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Fixed-angle elastic hadron scattering
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The scattering amplitude in the dual model with Mandelstam analyticity and trajectorya(s)5a02g ln@(1
1bAs02s)/(11bAs0)# is studied in the limits,utu→`, s/t5const. By using the saddle point method, a
series decomposition for the scattering amplitude is obtained, with the leading and two subleading terms
calculated explicitly.@S0556-2821~99!05117-6#
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I. INTRODUCTION: WIDE-ANGLE SCATTERING
IN QCD

Although attempts to apply perturbative QCD to wid
angle elastic hadron scattering have been undertaken
number of papers@1–10#, explicit predictions have bee
available only for elastic processes involving external p
tons, such asg1g→ hadrons, Compton scattering of ha
rons, etc.

Predictions based on perturbative QCD rest on three
mises: ~1! hadronic interactions become weak at small
variant separationr !LQCD

21 , ~2! the perturbative expansio
in as(Q) is well defined, and~3! factorization, implying that
all effects of collinear singularities, confinement, nonpert
bative interactions, and bound state dynamics can be isol
at large momentum transfer in terms of the~process indepen
dent! structure functionsGi /H(x,Q), fragmentation functions
DH/ i(z,Q), or, in the case of exclusive processes, distrib
tion amplitudesFH(si ,Q). Consequently the hadronic sca
tering amplitude takes the form

A5E )
H

fH~xi ,Q!T~xi ,pH ;Q!@dxi #, ~1!

whereF(xi ,Q) is a universal distribution amplitude whic
gives the probability amplitude for finding the valenceqq̄ or
qqq in the hadronic wave function collinear up to the sca
Q5As/2, andT is the hard scattering amplitude for valen
quark collisions.

The technical complication which has made it particula
difficult to compute the behavior of hadron-hadron amp
tudes is the possibility of multiple scatterings. The stand
factorized form for the elastic scattering of hadrons$i% is
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A1~s,t !5E
0

1

)
i 51

4

@dxi #f i~xi !T~$xi%,s,t !, ~2!

where xi represents collectively the fractional momenta
hadroni carried by its valence partons.

According to this concept, all of the partons collide in
small region of the space-time of typical dimensionQ21.
The relevant contribution to the amplitude behaves accord
to dimensional counting@1,2#, i.e.,

A1~s,t !;S m2

s D n/222

f 1~s/t !, ~3!

for n partons participating in hard scattering,m representing
hadronic mass scales, which make the amplitude dimens
less.

An extension of this ‘‘single-scattering’’ scenario is th
~double! ‘‘independent-scattering’’ picture, due to Landsho
@8#, in which two pairs of partons scatter independently
two scattering centers. According to this picture, the low
order diagrams contribute with

Am~s,t !;S m2

s D (n2m11)/222

f m~s/t !, ~4!

wherem is the number of independent scatterings. If so,
multiple scattering should dominate in the case of wid
angle scattering.

A solution to this problem was pointed out in Refs.@5#
and @11#, where it was shown that the Sudakov logarithm
associated with the rescattering diagrams do not cance
the leading logarithmic approximation they exponentiate
suppress the typical double-scattering contribution by a f
tor

exp@2const3 ln Q2 ln~ ln Q2!#,

characteristic of the Sudakov suppression in QCD.
More quantitatively@12#,
©1999 The American Physical Society03-1
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A2;
1

Q4 S Q

LQCD
D 122c ln(1/r )

, ~5!

where

r 52c/~112c!, c532/~3322nf !,

andnf is the number of flavors. Interestingly, fornf53 the
power turns out to beQ23.8, nearly the same as the dime
sional counting powerQ24 in the single-scattering scenario

Higher order diagrams were calculated, e.g., in Ref.@9#;
however, soon it became evident that even the first or
QCD correction involves an immense number of Feynm
diagrams, so further attempts to go beyond the simple qu
counting rule were abandoned.

