdu, (120  proton differential cross section at 90° for, say/s
2)-1 >10 GeV. “Wide angles,” of course, extend beyond 90°.
Still the complication due to the huge number of Born dia-
where we have changed the variabléo u, x=(1—u)/2, grams contributing to large-angle exclusive reacti¢fk
and introduced new functions overwhelming the contribution due to the Landshoff pinch
singularity[8], will remain for long topical in this field. We
z 5 1-u 1+u use the data given in the compilation[@0] to fix the scale.
g(w)=(1-u)?1+u)’ex ylnTmT » (13 The errors, quoted in the original papéeee Ref[20] and
references therejpare typically about 10%. This scale is the
_ ) overall normalization factor, the “quark counting power” in
fw=In(1-u", (14 the cross section being set equal Ne=4 in the case of
proton-proton cross sections, in agreement with the data
a=a— Jin g, b=b-— i g. (15 [20,5] (see Fig. 1 _ L
2 2 Our main goal is the behavior of the scaling-violating
corrections to the leading term obeying quark counting rules.
We see now thaf(u) has a sharp maximum at the saddle Figure 2 shows the relative contribution of these terms. We
point uy=0. draw the correction power series:
We quote the explicit expression for the saddle point ex-
pansion in Appendix A. Using formulas from this appendix J(s,0)=]I(s,0)|?
we obtain the power series fdd(s,t) in Appendix B. It

reads REFL(0)/Z(0)] RefL(60)/Z(6)]
~lta— e Cine?
Alsfy In 29 t)(y/Z)In 29
D(st)y~ ——| — = 2
s | s |11(6)/2(9)| o(i) 1
" (yIns)? * A3 19

X[1+hﬂab)+hﬂab)

ylns (ymsﬁ]’ (18

wheref,(6), f,(0), Z(0) are given by expression818)—

(B20). We can see that the corrections are quite large for
whereAq, hy, h, are given by the expressiofiB5), (B8),  small s, especially for angles close to 90°. That is not a
(B9). The expression fob (u,t) can be calculated in a simi- surprise, since the lowest order of our expansion is valid for

lar way [see Eq.(B10) in Appendix BJ. larges (yIng2>1). In the experimental energy interval the
In the kinematical regios, |t| —c, t/s=const we can use corrections give a factor of 4—6 to the cross sections and
the substitutions should not be neglected. This was missed in REfS,16.
Moreover, we find that the corrections are very sensitive to
t~—ssirf(0/2), u~-—scos(6/2). (17)  variations of$ and y.
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FIG. 1. Cross sectiodo/dt for pp—pp scattering at various
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APPENDIX A: COEFFICIENTS IN THE SADDLE POINT
METHOD

In this appendix we present the explicit expression for the
saddle point expansion from Ref19]. Here f®(uy)

=fi, g9 (uo)=g:
! N (u) M(u )\[”
= o)
Jllg(u)e du=e X

where

1

N

T B S
a —_— R—
0 N )\2

(A1)

1
ao= 190, al=Z[gz¢f+ 39112+ okl

1
8= 3510491+ 1093 1h2+ 10024443+ 15024501

center of mass scattering angles. Both axes are in logarithmic scale.

Stars denote the experimental points from R&f)]. The straight

lines correspond to a falloff of 1/s!°. They are calculated accord-

+ 5091411+ 109143102+ 9o s, (A2)

ing to the power series for the scattering amplitude, discussed above 2

[do/dt=47/(s%)?|A(s,6)|?], with the following set of param-
eters: ag=1, N=4,y=2.84 (g=2.9),8=0.05 GeV'!, C=27
X 10" GeV 2, ands,=4m?.
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FIG. 2. The correctiond(s, 6), given by Eq.(19), to the differ-

ential cross sectiodo/dt for pp— pp scattering. We have used the

same values of parameters as in Figa3=1,N=4,y=2.84 (g
=2.9),3=0.05 GeV I, andso=4mi, coming from the compari-
son with the data.

1 .1

U= =t ¢2:_§f3f2 1,
1 5

¢3=[—Zf4f21+1—2f§f22}wf,

1 8
va=| — g fsfy "+ fafaf*— §f§f23} v,

1 7 35
w5=[— g fofa '+ g fsfafs 2+ fify?
385

SO9¢ac-a_
+ 12430

35

g faf3fs 3}//?- (A3)

APPENDIX B: CALCULATIONS OF THE SCATTERING
AMPLITUDE

Using the definitions of functiong(u), f(u), Egs.(13),
(14), we obtain

f2:_2, f3:0, f4:_12, f5:0, f6:_240, (Bl)

go=€""2,  g,=go[(a-b)?—(a+b)+2y(In2-1)],

gs=gola(a—1)(a—2)(a—3)—4a(a—1)(a—2)b
+6a(a—1)b(b—1)—4ab(b—1)(b—2)
+b(b—1)(b—2)(b—3)+12y[(a—b)?
—(a+b)](IN2—1)+12y%(In2—1)2
+2y(61In2-5)}. (B2)

From Egs.(A3), (B1) we get
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3 25
=1 ¥2=0, 3==3, =0, Ys=7.
(B3)
Finally we get
Als—Nl( t)(-ylZ)anQ s
D(s,t)~ - = I(a,b,s), B4
(50 Vylns\ S ( ) (B4)
where
A;=(2g)%%0~7In 52+7|n2+i17y/2\/E (B5)
1 2'
N;=1vyIn2g, (B6)
~ = hi(a,b) hy(ab
IEBe)=| 14 ix2 @D gy
vIlns (yIns)?

Coefficients h;(a,b), h,(a,b) are calculated from Egs.
(A2), (B2), (B3):

— 3
hl(a,b)=—(z—zg—;0), (B8)
~~ (25 g, 150,
5[ o (89

The expression foD(u,t) can be calculated in a similar
way. It turns out to be

AZS—Nl(ut) (—¥/2)in2g

D(u,t)~ — I(c,b,s), (B10
O b (&hs), (B10
where
_ 2a—y|n52+y|n2\/E
A,=(29)%*0 >
AP R Yz Yl YUY
c=c 2Ing— a(0)+2In6+2In( s) 2Ing.

(B11)
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Substituting Eqs(B4) and (B10) into Eq. (6) we get the
expression for the full amplitude:

—N; t)(—y/Z)InZg

S— _ i /2(__
\/m(s U)SO[(Zg) v s

) (—7y/2)In 29

A
A(s,t,u)~C—
So

- tu
xl(a,b,s)—(—

SZ

a
A:(Zg)Za(O)—yln §2+y|n2\/;50.

In the kinematical regios, |t|—«, t/s=const we can use
the substitutiong17). So the expression for the scattering
amplitude as a function of and ¢ appears to be

|(E,E,s)] ,  (B12
where

(B13)

—N
A(s,0)~C\/;I_nSf(0)I(s,0), (B14)
where

N=N;-1=vyIln2g—1, (B15)

0 0 —yInZQ
f(9)= 1+co§§)(sin§) Z(6), (B16)

f1(0) f2(0)
I(S’Q)ZHZ(é’)ylns Z(6)(yIns)?’ (B17)

f1(0)= hl(a,B)(Zg)i myl2_ hl(E.B)(Zg) ~yIncos(o/2)

(B19)

f2(6)=hy(3,B)(20) "2~ hy(€B) (2g) 70,
(B19)
Z( e)z(zg)iwy/Z_(Zg)—yln COS(0/2), (BZO)

T Yins2s L
b= a(0)+2In6+2In

sinz(g> } — %In g, (B21)

~__ Y52
c= a(0)+2In5+2In

co§<g) } - %In g. (B22)
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