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1 Introduction 

Classes of students enrolled in primary to secondary schools are constantly formed every academic year across 

the world. From the enormous amount of possible combinations of students across classes that may occur within any 

given school one must be chosen by the respective school authorities so that schooling services can take place. The 

school agents charged with setting up classes – hence of making a final allocation choice – are likely to be constrained 

by specific school and education system legal restrictions, to be pressed more or less vigorously by parents’ 

preferences regarding the classmates they want their own children to be exposed to, and the agents themselves may 

carry different beliefs and different social concerns of what should constitute an optimal allocation of students across 

classes. It is then important to understand whether different class compositions (which reflect the allocation of 

students across classes) cause variations in students’ general cognitive achievement (arguably one of the most sought 

outcomes in any contemporaneous education system) in order to improve the quality of the allocation choice. 

Concretely, in this paper, I address a first question of which class compositions impact 6th grade student general 

achievement and whether these affect heterogeneously different types of students. The first part of the question has 

been analyzed before (e.g. Hoxby, 2000a; Hanushek, Kain, Markman & Rivkin, 2003; and Yao, Ohinata, & Ours, 

2016), however it has been done focusing in just a few specific dimensions of class composition at a time whereas 

in this paper I analyze six different dimensions simultaneously. Moreover, studies of heterogeneous effects are 

scarcer (Burke & Sass, 2013 is a recent reference for heterogeneous effects with respect to the specific previous 

achievement class compositional dimension) and this paper documents heterogeneous effects for all considered 

compositional dimensions. 

It is important to note that the above question refers to general cognitive achievement – the outcome of interest 

is the average of mathematics and reading scores – and not to one particular educational outcome. Clearly, from a 

theoretical point of view and from the perspective of education systems that might compose different classes to 

different subjects, interest should not be discarded regarding the identification of class compositional effects that may 

be particular to a specific type of cognitive skills, say skills associated with the exact sciences from which 

mathematics may be a good representative, or skills related with humanities possibly representable by reading. 

However, given that across the world (and particularly in Portugal), education systems seem to employ as common 

practice the policy of composing classes to be kept constant across disciplines and given that it is reasonable to 

assume that such education systems (and their local school authorities in particular) favor the acquisition of overall 

cognitive skills by the students instead of skills of just one particular type, then the policy implications stemming 

from the identification of class composition effects impacting general cognitive achievement are the most interesting 

to all relevant actors within such education systems. 

Equipped with credible causal estimates of the class composition effects I address a second question in this 

paper that, to the best of my knowledge, has not yet been tackled before, of whether it is possible to find welfare 

improving allocations of students across classes, at a school representative of the system, in comparison to its current 

allocation, as implied by the former estimates. Estimation of class composition effects, even if correctly identified in 

terms of their causality, may not be sufficient to guide class formation policies as the former only possess a ceteris 

paribus interpretation. The moment a reallocation of students is idealized based on a given ceteris paribus effect of 

a class composition dimension, it is uncertain what will be the overall welfare effect on all students of the school 
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because any reallocation exercise has the potential to affect not only those that are reallocated, but, as well, those that 

were and will be exposed to the reallocated ones. 

The answers to both questions complement each other: simulating a reallocation of students across classes 

hinges on the correct identification of the class composition effects, and, taking class composition effects by 

themselves are likely to not allow a clear perception of the overall welfare effect on the entire school-by-grade 

population that will occur once a reallocation of students is idealized. Clarification of this complementarity is 

important from a policy perspective as it enables improving the task of grouping students across classes. 

This work is structured as follows. The next section covers a review of the literature. Section 3 details the 

Portuguese institutional context and the micro dataset. Section 4 specifies the econometric methodology to tackle 

potential endogeneity issues resulting from non-random allocation of students and teachers between schools and 

across classes within each school; it also formalizes the school planner problem and how the representative school is 

chosen. Section 5 presents the estimates of the class compositions effects as well as the school planner results. Finally, 

Section 6 concludes. 

2 Literature Review 

Class compositional effects’ identification is discussed via the education production function framework. Todd 

& Wolpin (2003), Lazear (2001), Pritchett & Filmer (1999), Hanushek (2008), Hanushek (1979), Hanushek (1970), 

and even, to some extent, the earlier Coleman Report (Coleman, Campbell, Hobson, McPartland, Mood, Weinfeld, 

et al., 1966) are examples of both empirical and theoretical studies based on the education production function 

framework which conveys the simple idea that the education outcome of a given student must be the result of a set 

of educational inputs. Simple as it may seem at first sight, the education production function framework also permits 

one to realize that identification of the effects of each input is likely to be hampered by correlations between them. 

In other words, correct identification of inputs’ effects – and of class composition effects in particular – relies on not 

omitting any correlating educational input. In what regards the class composition effects’ identification it is crucial 

to take in account confounding inputs, such as class size (Wößmann & West, 2006 and Bosworth, 2014) and teachers 

– whose within-school allocation may correlate with classes’ characteristics – through teacher observables and 

teacher fixed effects (Hanushek, Kain, Markman & Rivkin 2003; Sund, 2009; and Burke & Sass, 2013). In fact, 

whether Lazear (2001) shows that for given quality level of the classmates (the fraction of time each student is able 

to follow the teacher without disturbing the class) increasing class size exponentially decreases class learning time, 

it can be argued that, similarly, fixing class size and letting the proportion of classmates with a lower level of attention 

to increase the same result should be expected. Adding to this that there is evidence that school authorities act in a 

compensatory way when setting up classes – West & Wößmann (2006) – namely by allocating students with the a 

priori weakest education inputs (low past test scores, accumulated retentions and low-income background) to the 

smallest classes (the authors stress that such within-school compensatory schemes are likely to exist in countries with 

external exams which is the case of Portugal during the period studied), then one has to recognize the potential danger 

from omitting class size when the interest lies on identifying class composition effects (however this relies on the 

assumption that class size indeed impacts on education performance which the empirical evidence does not 

completely support – Hoxby, 2000b – unless when very large changes in class size are introduced – Duflo, Dupas, 
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& Kremer, 2015). But even if school authorities have no external accountability incentives to act in a compensatory 

way, within-school sorting may still be at work. The school agents responsible for setting up classes may reflect their 

own priors relative to what is an optimal allocation of students, hence students’ characteristics may determine, via 

school agents’ beliefs, the composition of their classes (see Collins & Gan, 2013). 

Furthermore, one needs to also take in consideration that current education outcomes of a given student may 

not only be the result of student’s present inputs, but also of those from the past. Todd & Wolpin (2003), in particular, 

systematizes this idea, i.e. that one should as well conceive as important inputs applied during past periods to the 

limiting initial point of the birth of the student. As they explain, from the moment a student is born parents’ decisions 

may express strategic behavior – conditional on their particular preferences in terms of what they idealize their 

children’s path should be, and on the resources available to them – which should take in account the student’s initial 

conditions and, from then on, re-update the strategic behaviors based on the realization of the cumulative learning 

outcomes. This should be reflected on to which schools parents, and from a certain age the students themselves, opt 

to enroll, and then to which classes they may pressure school authorities to enlist the students. Overall, this demand 

side behaviors may, in part, determine allocation of students between schools, and then between classes within a 

given school.1 

In a nutshell the literature warns against non-random allocation of students and teachers between-schools and, 

as well, between-classes within-schools. Whether some studies have made use of first differencing, instrumental 

variables or school fixed effects (or a combination of these) to properly identify class compositional (or class size) 

effects, e.g. Hoxby (2000a), Hoxby (2000b), Akerhielm (1995), Jürges & Schneider (2004), Wößmann & West 

(2006), and West & Wößmann (2006); this study makes use of an extensive set of students’ characteristics, past 

education outcomes, and of combinations of fixed effects (at the school, teachers, and cohort levels) to overcome 

endogeneity. Thus, this study is methodologically closer to Hanushek, Kain, Markman, & Rivkin (2003), Sund 

(2009), and Burke & Sass (2013). 

Most of the empirical results found in the literature relate to the estimates of the impact of the proportion of 

classmates with either a given level of ability or of predetermined achievement level. Hoxby (2000a), with results at 

the grade level, reports that the performance of a given student increases between 0.1 to 0.5 points if the cohort 

average exam score increases by 1 point. Hanushek et al. (2003) and Sund (2009) point to gains in achievement by 

the average student from having peers with higher levels of prior mean achievement. Burke & Sass (2013), in turn, 

point to gains for a given student in having better peers, but not too much better ones, thus suggesting a break of 

monotonicity between the relation of own achievement and that of the peers.  

Related with the previous results are those on tracking policies, i.e. on grouping students with the same level 

of ability or previous years’ test scores, which basically set the proportion of top achieving classmates close to 100% 

for the top achieving students and to 0% for the low achieving ones. Specifically, in Sacerdote (2011) half of the 

surveyed research indicates that the impact of tracking students is positive. Duflo, Dupas, & Kremer (2011) by means 

of a randomized experiment in Kenyan schools besides providing evidence that increasing the percentage of top 

achieving classmates had a positive influence on all types of students they also observed that sorting students 

                                                      
1 Note that geographic segregation of parents in terms of education, income, and other socio-economic variables reinforces the 

idea that students are not randomly allocated across schools. 
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homogeneously, i.e. tracking them, across classes caused all types of students to perform better. That is, there has 

been relatively recent literature that seems to support the view that grouping students of similar academic levels has 

a stronger positive impact that surpasses that of depriving the low achievers, in particular, from the positive effect of 

interacting with the best peers. The hypothesis being that low achievers benefit, in absolute value, more from better 

tailored teaching than what lose from not being exposed to the latter. 

With respect to other dimensions of class composition, Hoxby (2000a) reports that, at the grade level, (i) a 

larger share of females improves performance in general for both males and females, and (ii) peer effects are stronger 

and positive within racial groups. The latter point is challenged by Card & Giuliano (2016) who find that top achievers 

from minorities actually profit from being allocated to classes dominated by other top achievers with no minority 

status. Otherwise, negative peer pressure within minorities is likely to lead minorities’ top achievers to underperform. 

