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Abstract: Natural Inflation is a model for inflation where the potential of the inflaton is V (φ) =
Λ4[1 + cos(φ/f)] and thus exhibits a discrete shift symmetry φ → φ + 2πf . Successful inflation
can be achieved if f >∼ fewMPl and Λ ∼ mGUT ∼ 1016 GeV. However, the latest observational
constraints put Natural Inflation in tension with data. We propose in this letter the introduction of
a non-minimal coupling to gravity γ2(φ)R that respects the characteristic shift symmetry and the
periodicity of the potential. We show that the agreement with cosmological data can be substantially
improved, obtaining a scale Λ ∼ 1015 − 1016 GeV, and furthermore, in certain cases, successful
inflation can be achieved even for a periodicity scale smaller than the Planck scale.

I. INTRODUCTION

Inflation is a model of quasiexponential expansion of
the Universe proposed by Alan Guth in 1981 [1] thought
to last from 10−36 to 10−32 s after the initial singularity.
This model gives an explanation to some cosmological
conundra that the conventional Big Bang scenario could
not account for: the flatness of the observable Universe,
the so-called horizon problem, the abundance of cosmo-
logical relics and the mechanism to produce density per-
turbations that would result in the current large-scale
structure of the Universe. The standard inflationary sce-
nario relies on the presence of an scalar field at those
times, the inflaton. Its origin and nature has given rise to
a lot of different proposals and models. The idea shared
by most of them is that the potential energy of the field
would propel the Universe to a quasi-de Sitter stage of
expansion, required to solve the aforementioned issues.

The flatness of the Universe can be explained by infla-
tion since it would make unappreciable a non-zero cur-
vature: the size of the observable Universe after infla-
tion would be small compared to the radius of curvature,
making the local patch of the Universe appear flat or al-
most flat. The horizon problem, which refers to the fact
that regions of the cosmic microwave background (CMB)
that were supposedly causally disconnected are in ther-
mal equilibrium, can also be solved: these regions were
initially in causal contact, but inflation brought them
beyond the horizon; thus, when they reenter the horizon
we see them in thermal equilibrium. Inflation can also
explain why we had not been able to detect exotic par-
ticles, such as magnetic monopoles, predicted by Grand
Unification Theories (GUTs) to have formed during the
initial high temperatures (relics): the expansion would
have diluted its numerical density, making it improbable
to find one of such particles inside the observable Uni-
verse. Finally, the quantum fluctuations experienced by
the inflaton generate density perturbations and, conse-
quently, gravitational instabilities that give rise to the
large-scale structure of the Universe.

One of the models for inflation is called Natural Infla-
tion (NI), proposed by Freese et al. [2]. The inflaton in

this case has a potential V (φ) = Λ4[1 + cos(φ/f)]. In
this letter we consider a minimal extension of the origi-
nal model of NI by considering the simplest non-minimal
coupling in the action of the inflaton to gravity γ2(φ)R,
where R is the Ricci scalar and γ is a function of the
inflaton, which preserves the characteristic discrete shift
symmetry φ → φ + 2πf of the original model and gives
Einstein gravity, i.e. γ2 = 1, at the minimum of the
potential. The motivation to consider this extension is
two-folded. First, and on a more practical level, the pre-
dictions of natural inflation are in tension with the latest
Planck results [3]. Therefore, it is interesting to under-
stand what kind of extensions could alleviate the tension.
Second, in NI in order to have successful inflation f needs
to be super-Planckian, what could be problematic. As
we will show, this simple and well motivated extension
comes with a set of interesting predictions which can ad-
dress both issues at the same time.

II. NON-MINIMAL COUPLING TO GRAVITY

In order to consider the Natural Inflation scalar field
φ non-minimally coupled to gravity, we start from the
following action:

S =

∫
d4x
√
−g
(

1

2
M2
P γ

2(φ)R− 1

2
gµν∂µφ∂νφ− V (φ)

)
(1)

with V (φ) = Λ4
(

1 + cos (φ/f)
)

, and

γ(φ)2 ≡ 1 + α
(

1 + cos
φ

f

)
(2)

where R is the Ricci scalar, Λ is normally taken to be of
the order of the GUT scale, as we will obtain in this letter,
f is a mass scale for the inflaton potential which normally
has to take trans-Planckian values to achieve successful
inflation, and α is a dimensionless parameter. Notice
that α > − 1

2 for the Planck scale MP γ to be well-defined,
corresponding the value α = 0 to the conventional case
of Natural Inflation with a minimal coupling to gravity.
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The usual way to get rid of the non-minimal coupling
from the action is to go to the so-called Einstein frame
by means of a conformal transformation of the metric [4]:

g̃µν = γ2gµν (3)