It may be that perturbative QCD is not the relevant~or not
the only physically interesting! expansion of the wide-angl
scattering amplitude. Recent developments in M-branes~see,
e.g., Ref.@22#! may open new prospects in the realization
a hypothetical duality between small and large distances~or,
equivalently, large- and small-angle scattering!. The search
for a relevant expansion parameter is of crucial importa
in this matter.

In this paper we solve an ‘‘inverse problem’’: we use t
known explicit expression of the dual amplitude with Ma
delstam analyticity~DAMA !, which has correct wide-angl
scaling behavior. By identifying it with that resulting from
the quark counting rules, we then calculate two sublead
terms in the expansion of the known full dual amplitude a
study the behavior of the resulting series.

II. WIDE-ANGLE BEHAVIOR OF THE DUAL AMPLITUDE
WITH MANDELSTAM ANALYTICITY

Wide-angle scaling behavior within theS-matrix approach
was discussed in Ref.@13#, where by means of a logarithmi
Regge trajectory an interpolation from the ‘‘soft’’ Regge b
havior to the ‘‘hard’’ scaling regime was suggested. The m
tivation of the logarithmic trajectory came from earlier p
pers @14#, where a class of dual models requiring
logarithmic trajectory was suggested.

The logarithmic asymptotic behavior of the trajectory a
the large-angle scaling behavior are uniquely related also
different class of dual models, called dual amplitudes w
Mandelstam analytics@15,16#. The link between this class o
models in the scaling limit and the parton model in the in
nite momentum frame was studied in Ref.@17#. In all those
papers only the leading asymptotic (s,utu→`, s/t5const)
term was treated. The results of different approaches var
such details as the form of the scaling violation~normally,
logarithmic!, the form of the angular dependencef (u), and
the way active quarks are counted.

In this paper we calculate the subleading terms in
preasymptotic~larges andutu) behavior of DAMA. Since the
model is realistic enough in the sense that it satisfies
general requirements of the theory~see Refs.@15,16#!, we
believe that our result is universal and thus it may be use
a guide, e.g., in QCD calculations.

Apart from the leading term, we have explicitly calculat
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two more subleading terms. Our technique allows furth
calculations of still higher orders, but the obtained first thr
terms of the series already show a regular trend that ma
interpreted as the expansion in the running coupling cons
g(s);1/lns, valid at larges and utu. This situation takes
place for any one trajectory with the logarithmic asymptot

The aim of the present paper is twofold. First, by iden
fying the leading term of the asymptotic~wide-angle! expan-
sion of DAMA with that derived from perturbative QCD@5#
we tentatively assume that DAMA in the wide-ang
asymptotic region is equivalent to the asymptotically fr
regime in QCD@18#. With this identification in mind, we
calculate within DAMA corrections to the leading term
the hope that their form may give some insight into the r
evant corrections in perturbative QCD that are known to
very complicated.

Clearly, the above identity has the chance to be true o
in the vicinity of the wide-angle region~small distances!,
where perturbative calculations are assumed to be still va

The second aspect is purely phenomenological. Sin
however, the experimental situation in the wide-angle reg
did not change for almost two decades, we are left with
earlier fits to the data.

Let us now calculate the ‘‘perturbative’’ expansion
DAMA. We write the elastic scattering amplitude for spin
less particles in the following symmetric form@16#:

A~s,t,u!5C~s2u!@D~s,t !2D~u,t !#, ~6!

whereC is a constant and

D~s,t !5E
0

1

dxS x

gD 2a(s8)S 12x

g D 2a(t8)

. ~7!