Hanushek et al. (2003), in turn, found evidence contrary to the belief that larger shares of low-income peers adversely 

affect achievement of a given student. Nevertheless, they doubt their results as being robust justifying that eligibility 

to a reduced-price lunch may not be a reliable measure of income differences. 

3 Institutional Context and Data 

3.1 Institutional Context 

The Portuguese public educational system groups the 12 sequential mandatory2 grades that it contains in cycles 

across four main types of schools (see Table A.1). The 1st cycle begins for pupils aged 5 or 6 years-old at grade 1 and 

runs up to grade 4, and the 2nd cycle comprises grades 5 and 6. These first two cycles compose primary education or 

ISCED 1. Lower secondary education (ISCED 2) is the 3rd cycle – grades 7 to 9 – and upper secondary education 

(ISCED 3) encompasses grades 10 to 12. In turn, type-1 schools offer only the 1st cycle, whereas type-2 schools offer 

the 2nd and 3rd cycles, type-3 schools the 3rd cycle jointly with upper secondary, and type-4 merely upper secondary. 

Classes are usually kept unchanged within a given cycle by schools, which means that purposeful sorting of 

students within-schools across classes should occur (if such procedure is indeed a reality in any given school) at the 

beginning of each cycle. Especially if the beginning of the cycle coincides with moving to a new school. These are 

the cases of students enrolling in grade 1 (always in a type-1 school), in grade 5 (always in a type-2 school), in grade 

7 if moving from a type-2 to a type-3 school (otherwise the student usually remains in the type-2 school with the 

previous class from grades 5 and 6), and in grade 10 if moving from a type-2 to a type-4 school (otherwise the student 

usually remains in the type-3 school with the previous class from grades 7, 8 and 9).  

Students repeating a given grade are usually assigned to one of the newly promoted classes of that grade the 

following academic year. Although these students may go again through another moment of within-school sorting, 

they are a minority. Even less frequent, but nonetheless possible, is the event of students moving from one school to 

another within a given cycle, or even within a given grade during a given academic year (e.g. due to behavioral issues 

on current school, parents moving to another place within the country, or the arrival of immigrant families with 

school-aged children). These students theoretically may also be subject to within-school sorting at the destination 

school at different moments compared to the majority of the students of the system. 

                                                      
2 Grades 1 to 9 were mandatory until academic year 2011/12. From 2012/13 onwards the last mandatory grade has been the 12th. 
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Within-school sorting of students across classes, during the time period spanned in the dataset, has been 

vaguely regulated by the relevant public authorities. In general, schools have been requested to express each grade-

school-year specific heterogeneity of students across the respective classes, however with no concrete quantitative 

bounds on what means to comply with that heterogeneity. The most precise regulation states that no class should be 

uniquely composed of students that have just been retained in a given grade the previous academic year (they may 

have however experienced retentions in the past). From this it is expectable to observe variability of class composition 

in every compositional dimension and this is exactly shown by the corresponding standard deviations depicted in the 

descriptive statistics mentioned below. 

Across the years that the dataset spans there has been some variation of which cycles end with a national exam 

or not, and whether the national exam score is a requirement for students’ progression to the next cycle – high-stakes 

– or not – low-stakes – in which case the exams’ results are a mere tool to assess the overall state of the system with 

no specific consequences to any given student. Table A.1 also summarizes these features and the respective scale of 

each type of exam which will feed the educational outcome of interest as well as an important baseline score. 

Finally, the Portuguese education system contains a regular academic track and other tracks related to arts’ 

education, vocational education and educational programs for those that failed to complete mandatory schooling 

levels at the expected age. The regular one is by far the most demanded. For example, DGEEC (2013, page 28) 

reports that in 2011-12, the percentage of students in public schools enrolled in the regular academic track in the 2nd 

and 3rd cycles were 99% and 90%, respectively. 

3.2 Data 

In this paper I make use of an administrative dataset compiled by the Portuguese Ministry of Education. I use 

information on four cohorts of 6th grade students enrolled in public schools3 in regular academic track classes, in 

continental Portugal. The cohorts refer to those with 6th grade high-stakes national exams of both mathematics and 

reading taken at the end of 2011/12 through 2014/15 academic years.4 The education outcome I use is at the individual 

level and is the average of the standardized scores of mathematics and reading of a given student, where score 

standardization is calculated for each (first round) subject-year exam score distribution. The correlations between the 

average score with each subjects’ scores are about 0.9 in both cases. I use the end of 4th grade exam scores of both 

mathematics and reading of each student as baseline scores.5 Given that those students that, simultaneously, belonged 

to the cohort that took the 6th grade exam at end of 2014/15 and went through 5th grade only once, had a high-stakes 

national exam in their 4th grade taken at the end of 2012/13 (i.e. in a 0-100 scale), whereas all other cases of students 

had a low-stakes baseline score (i.e. in a 1-5 scale), I converted the 0-100 baseline scores of that particular cohort 

into the 1-5 scale using the stipulated conversion bands used by any grader when grading low-stakes exams.6 

                                                      
3 According to DGEEC (2013, page 28) around 87% of the 6th grade students in continental Portugal in 2011/12 were enrolled 

in public schools. 
4 For students observed taking more than one 6th grade exam consecutively due to grade repetition I only use the score of the 

first exam. Also, high-stakes exams typically offer a second-round exam for those that could have not been physically present in 

the exam at the stipulated hour (e.g. due to medical reasons) or as a chance to improve the score obtained in the first-round. I use 

only scores obtained in the first-round of both subjects’ exams as these are comparable for everyone, at the cost of dropping 

merely a few hundred students that had to be examined in one or both subjects at the second round. 
5 For those with two or more consecutive 4th grade exam scores (due to repeating this grade) I use only their last 4th grade score. 
6 The conversion bands are: 0-19 to 1 (lowest score); 20-49 to 2; 50-69 to 3; 70-89 to 4; and 90-100 to 5 (highest score). 
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The variables of interest for this study, related to the composition of the class, refer to the average class 

compositions students were exposed to during the 2nd cycle, that is during grades 5 and 6.7 Knowing the 5th and 6th 

grade school and class membership I am able to compute, for each student at each grade’s class, the percentage of 

classmates who: are top achievers; have no previous retentions; are male; have home access to internet; are foreigners; 

and live in a low-income household. Given the two values (one for each grade’s class of a given student) for each 

class compositional dimension I then compute the average value between them. A student is considered top achiever 

if the baseline scores of mathematics and reading are jointly high. Specifically, if the student presents one of the 

following (math, reading) combinations of scores: (3, 5); (4, 5); (4, 4); (5, 4); (5, 3); or (5, 5). The group of top 

achievers varies somewhat across cohorts (see Table A.2) given that 4th grade exams across years also vary in type 

(see Table A.1) and in intrinsic difficulty. The status of having no previous retentions is given to students with no 

retentions recorded until the beginning of grade 5. This is accomplished by checking whether the students’ age 

(birthdate present in the dataset), at the beginning of their 5th grade academic year (by middle September), is equal 

or lower than exactly 11 years-old. This threshold age marks the limiting age a student is expected to have without 

having repeated none of the previous grades (1st through 4th)8. Moreover, students are considered foreigners if either 

they or at least one of their parents were born in one of the Portuguese speaking countries (excluding Portugal).9 

Therefore the baseline case is composed of students born in Portugal (by far the majority) or in countries not 

belonging to Portuguese speaking countries.10 Finally, a student is categorized as living in a low-income family if he 

received social support.11 The percentages of male and with internet at home classmates have a straightforward 

computation given that the dataset supplies information on student gender and internet at home possession. 

                                                      
7 At this stage I use only students with no retentions during grade 5, though they may have been retained on grade 4 or earlier. 

Hence, for all students in the sample there are only two values for each compositional dimension from which I compute the 

average compositional dimension they were exposed to: one from their unique 5th grade and another from their first 6th grade. 
8 This procedure is not perfectly accurate. Students enrolling grade 1 aged less than 6 years-old, say 5.8, and with one retention 

during primary schooling will still be below the threshold age of 11 (for the 5.8 example they will be 10.8 years-old) in spite of 

their retention, hence incorrectly be given the status of no previous retentions. The reason for choosing this way to assign the no 

retention status has to do with the fact that the dataset starts only reporting data from 2006/07 which allows to only follow those 

in the oldest cohort (taking the 6th grade exam at the end of 2011/12) with no retentions during primary schooling. And for the 

second oldest cohort (6th grade exam at the end of 2012/13) those with up to only one such retention. Since the retention rates in 

Portugal are somewhat considerable, it is relatively frequent to find students with 1 and 2 accumulated retentions during primary 

schooling. Using only students whose educational path is completely observed in the dataset, i.e. since their enrolment in grade 

1, to perfectly pinpoint those with at least one retention between grades 1 and the beginning of grade 5 would mean to drop from 

the sample those with a number of retentions such that their enrolment in grade 1 is unobservable. This would constitute a 

mechanical sample selection capable of generating the corresponding (and unwanted) selection bias as the retention history of 

students is very likely to correlate with their 6th grade outcomes and it is also likely to predict to what class (and consequently to 

what class composition) the student is assigned at the beginning of grade 5. However, the comparison of both methods for the 

youngest cohort (6th grade exam at the end of 2014/15) for which students with up to 3 accumulated retentions during primary 

schooling can be followed up to entering the system at grade 1 reveals that the method chosen assigns a false no past retention 

status to less than 5% of the possible cases. This is reassuring as the level of noise introduced seems very low. Possible attenuation 

bias stemming from the introduced noise is likely to be much smaller and unimportant than the selection bias that would have 

been introduced by disregarding important fractions of students from the oldest cohorts. Another important benefit is the 

possibility to use four instead of just three cohorts in the econometric analysis below, not only in terms of adding to the external 

validity of the empirical results, but especially in terms of facilitating the estimation of teacher fixed effects which requires time 

to observe teachers moving across schools and/or students across teachers. 
9 The Portuguese speaking countries (excluding Portugal) are: Brazil, Angola, Cape Verde, Guinea-Bissau, Mozambique, Sao 

Tome and Principe, and East Timor. 
10 A third category differentiating those students born in neither Portugal nor a Portuguese speaking country would be of very 

small size and too heterogeneous (it would group students born in countries that are usually targeted by Portuguese emigration, 

e.g. France and Switzerland, hence likely to have parents born in Portugal, and students born in regions that have recently come 

to constitute suppliers of migrants into Portugal, such as Eastern Europe and Asia). 
11 It conveys quite similar information to students benefiting from a reduced-price lunch in the USA. 
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I emphasize that all class compositional measures were computed as “leave-out-percentages”. The contribution 

of student i was purposefully excluded from the percentage of classmates with a given characteristic that that 

individual was exposed to in his class. This way the compositional measures are closer to be interpreted as peer 

measures with respect to student i. Moreover, given the objective of estimating potentially different class composition 

effects depending on own characteristics of the students, by proceeding with a leave-out computation of the variables 

of interest one avoids problematic cases where student i might be the sole classmate with a given characteristic, say 

male, which implies a strictly positive percentage of overall classmates who have that characteristic (males in the 

example), whereas from his perspective the percentage of such students that he faces in his class is actually zero. 

