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We ask whether Cohen and Glashow’s very special relativity model for Lorentz violation might be
modified, perhaps by quantum corrections, possibly producing a curved space-time with a cosmological
constant. We show that its symmetry group ISIM(2) does admit a 2-parameter family of continuous
deformations, but none of these give rise to noncommutative translations analogous to those of the
de Sitter deformation of the Poincaré group: space-time remains flat. Only a 1-parameter family
DISIMb�2� of deformations of SIM(2) is physically acceptable. Since this could arise through quantum
corrections, its implications for tests of Lorentz violations via the Cohen-Glashow proposal should be
taken into account. The Lorentz-violating point-particle action invariant under DISIMb�2� is of Finsler
type, for which the line element is homogeneous of degree 1 in displacements, but anisotropic. We derive
DISIMb�2�-invariant wave equations for particles of spins 0, 1

2 , and 1. The experimental bound, jbj<
10�26, raises the question ‘‘Why is the dimensionless constant b so small in very special relativity?’’
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Local Lorentz and CPT invariance are fundamental
assumptions in almost all current physical theories. It is
important to test these assumptions experimentally, lest
evidence of new physics beyond the standard model be
overlooked. Current experimental limits on violations of
local Lorentz and CPT invariance are extremely stringent.
Thus what is required are novel alternative non-Lorentz
invariant theories, capable of circumventing these tight
limits. Recently, Cohen and Glashow [1] have made the
ingenious proposal that the local laws of physics need not
be invariant under the full Lorentz group, generated by
M��, but rather, under a SIM(2) subgroup, whose Lie
algebra is generated by (M�i;Mij;M�� � M03), (with i
and j ranging over the values 1 and 2) [2]. This they
referred to as very special relativity. Taking the semidirect
product with the translations �P�; P�; Pi� gives an 8-
dimensional subgroup of the Poincaré group called
ISIM(2) [3].

The great merits of Cohen and Glashow’s suggestion are
that CPT symmetry is preserved and that ISIM(2) leaves
invariant no vector or tensor fields, known as ‘‘spurion
fields.’’ For example, a spurionic vector field may be
thought of as the 4-velocity of the æther [4]. In fact
SIM(2) consists of those Lorentz transformations ��

�
leaving invariant the null direction n� � ���, i.e., such
that ��

�n
� � �n� for some � which depends on ��

�.
The generator M�� acts by sending n� ! �n�. This
scaling symmetry implies that one cannot take n� to define
the actual 4-velocity of the æthereal motion, but only its
direction, thus rendering the presence of such an æther
more difficult to detect. A theory of this kind appears to be
compatible with all current experimental limits on viola-
tions of Lorentz invariance and spatial isotropy [1,5].

Subsequently, Cohen and Freedman [6], and later
Lindström and Roček [7], showed that ISIM is compatible
with supersymmetry. There are several ways one might try
to incorporate gravity. One is where we make local the
ISIM(2) algebra [8]. Another is to consider a global space-
time and to see if it is compatible with very special rela-
tivity ideas. In this case there appear to be difficulties [9].
For example, the maximal subgroup of SO�4; 1�, the
isometry group of de Sitter space-time, is SIM(3), which
is 7-dimensional [10]. SIM(3) contains SIM(2) as a sub-
group, but the stabilizer, or tangent-space group, is SO(3),
not SIM(2).

Alternatively, we recall that Poincaré group admits a
unique deformation into the de Sitter (anti-de Sitter) group
[11], with �P�;P�� �

1
3 �M��, where the parameter � is

the cosmological constant. One may ask whether ISIM(2)
admits a similar deformation, such that the translations P�
become noncommutative. If so, the coset of the deformed
group divided by SIM(2) (or its deformation) could be
thought of as a curved space-time.

Here we show that there are indeed continuous defor-
mations of ISIM(2), but in all of them the translations
remain commutative. Among them is a 1-parameter family
of deformations, which we denote by DISIMb�2�. For any
values of b this is an 8-dimensional subgroup of the 11-
dimensional Weyl group, i.e., the semidirect product of
dilatations with the Poincaré group. Subgroups with differ-
ent values of b are not isomorphic. Interestingly, if one
constructs a point-particle action for the deformed groups
DISIMb�2�, using the methods of nonlinear realizations
[12], one arrives at Lagrangians of Finsler form, first
proposed by Bogoslovsky (see [13] and references
therein). Therefore the deformation of very special relativ-
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ity leads in a natural way to Finsler geometry. In the
remainder of this paper we shall outline the derivation of
these results, and comment on their physical significance.