Here s85s(12x), t85tx, and g is a dimensionless pa
rameter,g.1. Only one leading trajectory was included an
it was chosen in a simple, but representative form

a~s!5a02g lnS 11bAs02s

11bAs0
D , ~8!

which accounts both for the threshold and the asympt
behavior and is nearly linear for very smallusu,usu!s0. For
simplicity we have included only the leading trajectories
both channels: the Pomeron trajectory in thet channel and
the exotic trajectory in thes channel. While the parameter
of the Pomeron trajectory are well known, only a little
known about the exotic trajectory. Fortunately, this has
substantial effect on our results, since our goal is the fu
tional form of the series and its individual terms rather th
fits to the data. Given the scarcity of the data and the fr
dom available in the model, the wide-angle behavior
DAMA cannot be determined completely.

Let us consider the asymptotic behavior of Eq.~7! in the
limit s,utu→`, s/t5const. For the Regge trajectories w
have

a~s!5a~0!2
g

2
ln d21 ip

g

2
2

g

2
ln s52a2l, ~9!
3-2
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a~ t !5a~0!2
g

2
ln d22

g

2
lnS 2

t

sD2
g

2
ln s52b2l,

~10!

with

a52a~0!1
g

2
ln d22 ip

g

2
,

b52a~0!1
g

2
ln d21

g

2
lnS 2

t

sD ,

d5
bAs0

11bAs0

, l5
g

2
ln s. ~11!

From here on,s,t,u will be dimensionless variables, mea
sured in units ofs0.

In this domain the saddle point method can be used
calculate the integral in Eq.~7! @21#. To do this we can
rewrite Eq.~7! in the following form:

D~s,t !5~2g!2a2b22lgg ln 2
1

2E21

1

g~u!el f (u)du, ~12!

where we have changed the variablex to u, x5(12u)/2,
and introduced new functions

g~u!5~12u! ã~11u! b̃ expS g ln
12u

2
ln

11u

2 D , ~13!

f ~u!5 ln~12u2!, ~14!

ã5a2
g

2
ln g, b̃5b2

g

2
ln g. ~15!

We see now thatf (u) has a sharp maximum at the sadd
point u050.

We quote the explicit expression for the saddle point
pansion in Appendix A. Using formulas from this append
we obtain the power series forD(s,t) in Appendix B. It
reads

D~s,t !'
A1s2g ln 2g

Ag ln s
S 2

t

sD
(2g/2)ln 2g

3H 11
h1~ ã,b̃!

g ln s
1

h2~ ã,b̃!

~g ln s!2J , ~16!

whereA1 , h1 , h2 are given by the expressions~B5!, ~B8!,
~B9!. The expression forD(u,t) can be calculated in a simi
lar way @see Eq.~B10! in Appendix B#.

In the kinematical regions,utu→`, t/s5const we can use
the substitutions

t'2s sin2~u/2!, u'2s cos2~u/2!. ~17!
11600
to

-

Substituting the results forD(s,t) andD(u,t) into Eq.~6!
and changing the variables we get the expression for the
amplitude as a function of thes and u variables@see Eq.
~B14! in Appendix B#:

A~s,u!'
CAs2N

Ag ln s
f ~u!I ~s,u!, ~18!

where A, N, f (u), I (s,u) are given by the expression
~B13!, ~B15!–~B17!.

To summarize, we have expanded the wide-angle sca
ing amplitude in a power series of 1/lns and have evaluated
explicitly the coefficients of the first two terms~beyond the
leading one!.

III. COMPARISON WITH THE DATA AND DISCUSSION
OF THE RESULTS

New experimental data on wide-angle scattering are
likely to appear any more because of the simple reason
as energy increases more particles tend to fly in the forw
direction and there is no chance to detect, e.g., the pro
proton differential cross section at 90° for, say,As
.10 GeV. ‘‘Wide angles,’’ of course, extend beyond 90
Still the complication due to the huge number of Born d
grams contributing to large-angle exclusive reactions@5#,
overwhelming the contribution due to the Landshoff pin
singularity @8#, will remain for long topical in this field. We
use the data given in the compilation of@20# to fix the scale.
The errors, quoted in the original papers~see Ref.@20# and
references therein!, are typically about 10%. This scale is th
overall normalization factor, the ‘‘quark counting power’’ i
the cross section being set equal toN54 in the case of
proton-proton cross sections, in agreement with the d
@20,5# ~see Fig. 1!.