Besides the class composition variables of interest and the corresponding individual level categorical variables 

stated above, the list of variables also contains: a categorical variable describing the highest level of completed 

education across both parents to which each student is exposed in the household12; another categorical variable stating 

the current job status of the parents13; and class size (only classes with 10 or more students are considered for 

analysis). Note that for the categorical individual level variables missing values were coded as another category in 

itself (the computation of the class compositional measures does take in account missing information, see next 

paragraph). Since the data characterizing students and their parents is mainly obtained via filling out forms and 

questionnaires at the school level directly by them, a non-response may still convey information regarding their 

individual heterogeneity. For example, unwillingness to show up at school or to correctly fill the entire form may be 

related with students or parents’ cognitive ability or time preferences which, in turn, may predict how students are 

sorted between and within schools and students’ education performance. 

To circumvent the fact that some of the abovementioned categorical variables describing observed students’ 

heterogeneity (from which the class composition ones were derived) present missing values (especially regarding 

baseline scores – about 25% of the original population of 6th graders per cohort), the computation of the class 

composition measures was allowed to be done in classes (of both grades 5 and 6) with up to one third of classmates 

missing information on the relevant characteristic. Classes with a larger share of missing information in a given 

compositional dimension were excluded from the analysis.14 This way several students, for whom there is the full set 

of information, belonging to classes with relatively small fractions of missing information, i.e. classes for which the 

compositional measurement can still be seen as sufficiently close to what it would be under full information, are 

prevented to be excluded from the analysis. Nevertheless, for each compositional measure that is allowed to be 

computed using classes with a minority of missing information – the cases of the percentages of top achievers and 

with no past retentions (due to missing info on birthdate) – another corresponding binary variable was created taking 

                                                      
12 Nine categories: missing value; no formal education; 1st cycle – 4th grade; 2nd cycle – 6th grade; 3rd cycle – 9th grade; 4th cycle 

– 12th grade; bachelor or similar; master; PhD. 
13 Three categories: missing value; employed; unemployed. 
14 To clarify, let a class be constituted by 10 classmates from which 7 report the required information regarding their baseline 

scores (4 coded as low achievers, 3 as top achievers). Hence, there is 30% of classmates with missing information which is below 

the 1/3 threshold. The (leave-out) percentage of top achievers given to each of the 4 low achievers was 50% (= 3/6) since each 

low achiever observes 3 top achievers in the class and this is divided by the number of students (excepting himself) with the 

required information, whereas the percentage given to each of the 3 top achievers was 33.3% (=2/6). To each of the 3 students 

not reporting baseline score information was attributed a missing value in terms of percentage of top achievers. Had the share of 

classmates with missing information with respect to baseline scores been larger than 1/3 and all 10 classmates would have been 

attributed a missing value in terms of percentage of top achievers. 
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value one if the student indeed belongs to such a class and zero if he belongs to a full information class. These binary 

variables will be used as control variables throughout the econometric analysis. 

Table A.3 describes information with respect to the variables and their main descriptive statistics (under the 

regression sample stemming from the most preferred and demanding specification; in a nutshell this specification 

requires each 6th grader to have non-missing information across all relevant individual, class, teacher and school level 

variables; to belong to the connected set; and not being a singleton, all this to be detailed in the next section). The 

fact that, in many cases, opposing types of students are exposed to different mean percentages of the respective 

compositional dimension suggests that indeed within-school sorting of students is at work, at least to some extent. 

The following section will detail the identification strategy to overcome this and other likely sorting mechanisms in 

order to identify credible causal effects of class composition on individual student general cognitive skills. 

4 Methodology 

4.1 Econometric Model 

I estimate equation (1) as a benchmark model of the education production function 

𝑌𝑖𝐶𝑇𝑆𝑎
6 = 𝑪𝑪𝒊(−𝒊),𝑪

𝟔&𝟓  𝜷𝟏 + 𝑪𝑿𝒊,𝑪
𝟔&𝟓 𝜷𝟐 + 𝑻𝑿𝒊,𝑻

𝟔&𝟓 𝜷𝟑 + ∑ 𝜙𝑡(𝑗)
𝐺

(𝑗,𝐺) + ∑ 𝜙𝑠𝐺𝑎𝐺 + 𝑿𝒊
𝟔&𝟓 𝜷𝟒 + 𝒀𝒊

𝟒 𝜷𝟔 + 𝑾𝒊 𝜷𝟓 +

                + 𝜀𝑖𝐶𝑇𝑆𝑎
6                                                                                                                                                         (1) 

where 𝑌𝑖𝐶𝑇𝑆𝑎
6  is the average of the standardized mathematics and reading scores (taken at the end of grade 6, hence 

the superscript) of a given student i who, during the 2nd cycle (grades 5 and 6), was placed in a combination of two 

sequential classes C, with a combination of two to four math and reading teachers T, across up to two potentially 

different schools S, and belonging to cohort a. The education outcome is chosen to be the average between the 

particular outcomes of mathematics and reading in order to capture average class composition effects that may affect 

the acquisition of general cognitive skills (of the sort transmitted by schools’ curriculums) in opposite to 

compositional effects specific to the acquisition of particular types of cognitive skills.  

In turn, 𝑪𝑪𝒊(−𝒊),𝑪
𝟔&𝟓  is the vector containing the variables of interest: six distinct class compositional dimensions 

(described in section 3.2) that a given student i was exposed to, across his two (potentially different) classes C from 

his passage through the 2nd cycle (i.e. through grades 5 and 6, hence the superscript). Note that the subscript (-i) 

means that each class compositional measure was computed, as described above, in a leave-out fashion, at each of 

his two classes C; and, as well, that the compositional measures were based on predetermined characteristics of the 

students which is intended to avoid reflexivity bias, see Hanushek et al. (2003).15  

A few remarks are worth regarding the choice to compute the class composition variables of interest as 

averages between the respective values observed across the two classes (one at each grade) of a given student. First, 

since the system is divided in cycles with exams assessing the evolution of students throughout each cycle arch 

(contrary to assessing annual evolution) it is natural to study the impacts of cycle level inputs rather than at other 

frequencies, say annual. Second, the correlations between the 6th and 5th grade classes’ compositions are larger than 

0.7 which, on one hand, is indicative that each student faces, on average, very similar classmates across both classes 

                                                      
15 The class (leave-out) percentages of pupils with internet at home and with low-income status, although based on characteristics 

determined during the 2nd cycle, should not be subject to reflexivity bias since they depend on factors not driven by the education 

performance of the students. 
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(not necessarily the exact same classmates as similar class compositions do not strictly depend on such requirement, 

but on the existence of classmates sharing the same characteristics), and, on the other hand, that the inclusion of 

separate 6th and 5th grade class compositions on the regression would produce estimates of class compositional effects 

likely to be subject to multicollinearity problems. Third, from a policy perspective that acknowledges that classes 

across grades 5 and 6 are kept quite similar in composition, it is more straightforward to simulate reallocations of 

students across a representative class of both grades rather than across two “different” classes across two sequential 

grades. 

Consequently, 𝜷𝟏 is the parameter vector of interest in this benchmark model. It contains the marginal effects 

that map ceteris paribus changes in each of the class compositional measures to average changes in general cognitive 

skills. Correct identification of 𝜷𝟏 hinges on using proper variation of the class compositional measures, that is on 

class compositional variation that can be confidently assumed to be independent of variation of any factor capable to 

correlate with both class composition and individual student general cognitive achievement. All the remaining 

controls in equation (1) are meant to capture such portions of class composition variation that are likely to be 

misleading. 

The vector 𝑪𝑿𝒊,𝑪
𝟔&𝟓 contains class level controls. Namely, class size (the average of the class sizes that student 

i was exposed to in his 6th and 5th grade classes) to account for the possibility that differing sizes of classes may 

contain systematically different compositions of classmates (West & Wößmann, 2006), and binary variables (one for 

each compositional dimension with missing information) stating whether student i class composition measure 

bypassed missing information when it was computed (see details in section 3.2) to control for the possibility that 

classes with at least one missing value in a given compositional dimension may be classes that systematically present 

a tendential composition in that dimension. 

