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J= photoproduction is studied in the framework of the analytic S-matrix theory. The differential and
integrated elastic cross sections for J= photoproduction are calculated from a dual amplitude with
Mandelstam analyticity. It is argued that, at low energies, the background, which is the low-energy
equivalent of the high-energy diffraction, replaces the Pomeron exchange. The onset of the high-energy
Pomeron dominance is estimated from the fits to the data.
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I. INTRODUCTION

J= photoproduction is a unique testing field for dif-
fraction. Most of the theoretical approaches to J= photo-
production are based on the Pomeron or multigluon
exchanges in the t channel of the reaction (for a review
see [1]). A common feature of these models is the uncer-
tainty of the low-energy extrapolation of the high-energy
exchange mechanisms. The missing piece is the low-
energy background contribution, significant between the
threshold and the region of the dominance of the exchange
mechanism, e.g., the onset of the Regge-Pomeron asymp-
totic behavior.

What is the fate of the Regge exchange contribution
when extrapolated to low energies? The answer to this
question was given in the late 1960s by dual models: the
proper sum of direct-channel resonances produces Regge
asymptotic behavior and vice versa. The alternative, i.e.
taking the sum of the two (the so-called interference
model), is incorrect, resulting in double counting.

While the realization of the Regge-resonance duality
was quantified within narrow-resonance dual models, no-
tably in the Veneziano model [2], a similar solution for the
Pomeron ( � diffraction) was not possible in the frame-
work of that model, just because of its narrow-resonance
nature. Another reason for the poor understanding of ‘‘low-
energy diffraction,’’ or the background, is difficulties in its
separation (discrimination and identification), because of
the mixing with the resonance part.

Experimentally, the identification of these two compo-
nents meets difficulties coming from the flexibility of their
parametrizations. The separation of a Breit-Wigner reso-
nance from the background, as well as the discrimination
of some t-channel exchanges with identical flavor content
and C parity, e.g. the Pomeron mixing with the f meson or
the odderon with !, is a familiar problem in experimental
physics.

Now we have an ideal opportunity in hand: J= photo-
production is purely diffractive since resonances here are
not produced and, due to the Okubo-Zweig-Iizuka (OZI)
rule [3], no flavor (valence quarks) can be exchanged in the
t channel. The derivation of the OZI rule is based on simple
quark diagrams and they are closely related to the so-called
duality quark diagrams, to be discussed in the next section.

In the next section we shortly remind the reader about
the basics of the two-component duality. In Sec. III a dual
model applicable to both the diffractive and nondiffractive
(resonance) components of the amplitude is introduced. Its
application to J= photoproduction is presented in Sec. IV.
The onset of the Regge asymptotic behavior is shown in
Sec. V, where various Pomeron trajectories are confronted.
A short summary of the paper is given in Sec. VI.

II. TWO-COMPONENT DUALITY

According to our present knowledge about two-body
hadronic reactions, two distinct classes of reaction mecha-
nisms exist.

The first one includes the formation of resonances in the
s channel and the exchange of particles, resonances, or
Regge trajectories in the t channel. The low-energy reso-
nance behavior and the high-energy Regge asymptotics are
related by duality, illustrated in Fig. 1(a), which at Born
level, or, alternatively, for tree diagrams, mathematically
can be formalized in the Veneziano model, which is a
combination of Euler Beta functions [2].

The second class of mechanisms does not exhibit reso-
nances at low energies and its high-energy behavior is
governed by the exchange of a vacuum Regge trajectory,
the Pomeron, with an intercept equal to or slightly greater
than 1. Harari and Rosner [4] hypothesized that the low-
energy nonresonating background is dual to the high-
energy Pomeron exchange, or diffraction. In other words,
the low-energy background should extrapolate to high-
energy diffraction in the same way as the sum of narrow
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resonances produces Regge behavior. However, contrary to
the case of narrow resonances, the Veneziano amplitude,
by construction, cannot be applied to (infinitely) broad
resonances. This becomes possible in a generalization of
narrow-resonance dual models called dual amplitudes with
Mandelstam analyticity (DAMA), allowing for (infinitely)
broad resonances [5], or the background.

Duality has an elegant interpretation in terms of quark-
partons, called dual quark diagrams (Figs. 1 and 2). Theses
diagrams can be deformed by conserving their topology as
shown in Fig. 1(b), where direct-channel resonances cor-
respond to the quark box squeezed in the horizontal direc-
tion and Regge exchange corresponds to squeezing it
vertically.