We obtain the transformed integration measure
√
−g̃ =

γ4
√
−g and the inverse metric g̃µν = γ−2gµν . Then,

using the fact that the original Ricci scalar can be written
as R = γ2

[
R̃+6g̃µν∇̃µ∇̃ν ln γ−6g̃µν(∂µ ln γ)(∂ν ln γ)

]
[4],

the action in terms of the quantities computed with the
new metric becomes:

S =

∫
d4x
√
−g̃
(

1

2
M2
P R̃−

1

2
γ−2g̃µν∂µφ∂νφ

−V (φ)

γ4
+ 3M2

P

(
g̃µν∇̃µ∇̃ν ln γ − g̃µν(∂µ ln γ)(∂ν ln γ)

))
(4)

The term g̃µν∇̃µ∇̃ν ln γ = ∇̃µ∇̃µ ln γ = ∇̃µ(∂µ ln γ)
is a 4-divergence, giving only a boundary contribution
that does not affect the equations of motion. Dropping
this term, taking into account that (∂µ ln γ)(∂ν ln γ) =
γ−2∂µγ∂νγ and considering our definition of γ2:

∂µγ =
1

2γ

∂γ2

∂φ
∂µφ = − 1

2γ

α

f
sin

φ

f
∂µφ, (5)

we see that the conformal transformation leads to a non-
canonical contribution to the kinetic term and a modifi-
cation of the potential. Explicitly, the resulting action in
the Einstein frame reads:

S =

∫
d4x
√
−g̃
(

1

2
M2
P R̃

−1

2

(
2γ2f2 + 3M2

Pα
2sin2 φ

f

2γ4f2

)
g̃µν∂µφ∂νφ−

V (φ)

γ4

) (6)

By redefining the scalar field using the transformation

dχ

dφ
=

√
2γ2f2 + 3M2

Pα
2sin2 φ

f

2γ4f2
(7)

we obtain the action in the Einstein frame in terms of
the canonical field χ and an effective potential U(χ) ≡
V (φ(χ))/γ(φ(χ))4:

S =

∫
d4x
√
−g̃
(

1

2
M2
P R̃−

1

2
g̃µν∂µχ∂νχ− U(χ)

)
(8)

Now, varying the action with respect to the metric and
the field gives, respectively, Einstein field equations and
the Klein-Gordon equation on a curved background:

Rµν −
1

2
Rgµν =

1

M2
P

Tµν (9)

gµν∇µ∇νχ+
dU

dχ
= 0 (10)

where we have omitted the tildes since we will always
work in the Einstein frame with the canonical field χ
from now on, and Tµν and Rµν are the stress-energy
tensor associated to the scalar field and the Ricci ten-
sor, respectively. These equations dictate the dynamics
of spacetime and the scalar field and, by making appro-
priate considerations described in the next section, it is
possible to achieve an inflationary scenario giving rise to
the current observed properties of the universe.

III. SLOW-ROLL ANALYSIS

We will start assuming that the scalar field χ is spa-
tially homogeneous, i.e. the spatial gradients are zero.
This consideration gives a diagonal stress-energy tensor
for the field which takes the form of a perfect fluid, with
an energy density given by T 00 = ρ = 1

2 χ̇
2 +U(χ) and a

pressure given by T ii = p = 1
2 χ̇

2 − U(χ) (a dot denotes
differentiation with respect to time). Furthermore, de-
manding an expanding, homogeneous and isotropic uni-
verse yields the Friedmann-Robertson-Walker metric for
the spacetime:

ds2 = −dt2 + a2(t)(dr2 + r2dΩ2) (11)

where a is the scale factor, dΩ2 is the metric on S2 and
we have also assumed flat spacelike hypersurfaces, since
it is one of the fundamental consequences of inflation. We
could have included a non-zero curvature, but its effects
would be made negligible soon after inflation starts.

Using the FRW metric given by (11), Einstein field
equations give the Friedmann equations:

H2 ≡
(
ȧ

a

)2

=
ρ

3M2
P

(12)

ä

a
= Ḣ +H2 = − 1

6M2
P

(ρ+ 3p) (13)

where H is the Hubble parameter, and the Klein-Gordon
equation becomes:

χ̈+ 3Hχ̇ = −dU
dχ

(14)

We are interested in an accelerated expansion. The re-
quirement ä/a > 0 is equivalent to ρ+ 3p < 0. This con-
dition will be satisfied by the scalar field whenever the
potential energy sufficiently dominates over the kinetic
contribution, and it will take place if the potential of the
field is very flat. In this case, the field will start rolling
down the potential with a small velocity and acceleration
(slow-roll) and ρ ≈ −p ≈ U . Then, the Friedmann equa-
tion and the equation of motion of the field become in
the slow-roll approximation [5]:

3M2
PH

2 = U (15)
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3Hχ̇+
dU

dχ
= 0 (16)

In order to perform the slow-roll analysis, the slow-
roll parameters ε and η need to be introduced [5]. They
measure the slope and the curvature of the potential,
respectively, and the necessary conditions for the slow-
roll approximation to hold are ε� 1 and |η| � 1. These
parameters are given by:

ε =
M2
P

2

1

U2

(
dU

dχ

)2

(17)

η = M2
P

1

U

(
d2U

dχ2

)
(18)

On the other hand, slow-roll inflation will end when
ε ' 1. It is possible then to infer the value of the field
at the end of inflation χend, as the value that fulfills the
slow-roll end condition.