In turn, the assignment of the two to four teachers each student was exposed to during cycle 2 (at least a 

different teacher per subject across grades 5 and 6, at most a different teacher per subject per grade) may correlate 

with the composition of his class. It is likely that (i) different teachers may have different preferences regarding which 

class to teach, i.e. regarding which class compositions they prefer to face; and (ii) different teachers may also have 

different levels of bargaining power within the school to get their most preferred class, say due to age, seniority or 

current position in the school hierarchy. To account for these confounding factors and improve the interpretation of 

𝜷𝟏 as if teachers were randomly allocated across classes I include the vector 𝑻𝑿𝒊,𝑻
𝟔&𝟓 containing binary variables 

decomposing a categorical variable consisting of the average age of the teachers each student was exposed to during 

cycle 2 divided in 5 years bands’ categories16 and teacher fixed effects 𝜙𝑡(𝑗)
𝐺  from the teachers of each grade (𝐺 =

5, 6) and of each subject (𝑗 = 𝑚𝑎𝑡ℎ, 𝑟𝑒𝑎𝑑𝑖𝑛𝑔). The first term is meant to capture systematic teacher allocation to 

classes based on their age or any other characteristic correlated with it, say seniority or school hierarchical position  

                                                      
16 This vector also contains a binary variable similar to those included in 𝑪𝑿𝒊,𝑪

𝟔&𝟓 to account for missing information relative to 

teacher age that was bypassed when computing the average age of the teachers to which each student was exposed to. Again, the 

threshold chosen was one third meaning that the average teacher age was computed only for students possessing information on 

two thirds of the count of teachers across reading and math and across grades 5 and 6. Since it is only possible for each student 

to have been exposed to 2, 3 or 4 teachers, then the average teacher age measure was only computed for students recording either 

0 missings, or 1 missing out of 3, or 1 missing out of 4, in teacher age. The binary variable then takes value one if the student 

falls in one of the last two cases, zero if the student falls in the first case, and missing otherwise (keeping away from the regression 

students with too many teachers with unknown age). 
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(it is time-varying across four different cohorts and student-varying across different combinations of teachers that 

each student is exposed to, even across students of the same class) and the second captures unobserved (time-

invariant) teacher specific heterogeneity that may also explain possible non-random sorting of teachers across classes. 

Inclusion of current (𝐺 = 6)  and previous (𝐺 = 5) school-by-cohort fixed effects 𝜙𝑠𝐺𝑎 is based on the 

possibility that the student composition at the school level experienced by a given student from cohort a may 

determine to some extent the class level student composition that he experienced too. If school level composition of 

students impacts on individual student cognitive achievement, then omitting it may be a source of bias to the correct 

estimation of 𝜷𝟏. Moreover, given that school characteristics (such as school level composition of students) may 

change over time it is appropriate to interact school effects with cohort effects to capture those school-by-cohort 

specific factors. A student belonging to the cohort examined at the end of the 6th grade of 2011/12 might have been 

exposed to a school-level composition of students at school s during that grade that differs from another student that 

went through 6th grade at that same school s but during the 2014/15 academic year (e.g. school s may be improving 

or deteriorating its position in the rank of schools of the local area – either a publicized one by the media, as it 

happened in Portugal during the period studied, or an informal one produced by word of mouth between local parents 

– which may induce different types of parents enrolling or unenrolling their children from that school across the 

years). A parallel argument can be made for both the school and class level student compositions each student was 

exposed to during grade 5 which justifies the inclusion of the 5th grade school-by-cohort fixed effects. Inclusion of 

𝜙𝑠𝐺𝑎 helps then to interpret the estimates of 𝜷𝟏 as if students of any given cohort had been randomly allocated across 

schools. Similarly, it also helps to interpret the estimates as if teachers had been randomly allocated across schools, 

as specific schools in specific years may attract teachers with different preferences regarding the overall school 

environment. Other benefits of including school-by-cohort effects in the model is to control for school time-invariant 

factors (e.g. its geographic position coupled with possible time-invariant geographical segregation of parents may 

induce students with similar socio-economic characteristics to constantly flock to a given school and compose an 

important fraction of its student population each year), as well as cohort specific factors such as different difficulty 

levels of the baseline and end-line exams (the fact that baseline scores vary somewhat from cohort to cohort could 

compromise the comparability of what is considered a top or low baseline achiever and, consequently, could 

compromise the comparability of the respective class compositional measures related with the percentage of top 

achieving classmates, thus it is, a priori, important to control for such cohort specific factors as I do by including 

cohort effects), as these are embedded in the interaction of the fixed effects. 

Another important source of bias is the likely non-random sorting of students across classes within-schools (as 

suggested by the descriptive statistics) and the inclusion of 𝑿𝒊
𝟔&𝟓, 𝒀𝒊

𝟒, and of 𝑾𝒊 is intended to alleviate it. The first 

term is a vector containing individual socio-economic characteristics of the students that are potentially time-varying: 

parents’ education level and job status, low-income status, and possession of internet at home. Each categorical 

variable referring to what is observed by grade 6 is interacted with what is observed by grade 5 in order to capture 

different combinations of the categories over the two years (hence the superscript)17. This way a detailed socio-

                                                      
17 So, for example, one effect to be estimated refers to students presenting in both years a low-income status, another if students 

present a combination (low-income; non-low-income) in grades 6 and 5, and so on. The same pattern applies to all the other 

variables within 𝑿𝒊
𝟔&𝟓. 
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economic characterization of the students is fed into the econometric model to control for within-school purposeful 

allocation of students to classes based on such individual characteristics. The fact that 𝑿𝒊
𝟔&𝟓 embeds information of 

both grades 5 and 6 improves the chances to control for purposeful allocation of students across classes throughout 

both grades. Whether individual characteristics observed by grade 5 may predict to which 5th grade class the student 

was assigned to (school authorities may take those characteristics into account when setting up the classes that will 

tend to persist during the 2nd cycle), characteristics observed by grade 6 may predict, in turn, to which class students 

that happen to have to change classes during cycle 2 (due to retention, social incompatibility, or a school transfer) 

will end up in, or, conversely, which type of incoming classmates will students (that are placed in the receiver class) 

get. The second vector contains three individual level education outcomes recorded by the end of grade 4: the number 

of accumulated retentions during cycle 1 and the scores (1-5 scale) obtained by each student in both mathematics and 

reading at end of grade 4 national exams. It also contains a binary variable taking value one if the student entered 

cycle 1 (primary schooling) aged 6 years-old or more – the most common case – and zero otherwise (i.e. aged between 

5 and 6 years-old). The three outcome baseline variables and the entering age binary variable enter the model in 

equation (1) in a four-way interaction. Again, the interaction should capture with more detail different sorting 

behaviors, from the part of school authorities, applied to students with different recorded combinations of previous 

achievement (for a given level of maturity as proxied by their entering age). It is not hard to conceive that school 

authorities possessing information regarding the past of the student, namely past achievement (which they possess in 

a form quite similar to the actual dataset used in this study) do indeed take it also into account when forming classes 

in a way that, at least, mirror their priors regarding what may be an optimal classroom composition in terms of student 

ability distribution. In other words, it is conceivable that a student recording top scores in both exams at the end of 

grade 4, never experiencing retention and entering primary school with less than 6 years-old might be subject to a 

type of within-school sorting that differs from that of another student recording low baseline scores on both subjects, 

recording one or more retentions during primary schooling while having entered that cycle aged 6 years-old or more. 

If we add that students with different combinations of past outcomes tend to persist in those outcomes afterwards, 

then omitting such combinations could be a source of bias to the class composition effects’ estimation.18 Finally, the 

third term contains two individual time-invariant observable characteristics of the students: gender and place of birth 

(see section 3.2 for details on how the place of birth binary variable was created), which close the individual level 

characteristics fed into the econometric model aimed at controlling, jointly, for within-school sorting that they may 

have been subject. 

Conditional on all abovementioned control variables I assume that the error term 𝜀𝑖𝐶𝑇𝑆𝑎
6  is uncorrelated with 

the leave-out class compositions experienced by any given student, thus estimation of 𝜷𝟏 should be, to a great extent, 

unbiased. Many likely confounding factors that simultaneously may predict class composition and affect individual 

student achievement are taken into account, namely those related with between and within-school sorting of students 

and teachers, and confounding treatments such as class size. It is the variations in class compositions that remain 

                                                      
18 Todd & Wolpin (2003) and Hanushek & Rivkin (2010) provide theoretical frameworks that justify the use of a single baseline 

score as a summary of past factors under some technical assumptions. The fact that I include three interacted baseline education 

outcomes facilitates then the assumption that those past factors have indeed been controlled for. 
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within specific values of the confounding factors the ones that can credibly deliver causal estimates of their effects 

on individual student general cognitive achievement. 

The final and most preferred specification is presented in equation (2) which allows the class composition 

effects to be heterogeneous across the respective individual characteristic. 

𝑌𝑖𝐶𝑇𝑆𝑎
6 = [𝑪𝑪𝒊(−𝒊),𝑪

𝟔&𝟓 × 𝕀𝒛𝒊=𝟏]𝜷𝟏
𝒛𝒊=𝟏

+ [𝑪𝑪𝒊(−𝒊),𝑪
𝟔&𝟓 × 𝕀𝒛𝒊=𝟎]𝜷𝟏

𝒛𝒊=𝟎
+ 𝑪𝑿𝒊,𝑪

𝟔&𝟓 𝜷𝟐 + 𝑻𝑿𝒊,𝑻
𝟔&𝟓 𝜷𝟑 + ∑ 𝜙𝑡(𝑗)

𝐺
(𝑗,𝐺) +

                + ∑ 𝜙𝑠𝐺𝑎𝐺 + 𝑿𝒊
𝟔&𝟓 𝜷𝟒 + 𝒀𝒊

𝟒 𝜷𝟔 + 𝑾𝒊 𝜷𝟓 + 𝜀𝑖𝐶𝑇𝑆𝑎
6                                                                                       (2) 

The term 𝕀𝒛𝒊=𝟏 is an indicator function taking value one only when the student has a given characteristic (from 

the relevant ones used to compute the compositional measures), say when the student is top achiever, and 𝕀𝒛𝒊=𝟎 is 

another indicator function taking value one only when the student has the opposing characteristic, say when the 

student is not a top achiever. Since all students can only have one characteristic at a time (they cannot be 

simultaneously top and low achievers, or male and female, or foreigner and not foreigner, and so on) the model in 

equation (2) is not perfectly collinear, hence estimable. The advantage of this specification is that the compositional 

effects may differ for opposing types of students and are directly comparable. 