Resonances can be formed only in nonexotic channels,
made of a quark and antiquark pair (meson) or three quarks
(baryon), as e.g. in the ��p channel, shown in Fig. 1(b).

Resonances cannot be produced in exotic channels, e.g. in
proton-proton scattering (a two-baryon state) or in K�p
scattering, while p �p and K�p are nonexotic and exhibit
observable resonances. According to the two-component
duality hypotheses [4], the nonresonating direct-channel
background is dual to a Pomeron exchange. By drawing a
duality quark diagram, it is easy to see that, by the OZI
rule, a quark-antiquark pair cannot be exchanged in the t
channel of an exotic reaction. The interaction can be
mediated by multigluon (Pomeron) exchange, as illustrated
in Fig. 2 for J= -p scattering.

The above simple rules are confirmed experimentally:
total cross section of pp andK�p scattering exhibits a rich
resonance structure (nonexotic channels) and a rapid de-
crease at high energies due to the decreasing contribution
from subleading Reggeons, while p �p and K�p total cross
sections are nearly flat due to the nonresonant low-energy
background, dual to the high-energy Pomeron exchange—
both being of diffractive nature. The above rules are not
exact due to the presence of mixed states, violation of
exchange degeneracy of t channel trajectories, unitarity
corrections (nonplanar diagrams), etc. These effects are
less important in J= -p scattering.

The two-component dual picture of hadronic dynamics
is summarized in Table I.

III. DUAL MODEL

Dual models with Mandelstam analyticity [6] appeared
as a generalization of narrow-resonance (e.g. Veneziano)
dual models, intended to overcome the manifestly nonun-
itarity of the latter. Contrary to narrow-resonance dual
models, DAMA requires nonlinear, complex trajectories.
This property allows for the presence in DAMA of finite-
width resonances and a nonvanishing imaginary part of the
amplitude. The maximal number of direct resonances is
correlated with the maximal value of the real part of the
relevant trajectory or, alternatively, with the mass of its
heaviest threshold. An extreme case is when the real part of
the trajectory terminates below the spin of the lowest
(s-channel) resonance, called ‘‘super-broad-resonance ap-
proximation’’ [5], in contrast with the narrow-resonance
approximation, e.g., of the Veneziano amplitude. The re-
sulting scattering amplitude can describe the nonresonat-
ing direct-channel background, dual to the Pomeron
exchange in the t channel. The dual properties of this
construction were studied in Ref. [7].

J/Ψ −

g g

p(uud)

(cc)

FIG. 2 (color online). Duality quark diagram for elastic J= -p
scattering.

TABLE I. Two-component duality.

ImA�a� b! c� d� � R Pomeron

s channel
P
ARes Nonresonant background

t channel
P
ARegge Pomeron (I � S � B � 0; C � �1)

Duality quark diagram Fig. 1(b) Fig. 2
High-energy dependence s��1, �< 1 s��1, � � 1
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b d
= Σ
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FIG. 1 (color online). (a) By duality, the proper sum of reso-
nances in the direct channel produces its asymptotic Regge
behavior and vice versa; (b) the same equality in terms of duality
quark diagrams.
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The �s; t� term (s and t are Mandelstam variables) of a
DAMA [6] is given by

 D�s; t� � c
Z 1

0
dz
�
z
g

�
���s0��1

�
1� z
g

�
��t�t

0�
; (1)

where ��s� and ��t� are Regge trajectories in the s and t
channels, correspondingly; s0 � s�1� z�, t0 � tz; g and c
are parameters, g > 1, c > 0.

For s! 1 and fixed t DAMA, Eq. (1), is Regge be-
haved

 D�s; t� � s�t�t��1: (2)

In the vicinity of the threshold, s! s0,

 D�s; t� �
�������������
s0 � s
p

�const� ln�1� s0=s�	: (3)

The pole structure of DAMA is similar to that of the
Veneziano model except that multiple poles appear on
daughter levels [6].