The number of e-foldings N experienced by the scale
factor (an expansion of a factor eN ) during inflation is
given by the following expression:

N ≡
∫ aend

a0

d ln a = − 1

M2
P

∫ χend

χ0

U

(
dU

dχ

)−1

dχ (19)

where the last equality is reached making use of the equa-
tion of motion of the field in the slow-roll approximation.
In order to solve the horizon problem, the observable
CMB scales are considered to have exited the horizon
N ∼ 60 before the end of inflation. By imposing a de-
sired number of e-foldings, the corresponding value for χ
at that time, χ0, can be found.

This can be used to obtain relevant results of the model
that can be compared with observational data: the scalar
spectral index ns and the tensor-to-scalar ratio r. These
two parameters are related to the primordial perturba-
tions produced by inflation. The scalar spectral index
informs about the variation of the amplitude of the den-
sity fluctuations when changing the scale in considera-
tion. Bearing in mind that in cosmology length scales
λ are given in terms of its corresponding wavenumber
k = 2π/λ, the dependence of the amplitude of density
fluctuations on the considered scale in terms of the spec-
tral index ns is written as [3]:

Pζ(k) = A2kns−1 (20)

where Pζ is called the amplitude power spectrum and A2

is the amplitude of the density fluctuations at a partic-
ular scale. We will use its observed value later on. One
can see that the case ns = 1 would correspond to a scale-
invariant spectrum of density perturbations, and current
observational data from Planck satellite place its value
at 0.960 ± 0.007 [3]. On the other hand, the tensor-to-
scalar ratio gives a comparison between the amplitude of

gravitational-wave perturbations, also predicted by infla-
tion, and the density perturbations. Taking into account
that some cosmological measurements are given at a par-
ticular pivot scale k∗, Planck gives the measurement of
r at the scale k∗ = 0.002 Mpc−1, denoting it by r0.002,
and its value has been constrained to be r0.002 < 0.11
at 95% CL by Planck [3]. These two observables can
be written in terms of the slow-roll parameters ε and η
as ns ≈ 1 − 6ε + 2η and r ≈ 16ε [5]. We will evaluate
them at the value χ0 obtained by imposing a number of
e-foldings N . Therefore, we will be implicitly saying that
the scale k∗ = 0.002 Mpc−1, where observational data is
obtained, exited the horizon N e-foldings before the end
of inflation. In our results we will use N = 55, N = 60
and N = 65.

If we now take a look at the effective potential in the
Einstein frame (Fig. 1), it presents a progressive flatten-
ing as α approaches 0.5, and when α > 0.5 new extrema
appear. Moreover, the periodicity of the potential in the
Einstein frame as a function of the canonical field χ is
different from the one corresponding to the original field.
This issue will be addressed in the following section.

We will constrain the analysis to the interval of the po-
tential shown in Fig. 1, but its shift symmetry allows to
perform the analysis with respect to any other maximum.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2
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FIG. 1: Normalized effective potential U/Λ4 in the Einstein
frame as a function of χ/f . The symmetry of the potential is
not shown.

IV. RESULTS

As it has been said, the potential in the Einstein frame
as a function of the canonical field χ presents a different
periodicity when considering different values for α. This
can be interpreted as the appearance of an effective scale
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f̃ , giving a periodicity 2πf̃ different from 2πf , the peri-
odicity before the frame transformation. We will refer all
the results to this new scale from now on. If we define as
L the increment in units of f of the field χ from χ = 0 to
the absolute minimum (see Fig. 1), the effective scale f̃
is related to the scale f through the following expression:

f̃

MP
=
L

π

f

MP
(21)
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FIG. 2: Results obtained for the scalar spectral index ns and
the tensor-to-scalar ratio r0.002. Each colored solid line cor-
responds to a different value of α and an increasing value of
f̃ . There are two lines per color corresponding to N = 55
(left) and N = 60 (right). Some representative values of f̃
are denoted with bullets, together with their corresponding
value, with lines connecting N = 55 and N = 60 representing
these constant f̃ . The shaded purple regions are the observa-
tional constraints from Planck data [3] while the orange are
the constraints from Planck combined with Bicep-Keck and
BAO data sets [6]. The outer regions represent 95% CL and
the inner ones 68% CL.