Given the large number of fixed effects to be estimated it is necessary to firstly identify the largest connected 

set which, in turn, permits to compute the greatest number of the former, see Abowd, Creecy & Kramarz (2002). I 

use Stata command reghdfe by Correia (2017) throughout the regression analysis as it incorporates a first routine that 

identifies the connected set. On top of that, the command also drops singleton observations to improve the estimation 

of the variance-covariance matrix, see Correia (2015). 

4.2 School Planner Problem 

Endowed with credibly causal estimates of the class composition effects, i.e. with �̂�𝟏
𝒛𝒊=𝟏

and �̂�𝟏
𝒛𝒊=𝟎

, I set up the 

(school level) social planner problem in this subsection. The aim is to contrast whether, at a given school, the actual 

allocation of students across classes can be considered to be socially optimal or if there is room to improve overall 

education performance of the students through a hypothetical better reallocation of pupils across the existing classes 

in that school. The planner’s problem is to maximize aggregate end of 6th grade student general cognitive achievement 

in school s for a given cohort of students a: 

Max
𝑙∈𝐿

�̂�𝑠𝑎
6 (𝑙)                                                                                                                                                                     (3) 

by choosing an allocation of students l from all possible allocations L that respect the following requirements: (i) 

each student is assigned to a given class, but not more than to one single class; (ii) the number of existing classes is 

kept constant (as compared to what is observed ex ante in that school for that cohort); and (iii) the size of the classes 

is equal or larger than the ex ante average class size registered in school s for cohort a. Each element belonging to L 

can be seen as an allocation matrix with number of columns equal to the fixed number of existing classes, number of 

rows equal to the fixed number of students of cohort a enrolled in school s, and each and all entries of the matrix 

either equal to one – row(student) i placed in column(class) c – or equal to zero – row(student) i not placed in 

column(class) c. Constraint (i) is straightforward – any given student can only be placed in one single class – which 

means that the sum of the elements of each row of the allocation matrix is constrained to be always one. Constraint 

(ii) fixes the number of columns (i.e. of classes) of the allocation matrices in order to improve the ceteris paribus 

interpretation of the reallocation exercise, i.e. to shut down possible school planner’s endogenous reaction to increase 
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or decrease the number of classes (and that of hired teachers) as the reallocation of students is processed. I add 

constraint (iii) in order to control, to some extent, the class size that each student will experience ex post the 

reallocation in comparison to the class size they were ex ante exposed to19. Under this constraint all ex post classes 

will end up having sizes equal (or marginally above) to the ex ante mean class size, meaning no individual student 

will be subject to any tremendous change in the class size he experiences (not larger than the difference between the 

smallest and largest class size to the mean class size). This also reinforces the ceteris paribus interpretation of the 

reallocation exercise, as class size is bound to not change dramatically for any given student (the fact that the 

estimated class size effects are actually not significant in the econometric models alleviate concerns from allowing 

even some class size variation to occur for each student across his ex ante and ex post classes). It is worth mentioning 

that the optimization problem in itself is simplified by reducing the number of possible allocations found in L with 

constraint (iii).20 

The objective function 𝑌𝑠𝑎
6 (𝑙) can take many forms as long as it produces one single metric describing overall 

cognitive achievement across all students of a given cohort in a given school. Nevertheless, I impose a basic structure 

to it to facilitate the interpretation of the results. No matter what the form of 𝑌𝑠𝑎
6 (∙) is, its arguments will always be 

the differences in individual exam scores’ differentials between ex post and ex ante allocations. This way the optimal 

allocation matrix will be the one that improves scores the most relative to the scores obtained with the ex ante, 

observed, allocation of students.21 In turn, the differentials are the portions of the exam scores attributable only to the 

(leave-out) class compositions which may affect in different ways students with different characteristics as in 

equation (2). Given that the reallocation exercise assumes that all other education inputs (other than class 

composition) are fixed, then the exercise can only impact individual achievement – thus producing a differential – 

through changes of class compositions. These changes depend, in turn, on the reallocation of students, i.e. depend on 

l. Equations (4), (5), and (6) describe, respectively, the differentials and the difference in differentials: 

𝐸𝑥 𝐴𝑛𝑡𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑖 ≡ �̂�𝑖
6 = [𝑪𝑪𝒊(−𝒊),𝑪

𝟔&𝟓 × 𝕀𝒛𝒊=𝟏]�̂�𝟏
𝒛𝒊=𝟏

+ [𝑪𝑪𝒊(−𝒊),𝑪
𝟔&𝟓 × 𝕀𝒛𝒊=𝟎]�̂�𝟏

𝒛𝒊=𝟎
                                            (4) 

𝐸𝑥 𝑃𝑜𝑠𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑖 ≡ �̂�𝑖
6(𝑙) = [𝑪𝑪𝒊(−𝒊),𝑪

𝟔&𝟓 (𝑙) × 𝕀𝒛𝒊=𝟏]�̂�𝟏
𝒛𝒊=𝟏

+ [𝑪𝑪𝒊(−𝒊),𝑪
𝟔&𝟓 (𝑙) × 𝕀𝒛𝒊=𝟎]�̂�𝟏

𝒛𝒊=𝟎
                              (5) 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑠𝑖 ≡ �̂�𝑖
6(𝑙) − �̂�𝑖

6                                                                                                          (6) 

Hence, the objective function is 

�̂�𝑠𝑎
6 (𝑙) ≡ �̂�𝑠𝑎

6 ((�̂�𝑖=1
6 (𝑙) − �̂�𝑖=1

6 ), … , (�̂�𝑖
6(𝑙) − �̂�𝑖

6), … , (�̂�𝑖=𝑁𝑠𝑎

6 (𝑙) − �̂�𝑖=𝑁𝑠𝑎

6 ))                                                             (7) 

that is, with as many arguments as the number of students 𝑁𝑠𝑎 belonging to the relevant cohort a in a given school s. 

                                                      
19 Imagine that a given school has distributed a given cohort of students throughout 6 classes, each with varying dimensions 

between 10 to 32 students. Not imposing any restriction on the class size each student may end up in after the reallocation 

exercise would make possible that students from the sized 10 class could be experiencing ex post a class size of, say, 30, and 

vice-versa for students initially placed in the sized 32 class. 
20 Even constraining the ex post classes to have specific sizes the number of possible allocation matrices in L is enormous. Using 

the previous example and assuming the total number of students dispersed across the 6 classes is 126, constraining all ex post 

classes to have a size of 21 renders a total number of possible allocation matrices that equals the sum of possible combinations 

of students across each class (the ordering of students within each class being irrelevant): (126
21

)⏞
𝑐𝑙𝑎𝑠𝑠 1 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠

+

(105
21

)⏞
𝑐𝑙𝑎𝑠𝑠 2 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠

+ ⋯ + (21
21

)⏞
𝑐𝑙𝑎𝑠𝑠 6 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠

≈ 4.29 × 1023 + 6.39 × 1021 + ⋯ + 1. Letting each class size vary freely would 

increase even more the possible number of allocation matrices describing students’ allocations across classes. 
21 Note that the problem is exactly the same as one that merely maximizes ex post aggregate achievement differentials since only 

these may be affected by the reallocation exercise. Ex ante allocations are predetermined as any outcome stemming from them. 



15 

 

The actual functional forms that the objective function takes are three: 

𝑈𝑡𝑖𝑙𝑖𝑡𝑎𝑟𝑖𝑎𝑛: 𝑌𝑠𝑎
6 (𝑙) = ∑ (𝑌𝑖

6(𝑙) − 𝑌𝑖
6)

𝑁𝑠𝑎
𝑖=1                                                                                                                    (8) 

𝑄𝑢𝑎𝑠𝑖 − 𝑈𝑡𝑖𝑙𝑖𝑡𝑎𝑟𝑖𝑎𝑛: 𝑌𝑠𝑎
6 (𝑙) = ∑ 𝑤𝑖(𝑌𝑖

6(𝑙) − 𝑌𝑖
6)

𝑁𝑠𝑎
𝑖=1                                                                                                (9) 

𝑅𝑎𝑤𝑙𝑠𝑖𝑎𝑛: 𝑌𝑠𝑎
6 (𝑙) = min

𝑖∈{1,…,𝑁𝑠𝑎}
(𝑌𝑖

6(𝑙) − 𝑌𝑖
6)                                                                                                             (10) 

with the first – equation (8) – meaning that the planner weights equally all students. The second – equation (9) – 

makes the planner to weight differently each student i, specifically assigning twice the weight to low baseline 

achievers: 

𝑤𝑖 = {
2 𝑖𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑙𝑜𝑤 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑟
1 𝑖𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑡𝑜𝑝 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑟

 

and the third – equation 10 – makes the planner to pursue the reallocation l that makes the largest increment between 

ex post and ex ante differentials in exam scores for the student with the smallest such increment. 

 A few final notes regarding the thought experience of the reallocation exercise are needed. First, the 

assumption that only class composition is allowed to change, i.e. that all education inputs are fixed, imply other 

assumptions when interpreting the corresponding results from the exercise. As discussed above, one such implication 

is that principals (or equivalent school authorities) are not allowed to endogenously change the number of classes, 

nor the number of hired teachers, in face of the reallocation of students. Another implication is that the mechanism 

by which teachers are assigned to classes is kept unchanged. It is also necessary to assume that parents do not 

strategically respond to the reallocation exercise, either by pressuring within the school to revert the exercise or by 

taking their children to other school. This can be conceived if parents are unaware of the exercise, e.g. if it is private 

knowledge to school authorities. 