 D�s; t� �
X1
n�0

gn�1
Xn
l�0

��s�0�s�	lCn�l�t�

�n� ��s�	l�1
; (4)

where Cn�t� is the residue, whose form is fixed by the
t-channel Regge trajectory (see [6])

 Cl�t� �
1

l!
dl

dzl

��
1� z
g

�
��t�tz�

�
z�0
: (5)

The pole term in DAMA is a generalization of the Breit-
Wigner formula, comprising a whole sequence of reso-
nances lying on a complex trajectory ��s�. Such a
‘‘Reggeized’’ Breit-Wigner formula has little practical
use in the case of linear trajectories, resulting in an infinite
sequence of poles, but it becomes a powerful tool if com-
plex trajectories with a limited real part and hence a
restricted number of resonances are used.

A simple model of trajectories satisfying the threshold
and asymptotic constraints is a sum of square roots [6]

 ��s� �
X
i

�i
�������������
si � s
p

: (6)

The number of thresholds included depends on the model.
While the lightest threshold gives the main contribution to
the imaginary part, the heaviest one promotes the rise of
the real part (terminating at the heaviest threshold).

A particular case of the model equation (6) is that with a
single threshold,

 ��s� � ��0� � �1�
�����
s0
p
�

�������������
s0 � s
p

�: (7)

Imposing an upper bound on the real part of this trajectory,
Re��s�< 0, we get an amplitude that does not produce
resonances, since the real part of the trajectory does not
reach n � 0 where the first pole could appear. This is the
ansatz we suggest for the exotic trajectory. The imaginary
part of such a trajectory instead rises indefinitely, contrib-
uting to the total cross section with a smooth background.

The super-broad-resonance approximation [5], in a
sense, is opposite to the narrow-resonance approximation,
typical of the Veneziano model. However, contrary to the
latter, the superbroad resonance approximation allows for a
smooth transition to observable resonances or to the
‘‘Veneziano limit’’ [6]. Dual properties of this model
were studied in [7].

IV. J= PHOTOPRODUCTION

Photoproduction of vector mesons is well described in
the framework of the vector meson dominance (VMD)
model [8], according to which the photoproduction scat-
tering amplitude A is proportional to the sum of the rele-
vant hadronic amplitudes [9] (see also [10]):

 DH��P! VP� �
X
V

e
fV
DH�VP! VP�; (8)

where e is the vector meson-photon coupling constant,
V � �;!;�; J= ; . . . . Within this approximation, photo-
production is reduced to elastic hadron scattering (J= -p
in our case), where the constants e and fV are absorbed by
the normalization factor, to be fitted to the data.

Let us note that VMD at low energies, especially near
the threshold where the photoproduction cross section
should recover from the vanishing mass of the real photon
to the finite mass of the vector meson, is only approximate.
Nevertheless, the calculations presented in the next section
show good agreement with the data starting from the
threshold value. This may be attributed to the particular
kinematics typical of DAMA, see Eq. (12) in the next
section.

Among various vector mesons we choose one, namely,
J= , since, by the OZI rule [3], in J= -p scattering only
the Pomeron trajectory can be exchanged in the t channel.
To a lesser extent, this is true also for the�� p scattering;
however, in the latter case, ordinary meson exchange is
present due to !�� mixing. Heavier vector mesons are
as good as J= -p, but relevant data are less abundant. So,
we find J= -p scattering to be an ideal testing field (filter)
for diffraction: in the direct channel only exotic trajectories
are allowed and they are dual to the exchange of the
Pomeron trajectory. Diffraction can be studied uncontami-
nated by secondary trajectories. This possibility was al-
ready emphasized in earlier publications (see [5,6,11]),
however without fits to the experimental data.

In the present paper we apply DAMA for meson-baryon
scattering [12] with an exotic trajectory in the direct chan-
nel and the Pomeron trajectory in the exchange channel
and calculate the differential and integrated elastic cross
section for J= -p photoproduction. The parameters of the
model are fitted to the experimental data on J= photo-
production. With these parameters we also calculate the
imaginary part of the forward amplitude proportional to the
J= -p total cross section.
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In the framework of the Regge-pole models, J= photo-
production was studied in numerous papers. Apart from the
flexibility inherent in the Regge-pole approach, there is an
ambiguity in the low-energy behavior, below the Regge
asymptotics. Usually, this low-energy domain is either
ignored by a lower bound in the applications, or it is
accounted for by the inclusion of a threshold factor.
While in the first case one eliminates part of the dynamics,
below the (assumed) Regge asymptotic behavior, the sec-
ond option ignores the domain between the threshold and
Regge asymptotic behavior, characterized by resonances in
nondiffractive processes, otherwise mimicked by a direct-
channel exotic contribution.