Our main goal is the behavior of the scaling-violatin
corrections to the leading term obeying quark counting ru
Figure 2 shows the relative contribution of these terms.
draw the correction power series:

J~s,u!5uI ~s,u!u2

'112
Re@ f 1~u!/Z~u!#

g ln s
12

Re@ f 2~u!/Z~u!#

~g ln s!2

1
u f 1~u!/Z~u!u2

~g ln s!2
1OS 1

l3D , ~19!

where f 1(u), f 2(u), Z(u) are given by expressions~B18!–
~B20!. We can see that the corrections are quite large
small s, especially for angles close to 90°. That is not
surprise, since the lowest order of our expansion is valid
larges (g ln s/2@1). In the experimental energy interval th
corrections give a factor of 4–6 to the cross sections
should not be neglected. This was missed in Refs.@15,16#.
Moreover, we find that the corrections are very sensitive
variations ofb andg.
3-3



y
v

te

fre

N

the

ca

-
bo

e

FIORE, JENKOVSZKY, MAGAS, AND PACCANONI PHYSICAL REVIEW D60 116003
ACKNOWLEDGMENTS

V.K.M. is thankful for the hospitality extended to him b
the Bogolyubov Institute for Theoretical Physics in Kie
where part of this work was done. This work was suppor
in part by the Research Council of Norway~programs for
nuclear and particle physics, supercomputing, and
projects!, in part by the Ministero italiano dell’Universita` e
della Ricerca Scientifica e Tecnologica, and in part by I
TAS grant 93-1867-extension.

FIG. 1. Cross sectionds/dt for pp→pp scattering at various
center of mass scattering angles. Both axes are in logarithmic s
Stars denote the experimental points from Ref.@20#. The straight
lines correspond to a falloff of;1/s10. They are calculated accord
ing to the power series for the scattering amplitude, discussed a
@ds/dt54p/(ss0)2uA(s,u)u2#, with the following set of param-
eters: a051, N54, g52.84 (g52.9),b50.05 GeV21, C52.7
310214 GeV22, ands054mp

2 .

FIG. 2. The correctionsJ(s,u), given by Eq.~19!, to the differ-
ential cross sectionds/dt for pp→pp scattering. We have used th
same values of parameters as in Fig. 1:a051, N54, g52.84 (g
52.9),b50.05 GeV21, ands054mp

2 , coming from the compari-
son with the data.
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APPENDIX A: COEFFICIENTS IN THE SADDLE POINT
METHOD

In this appendix we present the explicit expression for
saddle point expansion from Ref.@19#. Here f (k)(u0)
[ f k , g(k)(u0)[gk :

E
21

1

g~u!el f (u)du5el f (u0)Ap

l Fa01
a1

l
1

a2

l2 1OS 1

l3D G ,

~A1!

where

a05c1g0 , a15
1

4
@g2c1

313g1c1c21g0c3#,

a25
1

32
@g4c1

5110g3c1
3c2110g2c1

2c3115g2c2
2c1

15g1c4c1110g1c3c21g0c5#, ~A2!

c15A 2

2 f 2
, c252

1

3
f 3f 2

21c1
2 ,

c35F2
1

4
f 4f 2

211
5

12
f 3

2f 2
22Gc1

3 ,

c45F2
1

5
f 5f 2

211 f 4f 3f 2
222

8

9
f 3

3f 2
23Gc1

4 ,

c55F2
1

6
f 6f 2

211
7

6
f 5f 3f 2

221
35

48
f 4

2f 2
22

1
385

144
f 3

4f 2
242

35

8
f 4f 3

2f 2
23Gc1

5 . ~A3!