Continuous deformations of Lie algebras have been
extensively explored, by both mathematicians and physi-
cists, under the rubric of Lie-algebra cohomology [11].
Here we give an elementary account based on the
Cartan-Maurer equations, which provides a simple and
easily automated scheme for determining the deformations
of a given Lie algebra g with structure constants Cabc. We
suppose there exists a family of deformed Lie algebras gt
parametrized by a continuous variable t, with structure
constants

 Ĉ a
b
c�t� � Cabc � tAabc � t2Babc � � � � : (1)

We are only interested in deformations which do not arise
merely from a (t-dependent) change of basis:

 Ĉ a
b
c�t� � SbeCd

e
f�S
�1�da�S�1�fc; Sab 2 GL�n;R�:

(2)

Expanding the Jacobi identity Ĉd
e
�a�t�Ĉb

d
c��t� � 0 in

powers of t gives rise at linear order to

 Cd
e
�aAb

d
c� � Ad

e
�aCb

d
c� � 0: (3)

A first-order deformation A will be trivial if Sab�t� � �ab �
t�a

b � � � � and

 Aa
b
c � �b

eCa
e
b � Ce

b
c�

e
a � Ca

b
e�

e
c: (4)

Introducing a basis �a of left-invariant 1-forms of the
original algebra, such that d�a � � 1

2Cb
a
c�

b ^ �c, we
define vector-valued 1-forms and 2-forms �a 	 �b�

b

and Aa 	 1
2Ab

a
c�b ^ �c and a matrix-valued 1-form

Cab 	 �cCcab. Defining D 	 d� C ^ , the first-order de-
formation equations (3) may then be written as

 DA � 0; A � �D�; (5)

where the second equation expresses the requirement of
nontriviality of the deformation. Because D2 � 0 as a
consequence of the Jacobi identities of the undeformed
algebra, dC� C ^ C � 0, the differential D may be re-
garded as a coboundary operator acting on g-valued forms.
The nontrivial linearized deformations are therefore in 1-1
correspondence with the second cohomology group
H2�g; g�.

If a nontrivial linear deformation A is found, the next
step is to investigate the Jacobi identities at order t2. These
read

 Cd
e
�aBb

d
c� � Bd

e
�aCb

d
c� � Ad

e
�aAb

d
c� � 0; (6)

and can be reexpressed in terms of the vector and matrix
valued forms as

 DB� A 
 A � 0;

�A 
 A�e 	 1
2Ad

e
�aAb

d
c��

a ^ �b ^ �c:
(7)

This equation can only be solved if D�A 
 A� � 0, which
implies that A 
 A must be both D closed and exact. Thus
there is a potential obstruction to finding a deformation at
quadratic order: A 
 A should not have a projection in the
third cohomology group H3�g; g�. There are analogous
equations to (7) at higher orders in t. If H3�g; g� vanishes,
then the equations may be solved at all nonlinear orders. If
H3�g; g� is nonzero, then the higher-order analogues of
(A 
 A) should have no projections into it.

We start with the ISIM(2) Cartan-Maurer relations

 

d�� � ��i ^ �i � ��� ^ ��; d�� � ���� ^ ��;

d�i � �ij�12 ^ �j � �� ^ ��i;

d��i � �ij�12 ^ ��j � ��� ^ ��i; d���� 0;

d�12 � 0; (8)

where g�1dg � ��P� � �
�P� � �

iPi � �
�iM�i �

���M�� � �12M12. Defining N 	 M�� and J 	 M12,
the corresponding nontrivial Lie brackets are therefore

 �N;P�� � �P�; �N;M�i� � �M�i;

�J; Pi� � �ijPj; �J;M�i� � �ijM�i;

�M�i; P�� � Pj; �M�i; Pj� � ��ijP�:

(9)

Expanding the vector-valued 2-form Aa on a basis of 2-
forms and solving the resultant linear equations in (5)
reveals that there is a 2-parameter family of nontrivial
solutions, i.e., H2�isim�2�; isim�2�� is 2-dimensional.
Substituting this linearized solution into the full Jacobi
identities, we find that it gives a 2-parameter family of
exact Lie algebras of the leading-order form (8), with
additional terms as follows:

 d�� ! d�� � a�12 ^ �� � b��� ^ ��; (10)

where � � ��;�; i�. Here a and b are arbitrary constant
parameters.