We have to ensure the model satisfies additional ob-
servational data. The Planck collaboration gave the ob-
served value of the amplitude power spectrum at k∗ =
0.05 Mpc−1 [3]:

A2 =

(
H2

2πχ̇

)2

k∗

= 2.2× 10−9 (22)

We will neglect the difference ln(0.05)/ ln(0.002) ≈ 3 in
the number of e-foldings between k = 0.002 Mpc−1 and
k = 0.05 Mpc−1, and thus evaluate A2 at the same field
values χ0 used to compute ns and r. Now, using the
Friedmann equation and the equation of motion of the
field, both in the slow-roll approximation, allows us to
put a constraint between the values of Λ, α and f . We
then use this constraint to select the value of the scale Λ
corresponding to given values of α and f .
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FIG. 3: Results obtained for ns and r0.002 for α near the
threshold value α = 0.5. Solid lines denote N = 55 (left) and
N = 65 (right). The shaded purple regions are the observa-
tional constraints from Planck data [3] while the orange are
the constraints from Planck combined with Bicep-Keck and
BAO data sets [6]. The outer regions represent 95% CL and
the inner ones 68% CL.

In Figs. 2 and 3 we show the results for ns and r for
different values of α, f̃ and N after solving numerically
eqs. (7) and (19). In the same figures we also show the
68% and 95%CL constraint contours coming from the
Planck data [3], in orange, and from the combination
of Planck with baryon acoustic oscillations (BAO) and
Bicep-Keck collaboration data sets [6], in purple. We
will take the later constraints as a benchmark for the
rest of the analysis unless otherwise stated.

The results show that α > 0 suppresses the amount
of tensor modes (gravitational-wave perturbations) with
respect to NI. This is expected since increasing α lowers
and flattens the height of the potential, as can be seen
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from Fig. (1), being reflected on the value of ε. This
suppression alleviates some of the current tension of NI
with the observational constraints: the values for ns and
r0.002 with a non-minimal coupling to gravity are found
to be well within the 95% CL region for a wide range
of parameters and, for N = 60 and N = 65, the values
reach the 68% CL region. On the other hand, negative
values of α worsen the compatibility with observations,
compared to the ones predicted by NI, with predictions
excluded from the 95% CL region. In all further analysis,
this case will be omitted.

For N = 60 we find, for instance, that: α = 0.5 gives
results in the 68% CL region, when 4MP

<∼ f̃ <∼ 11MP ;

for α = 1 this happens for 8MP
<∼ f̃ <∼ 14MP ; and in the

case of α = 20 the region is reached when 22 <∼ f̃/MP ≈
30MP . Generically, and except for α ' 0.5, in order to
obtain predictions in agreement with Planck data, the
scale f̃ needs to be increased when α is also increased.

When α gets close to the threshold value 0.5 both the
scales f̃ and f can be slightly sub-Planckian. In Fig. 3 we
show such cases, which are characterized by very small
tensor modes, 10−5 <∼ r ' 10−4. This range of tensor
modes is unobservable by near future experiments.

When considering values for α and f̃ that give spectral
indices ns and tensor-to-scalar ratios r laying inside the
68% CL region of the Planck data (see Fig. 2 and 3),
Λ ∼ 1015 − 1016 GeV is obtained in accordance to the
expected value for the GUT scale. For example, for α =
0.4 and f̃ ≈ 8MP we obtain Λ ≈ 1.8× 1016 GeV, and for
α = 0.49 and f̃ ≈ 0.8MP , Λ ≈ 2.4× 1015.

V. CONCLUSIONS

We have considered in this letter a non-minimal cou-
pling between the inflaton and gravity, in the context

of Natural Inflation, that respects the symmetry φ →
φ + 2πf . Assuming a simple cosine form, with only
one extra dimensionless parameter α ' O(1), we have
obtained a model that gives rise to predictions for the
spectral index ns and the tensor-to-scalar ratio r that
lay within the 68% CL region of Planck data. This is
an improvement over the predictions made by minimally
coupled Natural Inflation, which are excluded from this
region. The parameters that give rise to these results
yield a scale Λ ∼ 1015 − 1016 GeV, consistent with the
expected value of the GUT scale. Another interesting
consequence of the non-minimal coupling is that infla-
tion can be driven for smaller values of f . However, in
the Einstein frame the new periodicity is f̃ . In terms of
this new scale we have shown that for α close to 0.5 we
can have f̃/MP

<∼ 1, within the 68% CL region. In this
case, considerably smaller values of the tensor-to-scalar
ratio 10−5 <∼ r <∼ 10−4 are obtained.
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