Second, the fact that the planners’ problem is the same either working with ex post differentials or differences 

in differentials (these last quantities depend on both ex post and ex ante differentials, but the reallocation matrix l can 

only impact ex post differentials as ex ante ones are predetermined) means that the optimal allocation of students l* 

can be interpreted not only as the allocation that most improves upon a realized and observed allocation – valuable 

from an evaluation viewpoint –  but also as the allocation that is expected to deliver the best aggregate outcome when 

no allocation has yet been decided – valuable as an important input and tool for schools when setting up classes each 

year.22 

Third, given the complexity of the school planner problem described here (stemming from the enormous 

amount of possible allocation choices available to him), and given that the problem cannot be solved with usual 

optimization techniques (such as solving first order conditions) – the objective function has a discrete domain 

consisting of different combinations of students across classes which makes it non differentiable – it is necessary to 

employ an algorithm that is able to deliver an acceptable result (within the context of students’ allocation across 

classes) and that is simple enough to be employed in a decentralized manner, i.e. at the school level. The algorithm 

                                                      
22 This claim does not hold if the objective function is specifically the Rawlsian one. In that case, the optimal allocation l* derived 

from using as arguments the differences in differentials delivers either a weakly Pareto improving allocation (the minimum 

difference in differentials is null or strictly positive, thus everyone was not harmed by the reallocation), or the ex ante one (all 

other allocations harm at least one student, so it is better to not reallocate at all and the corresponding maximum minimal 

difference is zero as no reallocation occurs). If the starting point is to set up classes optimally and not to compare an actual 

realized allocation with an optimal allocation, then the arguments to be used are the ex post differentials and the resulting 

allocation will be the one that maximizes the minimal ex post differential which can be a negative value. 
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then used can be described as follows (for a given school, for a given choice of the objective function): (1st) generate 

k random allocation matrices l, each respecting constraints (i), (ii), and (iii), and compute the implied ex post 

differential and difference in differentials (for all students individually) using equations (4), (5), and (6) for each 

generated matrix l; (2nd) for each generated matrix l compute the value of the objective function – one of those in 

equations (8), (9), or (10) – using as inputs the individual students’ differences in differentials which were calculated 

in the previous step; (3rd) from the sample distribution formed by the k objective function values computed in the 

previous step store its sample maximum; (4th) keep generating allocation matrices l and computing their implied 

objective function value until a first matrix l* is generated such that it yields an equal or larger objective function 

value than the one stored in the previous step; (5th – if the goal is to evaluate a predetermined ex ante allocation of 

students) state l* as a solution if its implied objective function value is larger than the value implied by the ex ante 

allocation, otherwise state the ex ante allocation as the solution. This algorithm is executable with usual spreadsheet 

software that is expectably available and used by local school authorities in many countries. In spite of, with great 

probability, it does not deliver the global maximizer(s) of the objective function23 – thus it does not solve, with great 

probability, the planners’ problem in a strict sense – it may deliver an allocation of students l* that improves upon 

the registered ex ante allocation. If so, finding such l* is sufficient to make the point that there might be room for 

improving overall general cognitive achievement through class composition rearrangements and that l* itself is an 

improving allocation of students within a given school. 

4.3 Choice of Representative School 

The dataset presents around 3000 schools-year (around 800 distinct schools contributing students to the 

regression samples of models in equations (1) and (2) across the four years of data), each potentially a target for the 

school planner problem outlined in the previous subsection. In order to simplify the analysis a representative school 

was chosen according to the following procedure: (i) for each of the six class level compositions used in the 

econometric analysis the same statistic was computed but at the school-year level (using its student wise average) 

and the median across all schools-year stored (in addition to these six school level statistics it was also computed the 

number of students in the 6th grade in each school); (ii) using the actual school-year level compositional statistics 

(including 6th grade size) and their medians the Euclidian distance was computed as a metric describing how “close” 

each school-year is to the median school-year; (iii) sorting all schools-year from smallest to largest distance I picked 

the one with smallest distance that was composed of up to three 6th grade classes (this last restriction to ensure the 

generation of matrices l was less time consuming).  

Note that for the reallocation exercise one needs actual classes which, given the context being that of 2nd cycle 

general cognitive achievement, should be either of grade 5 or 6. However, whichever the grade of the class to be 

picked it is necessary to assume that that class is representative of both grades. This is so since the reallocation 

exercise uses cycle level estimated effects of average cycle level class compositional inputs as described in this 

subsection and in the previous one. Since the class compositions experienced by a given student between 5th and 6th 

grade are quite positively correlated (which justified in part to average them across the cycle) it seems an acceptable 

assumption that the 6th grade class of student i is representative of what his 5th grade class was. Consequently, a 

                                                      
23 There are, at least, one maximizer and one minimizer allocations as the number of possible allocations l in L is finite (in spite 

of being large) and each one produces an objective function value that is a real number. 
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reallocation exercise performed to a 6th grade class can also be seen as being performed to the class that has been 

persisting from grade 5. 

5 Empirical Results 

5.1 Education Production Function Estimates 

Table B.1 presents the estimation results of the education production functions outlined in equations (1) and 

(2) across columns (1) and (2), respectively. The former refers to a scenario where the effects of the class 

compositional measures are invariant with respect to the individual students’ characteristics, whether the latter allows 

those marginal effects to be heterogeneous across students’ types. Each coefficient represents the average number of 

standard deviations (SD) by which the average of mathematics and reading 6th grade national exams’ scores changes 

given a one percentage point (p.p.) change of the respective 2nd cycle average class composition measure, all else 

constant. In what follows regarding the interpretation of the results I always consider a 20 p.p. variation of the 

compositional dimensions and state the corresponding effect as a percentage of a SD. The largest significance level 

permitted to consider a given estimate to be statistically significant is the 5% as the number of observations used is 

relatively large. 

 The effect of increasing the (leave-out) percentage of top achieving classmates is estimated to be negative and 

statistically significant in both specifications. Both the top and the low achiever student is harmed by being placed 

in 6th and 5th grade classes that are increasingly populated by top achieving classmates. On average, their performance 

deteriorates by 4.2% to 4.8% of a SD, depending on their type. 

Regarding the impact of increasing the share of classmates with no previous retentions it is positive and 

significant to any student in general, but of modest magnitude. Any general student performs about 3% of a SD better. 

Interestingly, decoupling the general effect to effects specific to students recording no past retentions and to students 

with at least one past retention the picture changes somewhat. It is the students with no previous retentions that drive 

the general result as they are the only ones with a statistically significant positive effect. Its magnitude is more than 

double than the one estimated for a generic student: this particular type of student increases his general cognitive 

performance by about 8% of a SD, whereas increasing the class share of students with no past retentions seems to 

have no effect on those recording at least one such retention. 

The percentage of low-income classmates provides contrasting results when comparing the models without 

and with heterogeneous compositional effects. On one hand, a general student is estimated to be harmed by being 

exposed to an increasing percentage of low-income classmates as per column (1). However, on the other hand, 

allowing the effect to be specific to either low-income or non-low-income students reveals that low-income students 

seem indifferent to the share of low-income classmates, while non-low-income students are estimated to actually 

benefit from exposition to larger shares of low-income classmates – about 4.6% of a SD. 

In turn, increments in the percentage of students with internet at home is estimated to deliver non-significant 

impacts in general, and only negatively impacting students without internet at home themselves. Nevertheless, the 

latter effect is small in magnitude, about 2.6% of a SD. 
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As in the previous case increases in the percentage of male classmates yield, in general, non-significant effects. 

Only male students seem to be somewhat hurt in their cognitive performance levels if exposed, during grades 5 and 

6, to larger shares of other male classmates. They record a small performance decrease of about 2% of a SD. 

Finally, the estimated effects stemming from changes in the percentage of foreign classmates also differ across 

the two specifications. Whereas a generic student is estimated to benefit in face of an increasing proportion of foreign 

classmates – a sizeable boost in performance of about 5.6% of a SD – the two particular types of students (foreigner 

and non-foreigner) do not present statistical significant coefficients which diminishes the robustness of the estimated 

effect of the former. 

5.1.1 Discussion of Education Production Function Estimates 

The results concerning the class composition effect of the percentage of top achieving classmates challenges 

previous studies, e.g. Hoxby (2000a), Hanushek et al. (2003), Sund (2009), and partially Burke & Sass (2013). 

Whereas these studies point to the hypothesis that sharing the grade or the class with more able peers is a positive 

input to the average student’s education production, I find evidence supporting the opposite, i.e. that increasing class 

average predetermined achievement (through increasing the share of top achieving classmates) yields a negative 

effect on the average student (which can be seen as more in line with Burke & Sass, 2013), as well as on the average 

top and average low achieving students. Noteworthy, these results should not be driven by a large set of possible 

confounding factors stemming from non-random allocation of both students and teachers between-schools and, 

within-schools, across classes, as these were explicitly taken in consideration. I interpret this result as supporting the 

hypothesis that teachers, at any given specific age and with any given specific time-invariant combination of 

unobserved attributes, may tailor the teaching practices differently when facing different audiences in the classroom 

as posited in Duflo, Dupas, & Kremer (2011). Namely, classrooms which are increasingly academically oriented may 

lead the teacher to either show more advanced contents which may not necessarily be present on the national exams, 

or simply let the classes flow more rapidly.24 Either way, both top and low achievers may have less opportunities 

during classes that have an increasing proportion of top achievers to entirely grasp the specific contents that will 

actually be present on the exams at the end of the schooling year. On the other hand, this also implies that the 

(negative) effects stemming from an increasing predominance of top performers or academically oriented classmates 

dominate over the (positive) effects that interactions with better achieving peers yield.25 

In turn, the results concerning the impact of the percentages of classmates who have low-income status and 

internet at home can be interpreted as providing evidence supporting the previous hypothesis. As the proportions of 

these types of resource endowed classmates (that are likely to enable them to be more academically proficient) 

increase (i.e. as the percentage of classmates that have internet at home or that are non-low-income increase), 

                                                      
24 Although not within the scope of this study it would be interesting to test whether the proportion of top achievers in a class 

can actually have a direct positive effect on later education outcomes, say on end of 9th grade exams. If indeed students placed 

in 6th and 5th grade classes majorly composed by top achieving classmates induces teachers to show more advanced contents 

(hence at the cost of confirming whether the programmed contents were indeed absorbed through repeating exercises or similar 

practices), then this may constitute an advantage when facing the next cycle, especially for top performers. 
25 The latter effect is observed in Kimbrough, McGee & Shigeoka (2017) which take away the presence of a teacher to identify 

peer-to-peer teaching positive effects. 
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achievement decreases. Conversely, classes increasingly composed by students from poorer backgrounds may induce 

teachers to momentarily exert extra effort in terms of exam related contents when facing such classrooms. 