APPENDIX B: CALCULATIONS OF THE SCATTERING
AMPLITUDE

Using the definitions of functionsg(u), f (u), Eqs.~13!,
~14!, we obtain

f 2522, f 350, f 45212, f 550, f 652240, ~B1!

g05eg ln22, g25g0@~ ã2b̃!22~ ã1b̃!12g~ ln 221!#,

g45g0$ã~ ã21!~ ã22!~ ã23!24ã~ ã21!~ ã22!b̃

16ã~ ã21!b̃~ b̃21!24ãb̃~ b̃21!~ b̃22!

1b̃~ b̃21!~ b̃22!~ b̃23!112g@~ ã2b̃!2

2~ ã1b̃!#~ ln 221!112g2~ ln 221!2

12g~6 ln 225!%. ~B2!

From Eqs.~A3!, ~B1! we get

le.

ve
3-4
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c151, c250, c352
3

2
, c450, c55

25

4
.

~B3!

Finally we get

D~s,t !'
A1s2N1

Ag ln s
S 2

t

sD ~2g/2!ln 2g

I ~ ã,b̃,s!, ~B4!

where

A15~2g!2a02g ln d21g ln 21 ipg/2Ap

2
, ~B5!

N15g ln 2g, ~B6!

I ~ ã,b̃,s!5H 11
h1~ ã,b̃!

g ln s
1

h2~ ã,b̃!

~g ln s!2J . ~B7!

Coefficients h1(ã,b̃), h2(ã,b̃) are calculated from Eqs
~A2!, ~B2!, ~B3!:

h1~ ã,b̃!52S 3

4
2

g2

2g0
D , ~B8!

h2~ ã,b̃!5S 25

32
1

g4

8g0
2

15g2

8g0
D . ~B9!

The expression forD(u,t) can be calculated in a simila
way. It turns out to be

D~u,t !'
A2s2N1

Ag ln s
S ut

s2D (2g/2)ln 2g

I ~ c̃,b̃,s!, ~B10!

where

A25~2g!2a02g ln d21g ln 2Ap

2
,

c̃5c2
g

2
ln g52a~0!1

g

2
ln d21

g

2
lnS 2

u

sD2
g

2
ln g.

~B11!
tt.

11600
Substituting Eqs.~B4! and ~B10! into Eq. ~6! we get the
expression for the full amplitude:

A~s,t,u!'C
A

s0

s2N1

Ag ln s
~s2u!s0H ~2g! ipg/2S 2

t

sD
(2g/2)ln 2g

3I ~ ã,b̃,s!2S tu

s2D (2g/2)ln 2g

I ~ c̃,b̃,s!J , ~B12!

where

A5~2g!2a(0)2g ln d21g ln 2Ap

2
s0 . ~B13!

In the kinematical regions,utu→`, t/s5const we can use
the substitutions~17!. So the expression for the scatterin
amplitude as a function ofs andu appears to be

A~s,u!'C
As2N

Ag ln s
f ~u!I ~s,u!, ~B14!

where
N5N1215g ln 2g21, ~B15!

f ~u!5S 11cos2
u

2D S sin
u

2D 2g ln 2g

Z~u!, ~B16!

I ~s,u!511
f 1~u!

Z~u!g ln s
1

f 2~u!

Z~u!~g ln s!2
, ~B17!

f 1~u!5h1~ ã,b̃!~2g! ipg/22h1~ c̃,b̃!~2g!2g ln cos(u/2),
~B18!

f 2~u!5h2~ ã,b̃!~2g! ipg/22h2~ c̃,b̃!~2g!2g ln cos(u/2),
~B19!

Z~u!5~2g! ipg/22~2g!2g ln cos(u/2), ~B20!

b̃52a~0!1
g

2
ln d21

g

2
lnFsin2S u

2D G2
g

2
ln g, ~B21!

c̃52a~0!1
g

2
ln d21

g

2
lnFcos2S u

2D G2
g

2
ln g. ~B22!
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