Following [13], we write the meson-baryon elastic scat-
tering amplitude (with J= photoproduction in mind) as a
combination,

 D�s; t; u� � �s� u��D�s; t� �D�u; t��: (9)

For the exotic Regge trajectory such as (7) the scattering
amplitude is given by a convergent integral, Eq. (9) with
(1), and can be calculated for any s and twithout analytical
continuation, needed otherwise, as discussed in [6].

We use a t-channel Pomeron trajectory in the form

 

�P�t� � �P�0� � �P1 �
����
t1
p
�

������������
t1 � t
p

�

� 2�P2 �t2 �
�������������������
�t2 � t�t2

q
� (10)

with a light (lowest) threshold t1 � 4m2
� and a heavy one

t2, whose value, together with other parameters appearing
in (1), will be fitted to the data (see Table I). Equation (10)
is a generalization of the trajectory with one square root
threshold used in [14]. Throughout this paper ��t� and
�P�t� are identical since in the t channel only the
Pomeron trajectory contributes.

Arguments from the fits in favor of a nonlinear trajectory
can be found also in Ref. [16] as well as in Regge-pole
models [14,15,17] fitting high-energy J= photoproduc-
tion and electroproduction. The behavior of these trajecto-
ries has much in common at small jtj (below, say, 2 GeV2),
whereafter they may strongly deviate. In Sec. VI we com-
pare their behavior and add more comments on that.

The direct-channel exotic trajectory is (see [11])

 �E�s� � �E�0� � �E1 �
�����
s0
p
�

�������������
s0 � s
p

�: (11)

The relevant threshold value is s0 � �mJ= �mP�
2.

Let us remember also that s, t, and u are not independent
variables but they are related by s� t� u �

P
im

2
i �

2m2
J= � 2m2

P.

The integral of Eqs. (1) and (9):

 

D�s; t; u� � c�s� u�
Z 1

0
dz
�
1� z
g

�
��t�t0�

��
z
g

�
���s0��1

�

�
z
g

�
���u0��1

�
; (12)

with exotic trajectory (11), converges for any values of s
and t [18]. So, the procedure of the analytic continuation
introduced in Ref. [6] and inevitable in the case of reso-
nances can be avoided here, enabling numerical calcula-
tions with any desired precision [19].

V. DIFFERENTIAL AND INTEGRATED ELASTIC
CROSS SECTION

To calculate the differential cross section we use the
following normalization:

 

d�
dt
�

1

16���s;mJ= ; mP�
jD�s; t; u�j2; (13)

where ��x; y; z� � x2 � y2 � z2 � 2xy� 2yz� 2xz.
The integrated elastic cross section is defined as

 �el�s� �
Z tthr:
0

�tmax�s=2
dt
d�
dt
: (14)

We have fitted the parameters of the model to the data
[21,22] on the J= photoproduction differential cross sec-
tion in the energy range W between 35 and 260 GeV. The
results of the fits together with the data are shown in Fig. 4
and in the right panel of Fig. 3. The values of the fitted
parameters are quoted in Table II. With these parameters
we have also plotted the differential cross section at lower
energies (left panel of Fig. 3). It is interesting to note that
the shape of the cone (exponential decrease in t), an
important characteristics of diffraction, survives at low
energies.

From the fits to the differential cross section, the inte-
grated elastic cross section was calculated, as shown in
Fig. 5. The calculated curve is fully consistent with the data
in the whole kinematical region. Enlarged is shown the
energy region close to the threshold, where the background
contribution dominates.

The aim of this fit was to demonstrate the viability of the
model covering the whole kinematical region—from the
threshold to highest energies and for all experimentally
measured momenta transfers. Yet, it includes the important
region of ‘‘low-energy’’ diffraction, located between the
threshold and Regge asymptotics and described by a direct-
channel exotic trajectory.
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VI. REGGE ASYMPTOTIC BEHAVIOR AND THE
POMERON TRAJECTORY

The high-energy behavior of the dual amplitude is of
Regge form, by definition. Below we scrutinize the ap-
proach to the Regge asymptotic behavior. The energy, at
which the deviations from Regge behavior become rele-
vant, can be extracted e.g. from the total cross section
calculated from DAMA (with the parameters fitted to the
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FIG. 4 (color online). J= differential cross sections as a function of t in the range of energy W from 100 to 260 GeV.
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FIG. 3 (color online). J= differential cross sections as a function of t in the energy range W between 5 and 80 GeV.