Finally, the results related with class gender and foreign background compositions align partially with Hoxby 

(2000a), namely that by increasing the proportion of females the education performance of males increases (although 

not by much). Less aligned is the result that the effect of increasing the share of foreign students has no significant 

effect, especially not a positive one for those that are foreigners themselves (although it might be questionable 

whether it is accurate to compare foreign background students – the ones under analysis here – with minority ones in 

the USA context as in her study). 

5.2 School Planner Problem Results 

Table C.1 shows information regarding the outcomes of allocations l* found using the algorithm described in 

subsection 4.2 for each objective function26. It also presents statistics regarding the ex ante and ex post distributions 

of the class compositions across the classes of the chosen representative school27.  

Apart from the Rawlsian objective function, the other two specifications of the objective function allowed 

(re)allocation matrices l* to be found that are welfare improving (in comparison to the ex ante allocation matrix), as 

shown by the positive values attained by the objective function (first row) and by the corresponding average aggregate 

change in achievement per student28. The fact that using the Rawlsian objective function no welfare improving 

allocation matrix was found is not surprising. Finding such an allocation would imply that either the same differentials 

had been obtained for each student (so that the largest minimum difference between ex post and ex ante differentials 

is zero, i.e. every student was as better off with the ex post allocation as with the ex ante one), or a Pareto move could 

be produced since the new allocation would be capable to provide a positive achievement increment to the student 

with the worst difference of differentials. This is not expectable s changing the composition of the classes will with 

great probability benefit some individuals and harm a few others given the fact that removing or reinforcing a given 

type of student at a given class will likely 1) affect different types of students in that class in different directions and 

2) affect different types of students in the other classes in different directions too (the multidimensionality of class 

composition embedded in the education production function and its heterogenous effects across different types of 

students justify this observation). In other words, it is necessary to assume that letting a few students to be harmed 

with a given hypothetical reallocation exercise could be justified with the performance boosts that it could offer to 

the many other students (or to many others of a particular type as per the spirit of the quasi-utilitarian function).29 

                                                      
26 The parameter k of the optimization algorithm was set to 30 for the current version of the paper. It is a small number that offers 

computational speed, however its cost is a higher chance to find an allocation matrix l* that delivers a not so much large extreme 

value for the given objective function at use. Given that, on top of this, other restrictions are at work for computational speed 

reasons, namely using a school with only 3 classes and constraining the ex post classes to have a specific average size, the 

interpretation of the school planner problem results should be qualitative rather than quantitative. Future versions of the paper 

will relax these constraints in order to provide a better description of the quantitative potential of class composition 

rearrangement. 
27 This school reports three classes of grade 6 from academic year 2013/14. Note that the class statistics presented in Table C.1 

refer to the non-leave compositions of the three classes. 
28 Obtained by dividing the sum of the individual changes in achievement by the total number of 6th grade students spread across 

the three 6th grade classes. 
29 Note that although from an evaluation viewpoint using the Rawlsian objective function may be of little use (the ex ante 

allocation is very likely to always dominate over any possible ex post one since someone in some class may end up being harmed 

by the new allocation), from the viewpoint of a first iteration in setting up classes in the beginning of a given school year it is 

still valuable (the problem would then be to maximize the minimum differential instead of maximizing the minimum difference 
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Both the utilitarian and quasi-utilitarian induced better allocation matrices change the distribution of class 

compositions within the school compared to the distribution under the ex ante allocation. Whether the mean (non-

leave out) percentages of classmates with each characteristic is almost unchanged (which is expectable given the ex 

post school population is exactly the same as the ex ante one), the corresponding levels of dispersion present 

observable patterns.  

The proportion of top achieving classmates is less evenly distributed across the three classes under both welfare 

improving ex post allocations rather than under the ex ante one. The (leave-out) percentage of top achievers was 

estimated to impact negatively both top and low achievers which could lead one to conclude that it could be welfare 

improving to evenly spread top achievers across classes – making the classes having similar percentages of this sort 

of students – within a given school (so that this “bad” input could be diluted the most). However, the welfare 

improving allocations show larger dispersion levels of this class compositional dimension than the ex ante one, 

meaning that this type of student is less evenly distributed than before – the classes have more dissimilar percentages. 

This illustrates that credible estimated causal effects of class composition might be limited by its ceteris paribus 

nature when directly applied to policy. Top achieving classmates also possess other individual characteristics that 

have to also be taken into account when reallocating them across classes. Furthermore, the final effect of reallocating 

top achieving classmates also depend on the actual characteristics of all the other students within the school that may 

be affected by such reallocation. 

Students with no previous retentions were estimated to be the only ones affected – positively – by the share of 

such classmates, hence the expected reallocation should group this type of students so that they may benefit from this 

more beneficial class composition. Again, the reallocation exercise goes in the other direction: the dispersion of 

students with no past retentions slightly decreases in both welfare improving allocations which signals that ex post 

classes have a more even distribution of this type of students instead of a more pronounced tracking. 

The reallocation of low-income students followed a more expectable pattern. The share of low-income 

classmates, being estimated to improve education performance of non-low-income ones, could be expected to be 

evenly distributed across classes so to spread the most this “good” input. Indeed, for both welfare improving 

allocations the ex post dispersion levels were severely reduced. 

The reallocation of students with internet at home does not seem to follow a clear pattern as its dispersion 

across classes increases and decreases depending on the welfare improving allocation. However, the associated 

estimated effect is small, hence less likely to drive any given reallocation exercise. The same goes for the percentage 

of male classmates as its estimated effect is also small in magnitude, nevertheless the pattern is clearer and is that of 

a more even distribution of males in the ex post welfare improving allocations. 

Another possible explanation for the small increments (per student) yielded by the welfare improving 

allocations (beyond those related with computational speed constraints) is the relatively contained changes in class 

composition that students have experienced from the ex ante to the welfare improving ex post ones. Table C.2 

documents that on average students experienced class compositional changes varying mostly between 5 to 15 p.p. 

(either as a decrease or as an increase as per the values on the column of standard deviation; the mean change in the 

                                                      
in differentials) as the best allocation matrix it may induce does not have to be the same as the ones induced by other objective 

functions that do not take in consideration merely the worst off student. 
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percentage of class compositions cancels out to zero). These small figures (lower than the hypothetical 20 p.p. 

variations performed in the previous subsection) imply small variations in performance differentials. 

Finally, even if on average the general student is estimated to be benefited by the welfare improving allocations 

it is important to gain a sense of which specific types of students are made better or worse off. Table C.3 provides 

that information. Its first row replicates the values found in Table C.1 relative to the average aggregate change in 

achievement per student induced by each objective function. The remaining rows show the same value but now for 

each specific type of student. Given that using the Rawlsian objective function no welfare improving allocation was 

found the ex ante one is the ex post one, hence its column present zeros as there are no changes in achievement. The 

utilitarian and quasi-utilitarian cases are more interesting because although both are welfare improving for the general 

student they present specific types that were “sacrificed”. Namely, the top achievers who are hurt by both of these ex 

post allocations. In contrast, the low achievers are, in both improving allocations, clear “winners” as the gains for 

them are above those for the general student. Moreover, under the quasi-utilitarian improving allocation, there are 

other types of “sacrificed” students, namely, those with at least one past retention and those with internet at home. In 

turn, those with no previous retentions, the low-income, those without internet at home and females are the types that 

come as gainers across both welfare improving allocations. 

6 Conclusion 

Using a rich micro dataset that permits to follow students through grades 5 and 6 from four different cohorts 

across schools, classes and teachers, I find evidence that (i) changes in class composition cause variations in general 

cognitive achievement (as measured by the average of the standardized scores of mathematics and reading national 

exams); (ii) these effects are heterogeneous across several of the compositional dimensions depending on students’ 

own characteristics; (iii) using an utilitarian and a quasi-utilitarian social welfare functions there exist welfare 

improving allocations of students across the classes of a representative school (though the improvements are small 

in magnitude due to the restrictions imposed to improve computational speed); and (iv) the movements of students 

across classes induced by the welfare improving reallocations not always follow the pattern one could assume to be 

taken by just looking at the estimated ceteris paribus compositional effects. This last point suggests that indeed it is 

necessary to take in account all the students and all of their particular characteristics as any reallocation exercise is 

very likely to not be a ceteris paribus one (it will affect those that are reallocated as well as those that were and will 

be exposed to the reallocated students). 

Future work should improve the robustness of the welfare improving allocations by alleviating the restrictions 

that were imposed to increase computational speed. A robust estimation of causal (heterogeneous) class composition 

effects and a robust algorithm that delivers non-marginal welfare improving allocations of students across classes 

(within a given school) are important ingredients to establish class composition rearrangement as a valid policy for 

improving general cognitive achievement (with the additional benefit that it should be financially costless to 

implement). 
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Appendix 

 

Table A.1 - Organization of the Portuguese public education system and temporal limits of the dataset in terms of 

national exams (mathematics and reading). 

 

Year of Exams (scale 

in integers) 

Low-Stakes 
      

2007 to 2012 

(1-5) 

  
2007 to 2011 

(1-5) 

            

                    

High-

Stakes 

      
2013 to 2015 

(0-100) 

  
2012 to 2015 

(0-100) 

    
2007 to 2016  

(0-100) 

    
2007 to 2016  

(0-200) 
                

Grades 1 2 3 4 5 6 7 8 9 10 11 12 

Cycles 1st Cycle 2nd Cycle 3rd Cycle 4th Cycle 

ISCED (2011) Level 1 - Primary Education Level 2 - Lower Secondary Education Level 3 - Upper Secondary Education 

Types of Schools 

Type-1   

  Type-2   

  Type-3 

  Type-4 

 

 

Table A.2 – Decomposition of students by top baseline achiever status. 