As in the undeformed case, the algebra here has the
structure of a semidirect sum of sim�2� and the trans-
lations R4, i.e., sim�2� 32 R4. While the M�i act on the
translations as in the undeformed case, the adjoint action of
the generators N and J is given by �N;P�� � P�CN

�
� and

�J; P�� � P�CJ
�
�, where the matrices CN and CJ are

given, respectively, by
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 �

b� 1 0 0 0
0 b� 1 0 0
0 0 b 0
0 0 0 b

0
BBB@

1
CCCA;

�a 0 0 0
0 �a 0 0
0 0 �a �1
0 0 1 �a

0
BBB@

1
CCCA:

Minkowski space-time may be thought of as the symmetric
space E�3; 1�=SO�3; 1� with SO�3; 1� playing the role of
the tangent-space group, and the tangent space being
spanned by the translations P�. In our case we wish to
replace SO�3; 1� by SIM(2). However, it follows by expo-
nentiating CJ that J does not generate a compact SO�2�
subgroup unless the deformation parameter a vanishes.
From now on we shall restrict attention to this a � 0
case, for which we denote the deformed algebra by
disimb�2�.

The nontrivial Lie brackets for disimb�2� are given by

 �N;P�� � ��b� 1�P�; �N;Pi� � �bPi;

�N;M�i� � �M�i; �J; Pi� � �ijPj;

�J;M�i� � �ijM�i; �M�i; P�� � Pj;

�M�i; Pj� � ��ijP�:

(11)

The deformed group DISIMb�2� is a subgroup of the Weyl
group with an action on Minkowski space-time given by
translations, and boosts in the �i directions, together with
a combination of a boost in the �� direction and a
dilatation. Specifically, the deformed generator N acts as

 xi ! ��bxi; x� ! �1�bx�; x� ! ��1�bx�:

(12)

The group DISIMb�2� does not leave invariant the stan-
dard Minkowski line element ds � ����dx�dx��1=2, but
rather, the Finslerian line element

 ds � �2dx�dx� � dxidxi��1�b�=2�dx��b

� ����dx�dx���1�b�=2�n�dx��b: (13)

This is of the form first suggested by Bogoslovsky [13].
We shall now construct, using the theory of nonlinear

realizations, a DISIMb�2�-invariant Lagrangian for a point
particle. We parametrize the coset DISIMb�2�=SO�2� as

 g � ex
�P�ew

iM�iewN; (14)

which implies that

 g�1dg � dwN � ewdwiM�i � e�w�1�b�dx�P�

� ew�1�b��dx� � widxi � 1
2w

iwidx��P�

� ewb�dxi � widx��Pi

� ���N � ��iM�i � ��P� � ��P� � �iPi;

(15)

where ����; ��i; ��; ��; �i� are the restrictions (or pull-
backs) of the invariant 1-forms on the group DISIMb�2� to
the coset DISIMb�2�=SO�2�.

In order to construct a DISIMb�2�-invariant Lagrangian
with worldline reparametrization invariance, we allow the
Goldstone coordinates �w;wi; x�� to depend on the world-
line coordinate � (see, for example, [14]). We shall restrict
our attention to Lagrangians that are linear in the left-
invariant 1-forms pulled back to the particle’s worldline.
Requiring invariance under SO�2� then implies that we
must discard ��i and �i, and thus we consider the
Lagrangian
 

L � 	ew�1�b�� _x� � wi _xi � 1
2w

iwi _x�� � 
e�w�1�b� _x�

� � _w; (16)

where 	, 
, and � are arbitrary constants. Since the last
term is a total derivative, we can discard it. Eliminating the
nondynamical Goldstone coordinates w and wi, one ob-
tains, in physical units, the Lagrangian

 L � �m����� _x� _x���1�b�=2��n� _x��b: (17)

Calculating the canonical momenta from (17), we obtain
the DISIMb�2�-invariant dispersion relation or
Hamiltonian constraint

 ���p�p� � �m2�1� b2�

�
�

n�p�
m�1� b�

�
2b=�1�b�

: (18)

Note that for b � 0 we recover the ordinary free relativistic
particle, which does not see the lightlike direction n�. The
cases b � �1 are special, and are best investigated directly
from Eq. (16). The conclusion is that for b � 1 we obtain
the massless equation ���p�p� � 0, while for b � �1
we have _xi � 0 and _x� � 0, and the dynamics is trivial in
this case.

Upon quantization, p� ! �i@�, we obtain a general-
ized Klein-Gordon equation of the form

 ����m2�1� b2�

�
in�@�
m�1� b�

�
2b=�1�b�

� � 0: (19)

This is in general a nonlocal equation, since it involves
fractional derivatives. Although the special case b � 1
appears to give a local modification of the usual Klein-
Gordon equation involving a term linear in n�@� this is
really equivalent to the standard massless Klein-Gordon
equation (as discussed earlier for this special value of b).
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Specifically, the first-order term can be removed by making
the phase transformation �! �e�imn�x�=2.