TABLE II. Fitted values of the adjustable parameters.

�E�0� � �1:83 �E1 �0� � 0:01 �GeV�1�

�P�0� � 1:2313 �P1 �0� � 0:134 98 �GeV�1�

�P2 �0� � 0:04 �GeV�2� t2 � 36 �GeV2�

g � 13 629 c � 0:0025

�2=d:o:f: � 0:83
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data) divided by its asymptotic form s�
P�0��1, as shown in

Fig. 6. One can see that the ratio starts to deviate from 1
around 50 GeV, which means that, below this energy down
to the threshold, nonasymptotic, non-Regge effects be-
come important; the contribution of the background is
not negligible anymore.

Beyond 50 GeV DAMA is typically Regge behaved. The
remaining details affecting the Regge behavior are as
follows: the form of the Regge singularity (here, a simple
Regge pole) and the form of the Pomeron trajectory.

In the present paper, to fit the rise of the cross sections
with energy, we used a ‘‘supercritical’’ Pomeron trajectory,

with ��0� � 1:2313 (see Table I). Alternatively, in a dipole
Pomeron model [14,15,17] cross sections rise with energy
logarithmically. In other words, various versions and fits of
Regge-type models give different Pomeron trajectories, as
shown in Fig. 7.

Figure 7 shows, apart from our trajectory (10) with the
parameters presented in Table I,

(1) the simplest linear trajectory [15], denoted in Fig. 7
as ‘‘linear’’:

 �P�t� � 1:0� 0:25 GeV�2 t; (15)

(2) the trajectory of Ref. [16] containing a quadratic
term (denoted ‘‘quadratic’’):

 �P�t� � 1:1� 0:25 GeV�2 t� 0:078 GeV�4 t2;

(16)

(3) the trajectory with one square root threshold [14],
denoted as ‘‘square root’’:
 

�P�t� � 1:0� 0:138 GeV�1 �
����
t1
p
�

������������
t1 � t
p

�;

t1 � 4m2
�: (17)

Although, as can be seen in Fig. 7, the intercepts of these
trajectories are quite different (depending on the type of the
Pomeron singularity), their slopes at small jtj are nearly the
same. The quadratic term in the Pomeron trajectory of [16]
(chain lines in Fig. 7) rises dramatically, thus limiting its
applicability to small values of jtj (actually, it was fitted to
the data at jtj � 2 GeV).
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The large-jtj behavior of the nonlinear trajectories is an
interesting problem by itself. As is well known, wide-angle
scaling behavior of the amplitude requires a logarithmic
asymptotic behavior of the trajectory. More details on this
interesting subject can be found in a recent paper [23] and
references therein.

VII. CONCLUSION

The low-energy part of the present model can serve as a
background both in theoretical and experimental studies.
We know from high-energy diffraction ( � Pomeron) that
it is universal. From the duality arguments one would
assume that the same is true for the background, dual to
the Pomeron. However, the present model of the back-
ground contains a reaction-dependent parameter, namely,
the value of the direct-channel threshold mass violating
this universality. To see the role of the background sepa-
rately, more fits to other reactions will be necessary.

In any case, the model presented in this paper offers a
complementary approach to soft dynamics of strong inter-
actions, namely, to its component dominated by diffrac-
tion, which is beyond the scope of perturbative quantum
chromodynamics.

An important finding of the present paper is the behavior
of the differential cross sections at low energies, calculated
with the parameters fitted to high-energy data and pre-
sented in the left panel of Fig. 3. It shows the existence
of a shrinking forward cone, typical of diffraction, persist-

ing to lowest energies, dominated by the background
(cf. Fig. 6).

The proper parametrization of the background is impor-
tant for most of the reactions, such as pp, p �p, or �p
scattering, and thus the obtained results are universal,
and the calculated background can and should be included
in any model or data analyses at low energies.

In this paper we have used the simple version of DAMA.
The model can be extended to include, for example, a
dipole Pomeron, which can be generated by differentiating
Eq. (1) in ��t�, as was done, e.g., in Ref. [14,15].

Generalizations to nonzero Q2 (electroproduction) of
Regge-pole models can be found in Refs. [14,15,17,23],
and those of DAMA were studied in [24,25]. It should be
noted however that at high Q2 VMD may not be valid
anymore. The ambitious program of a unified description
of soft and hard dynamics, however, is beyond the scope of
the present paper.
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