 

 
 

 

Table A.3 – Descriptive statistics of the (leave out) class composition variables and of their respective individual 

level categorical variables 

 

    N   Mean   Std. Dev.   Min   Max 

Average 6th Grade Score  234,970   55.4  17.4  1.5  100 

Top Baseline Achiever  234,970   0.31  0.46  0  1 

Leave-Out % Top Baseline Achievers  234,970   27.2  19.3  0  100 

Leave-Out % Top Baseline Achievers (if Top Baseline Achiever)  73,347   37.3  19.7  0  96.2 

Leave-Out % Top Baseline Achievers (if Low Baseline Achiever)  161,623   22.6  17.2  0  100 

No Previous Retentions  234,970   0.97  0.18  0  1 

Leave-Out % No Previous Retentions  234,970   82.2  11.9  0  100 

Leave-Out % No Previous Retentions (if No Previous Retentions)  226,890   82.4  11.7  0  100 

Leave-Out % No Previous Retentions (if at Least 1 Previous Retention)  8,080   75.2  14.6  0  100 

Low-Income  234,970   0.43  0.50  0  1 

Leave-Out % Low-Income  234,970   47.8  18.3  0  100 

Leave-Out % Low-Income (if Low-Income)  102,163   53.8  17.4  0  100 

Leave-Out % Low-Income (if Non-Low-Income)  132,807   43.2  17.7  0  100 

Internet  234,970   0.57  0.50  0  1 

Leave-Out % Internet  234,970   55.6  24.7  0  100 

Leave-Out % Internet (if Internet)  133,308   65.3  19.9  0  100 

Leave-Out % Internet (if No Internet)  101,662   42.8  24.5  0  100 

Male  234,970   0.50  0.50  0  1 

Leave-Out % Males  234,970   52.8  10.5  0  95.5 

Leave-Out % Males (if Male)  116,455   52.9  10.4  0  91.2 

Leave-Out % Males (if Female)  118,515   52.7  10.6  3.6  95.5 

Foreigner  234,970   0.09  0.28  0  1 

Leave-Out % Foreigners  234,970   9.7  11.5  0  91.4 

Leave-Out % Foreigners (if Foreigner)  20,374   19.5  15.6  0  85.4 

Leave-Out % Foreigners (if Non-Foreigner)   214,596    8.8   10.5   0   91.4 

 

 

 

 

Academic Year 2011/12   Academic Year 2012/13   Academic Year 2013/14   Academic Year 2014/15 
  N  Percent    N  Percent    N  Percent    N  Percent 

Top Achievers  24,443  41.5  Top Achievers  26,889  45.3  Top Achievers  13,914  24.6  Top Achievers  8,101  13.5 

Low Achievers  34,500  58.5  Low Achievers  32,435  54.7  Low Achievers  42,570  75.4  Low Achievers  52,118  86.6 

All   58,943   100   All   59,324   100   All   56,484   100   All   60,219   100 
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Table B.1 – Estimates of the education production functions with and without heterogeneous (leave-out) class 

composition effects. 

 

 
 

Table C.1 – “Better” allocations’ results and within-school distributional changes 

 

    Ex Post   
Ex Ante 

  Utilitarian  Quasi-Utilitarian  Rawlsian  

Aggregate Change in Achievement (in SD)  0.46  0.50  0.00  -- 

Average Aggregate Change in Achievement per Student (in SD)  0.006  0.002  0.000  -- 

             

Class Composition (not leave out) at School Level  Mean S.D.  Mean S.D.  Mean S.D.  Mean S.D. 

% Top Baseline Achievers  19.4 8.6  20.0 7.5  a a  18.6 6.2 

% No Previous Retentions  93.1 5.2  92.4 5.3  a a  92.7 6.1 

% Low-Income  37.5 0.0  37.1 4.2  a a  38.5 12.1 

% Internet  48.6 22.1  49.6 14.1  a a  48.1 16.3 

% Males  56.9 7.1  56.1 7.9  a a  57.7 9.2 

% Foreigners  1.4 2.0  1.4 2.0  a a  1.4 2.0 

a - exactly same values as in the ex ante allocation 

 

 

 

 

 

 

 

 

 

 

    
 Model Without Heterogeneous 

(leave-out) Class Composition Effects  

  
Model With Heterogeneous (leave-

out) Class Composition Effects 
   

   (1)  (2) 

% Top Baseline Achievers  -0.0035***   

% Top Baseline Achievers 
× Top Baseline Achiever    -0.0024*** 

× Low Baseline Achiever    -0.0021*** 

% No Previous Retentions  0.0015*   

% No Previous Retentions 
× No Previous Retentions    0.0040*** 

× At Least One Previous Retention    0.0010 

% Low-Income  -0.0026***   

% Low-Income 
× Low-Income    -0.0010 

× Non-Low-Income    0.0023*** 

% Internet  0.0002   

% Internet 
× Internet    0.0004 

× No Internet    -0.0013*** 

% Males  -0.0007   

% Males 
× Male    -0.0010* 

× Female    0.0008 

% Foreigners  0.0028***   

% Foreigners 
× Foreigner    0.0006 

× Non-Foreigner    0.0007 

Average Class Size  
✓ 

 
✓ 

Average Teachers' Age Fixed Effects  
✓ 

 
✓ 

Grade 6 Math Teacher Fixed Effects  
✓ 

 
✓ 

Grade 6 Reading Teacher Fixed Effects  
✓ 

 
✓ 

Grade 5 Math Teacher Fixed Effects  
✓ 

 
✓ 

Grade 5 Reading Teacher Fixed Effects  
✓ 

 
✓ 

Grade 6 School-by-Cohort Fixed Effects  
✓ 

 
✓ 

Grade 5 School-by-Cohort Fixed Effects  
✓ 

 
✓ 

Grade 6 Parents' Job Status-by-Grade 5 Parents' Job Status Fixed Effects  
✓ 

 
✓ 

Grade 6 Parents' Education Level-by-Grade 5 Parents' Education Level Fixed Effects  
✓ 

 
✓ 

Grade 6 Low-Income Status-by-Grade 5 Low-Income Status Fixed Effects  
✓ 

 
✓ 

Grade 6 Internet At Home Status-by-Grade 5 Internet At Home Status Fixed Effects  
✓ 

 
✓ 

Male Fixed Effect  
✓ 

 
✓ 

Foreigner Fixed Effect  
✓ 

 
✓ 

Grade 1 Entering Age-by-Grade 4 Number Accumulated Retentions-by-Grade 4 Math Score-by-Grade 4 Reading Score Fixed Effects  
✓ 

 
✓ 

Adjusted R2  61.9%  60.2% 

N   234,970    234,970  

Notes: Significance levels: * 5%, ** 1%, *** 0.1%. Robust standard errors clustered at the class level. The dependent variable is the individual student average between math and reading standardized scores of end of grade 6 national exams. 

Each model also contains dummies equal to 1 if student i peers' measures were computed using partial class information, i.e. if up to 1/3 classmates of i had missing information about their baseline scores or their birthdate (necessary to compute 

the percentage of classmates of i with at least one past retention), as well as a dummy equal to 1 if student i teacher average age measure was computed using partial teacher age information, i.e. if 1 (out of a combination of 3 or 4) teacher had 

missing information with respect to age. The class composition variables (i.e. the percentages of classmates of student i with a given characteristic) were computed in a leave-out fashion, i.e. excluding student i, and averaged across grades 6 

and 5 classes of student i. Models of columns (1) and (2) refer to equations (1) and (2), respectively (see subsection 4.1). Only classes with 10 or more students were used. Given the large number of fixed effects both models were computed 

using Stata command reghdfe which identifies the connected set (necessary for model identification) and drops singleton observations (to improve correct estimation of the variance-covariance matrix), see Correia (2017). 
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Table C.2 – Changes of (leave out) class compositions experienced by students. 

 

Utilitarian 

Changes in (leave out) Class Composition  Mean  S.D.  Min  Max 

Δ % Top Baseline Achievers  0.0  7.9  -16.3  11.6 

Δ % No Previous Retentions  0.0  5.6  -13.0  7.1 

Δ % Low-Income  0.0  11.9  -18.8  12.1 

Δ % Internet  0.0  20.6  -51.0  31.8 

Δ % Males  0.0  9.1  -21.5  19.8 

Δ % Foreigners  0.0  2.4  -4.5  4.3 

Quasi-Utilitarian 

Changes in (leave out) Class Composition  Mean  S.D.  Min  Max 

Δ % Top Baseline Achievers  0.0  8.4  -14.0  11.1 

Δ % No Previous Retentions  0.0  7.1  -15.8  12.1 

Δ % Low-Income  0.0  11.7  -21.1  18.0 

Δ % Internet  0.0  19.2  -39.4  23.1 

Δ % Males  0.0  13.5  -26.3  15.4 

Δ % Foreigners  0.0  2.6  -4.5  4.3 

Rawlsian 

Changes in (leave out) Class Composition  Mean  S.D.  Min  Max 

Δ % Top Baseline Achievers  0  0  0  0 

Δ % No Previous Retentions  0  0  0  0 

Δ % Low-Income  0  0  0  0 

Δ % Internet  0  0  0  0 

Δ % Males  0  0  0  0 

Δ % Foreigners   0   0   0   0 

 

 

Table C.3 – Decomposition of the welfare gains and losses per type of student. 

 

    Average Aggregate Change in Achievement per Student (in SD) 

Type of Student  Utilitarian  Quasi-Utilitarian  Rawlsian 

Overall  0.006  0.002  0.000 

Top Baseline Achiever  -0.001  -0.016  0.000 

Low Baseline Achiever  0.008  0.006  0.000 

No Previous Retentions  0.007  0.005  0.000 

At Least 1 Previous Retention  0.004  -0.037  0.000 

Low-Income  0.009  0.005  0.000 

Non-Low-Income  0.005  0.000  0.000 

Internet At Home  0.004  -0.009  0.000 

No Internet At Home  0.009  0.012  0.000 

Male  0.005  0.000  0.000 

Female  0.008  0.005  0.000 

Foreigner  0.011  -0.016  0.000 

Non-Foreigner   0.006   0.002   0.000 
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