The free Maxwell equations are also invariant under the
action of the Weyl group and so they too are clearly
invariant under DISIMb�2�. The invariance of A�dx

�,
together with (12), implies that �A�; A�; Ai� !
��b�1A�; �b�1A�; �bAi�. Since d4x! ��4bd4x any in-
variant action must have L! �4bL. Thus we can add a
mass term, giving

 L � �
1

4
F��F

�� �
1

2
m2

�
�n�A��2

A�A�

�
b
A�A

�: (20)

If b � 1 we can further include a non-Lorentz invariant
Chern-Simons term [15], Lcs �

1
2 ‘
�1����n�A�F�,

where ‘ is an arbitrary length scale.
Since it is a subgroup of the Weyl group, DISIMb�2�

leaves invariant the massless Dirac Lagrangian.
Bogoslovsky and Goenner [16] have pointed out that add-
ing to the massless Dirac Lagrangian a term of the form

 m
��

in� � �� 
�  

�
2
�
b=2

�  (21)

gives a nonlinear DISIMb�2�-invariant generalization of
the massive Dirac equation. This follows from the scalings
 ! �3b=2 , ��@� ! �b��@� under the action of the
generator M��. As with the generalized Klein-Gordon
equation (19), the case b � 1 is special: The additional
term may then be removed by a phase transformation of the
form  !  eimn�x� . Note however that, as discussed be-
low, experimental bounds constrain jbj to be very much
less than 1.
CPT will be preserved if an operator exists in the com-

plexification of DISIMb�2� that reverses x�. As discussed
for ISIM(2) in [1], a candidate CPT operator is ei�Jei	N.
This has the following action on the momenta:

 �P�;P�;P1� iP2� ! e�b	�e�	P�; e
	P�; e

i��P1� iP2��:

(22)

Requiring that P� ! �P� implies that

 	 � i��n� � n��; � � ��2n3 � n� � n��;

b �
1� n� � n�
n� � n�

;
(23)

for integers n�, n�, and n3. Although b � 1� p=q is
rational, with p odd, one may always choose n� and n�
so that b is arbitrarily close to any given real number.

We have shown that ISIM(2) admits no deformations
with de Sitter-like noncommutative translations. However,
it is interesting to note that ISIM(2), unlike the Poincaré
group but like the Galilei group, admits a central extension:
the cohomology group H2�isim�2�;R� is nontrivial. We
find that it is generated by ��� ^ �12, and so may adjoin to
isim�2� a central element Z, whose only nontrivial Lie
bracket is

 �N; J� � Z: (24)

Thus unlike the translations, the boosts and rotations can
be rendered noncommutative. This also works for the full
2-parameter family of deformations of ISIM(2). Including
the extra generator Z, appending e�Z, and proceeding with
the construction of an invariant particle Lagrangian leads
to unmodified equations of motion, since the only effect is
to add a total derivative _� to the Lagrangian.

It was argued in [13] that æther-drift experiments imply
jbj< 10�10. However, it follows from (17) that every
particle has a mass tensor mij � �1� b�m��ij � bninj�.
Hughes-Drever–type limits [17] on the anisotropy of iner-
tia then potentially imply that jbj< 10�26. However, this
depends on the precise form of the interactions [18,19].
Since a nonvanishing b could arise through quantum cor-
rections, very special relativity faces the question, analo-
gous to the puzzle posed by the cosmological constant in
traditional relativity: ‘‘Why is b so small?’’
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[8] G. W. Gibbons, J. Gomis, and C. N. Pope (work in

progress).
[9] D. Z. Freedman (private communication).

[10] J. Patera, R. T. Sharp, P. Winternitz, and H. Zassenhaus, J.
Math. Phys. (N.Y.) 18, 2259 (1977).

[11] M. Levy-Nahas, J. Math. Phys. (N.Y.) 8, 1211 (1967).
[12] S. R. Coleman, J. Wess, and B. Zumino, Phys. Rev. 177,

2239 (1969).
[13] G. Bogoslovsky, arXiv:0706.2621.
[14] J. Gomis, K. Kamimura, and P. West, Classical Quantum

Gravity 23, 7369 (2006).
[15] A. J. Hariton and R. Lehnert, Phys. Lett. A 367, 11 (2007).
[16] G. Y. Bogoslovsky and H. F. Goenner, Phys. Lett. A 323,

40 (2004).
[17] S. K. Lamoreaux et al., Phys. Rev. Lett. 57, 3125 (1986);

T. E. Chupp et al., Phys. Rev. Lett. 63, 1541 (1989).
[18] G. Y. Bogoslovsky, Nuovo Cimento Soc. Ital. Fis. B 77,

181 (1983).
[19] J. Fan, W. D. Goldberger, and W. Skiba, Phys. Lett. B 649,

186 (2007).

GENERAL VERY SPECIAL RELATIVITY IS FINSLER . . . PHYSICAL REVIEW D 76, 081701(R) (2007)

RAPID COMMUNICATIONS

081701-5


