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Summary  34	
    35	
Objective: Molecular epidemiology techniques in tuberculosis (TB) can identify high-36	

risk strains that are actively transmitted. We aimed to implement a novel strategy to 37	

optimize the identification and control of MDR-TB in a specific population. 38	

Methods: We developed a strain-specific-PCR tailored from whole-genome-39	

sequencing (WGS) data to track a specific multidrug-resistant prevalent strain in 40	

Equatorial Guinea (EG-MDR).  41	

Results: The PCR was applied prospectively on remnants of GeneXpert reaction 42	

mixtures owing to the lack of culture facilities in EG. In 147/158 cases (93%), we 43	

were able to differentiate between infection by the EG-MDR strain or by any other 44	

strain and found that 44% of all rifampicin resistant-TB cases were infected by EG-45	

MDR. We also analyzed 93 isolates obtained from EG 15 years ago, before MDR-TB 46	

had become the problem it is today. We found that 2 of the scarce historical MDR 47	

cases were infected by EG-MDR. WGS revealed low variability—6 SNPs acquired by 48	

this strain over 15 years—likely owing to the lack of a national program to treat 49	

MDR-TB. 50	

Conclusions: Our novel strategy, which integrated WGS analysis and strain-specific 51	

PCRs, represents a low-cost, rapid, and transferable strategy that allowed a 52	

prospective efficient survey and fast historical analysis of MDR-TB in a population.  53	

  54	
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Introduction    55	
 56	

Molecular epidemiology studies in tuberculosis (TB) are generally based on 57	

the universal application of a fingerprinting tool, mycobacterial interspersed repetitive 58	

units-variable number of tandem repeats (MIRU-VNTR), [1] to all the 59	

Mycobacterium tuberculosis (MTB) isolates in a population. MIRU-VNTR makes it 60	

possible to identify clusters of epidemiologically linked isolates and thus alerts to the 61	

existence of ongoing transmission chains that should be targeted by control measures.  62	

Once the most relevant ongoing transmission chains have been identified in a 63	

population, efforts can be prioritized to survey transmission hotspots and to track the 64	

transmission of the strains involved. In some cases, specific molecular tools have been 65	

developed to track selected strains [2‐7].  We proved the efficiency and flexibility of 66	

a new strategy based on strain-specific PCRs targeting specific SNPs identified from 67	

whole genome sequencing [8,	9].	68	

We sought a suitable scenario to further evaluate these novel surveillance 69	

strategies, specifically, a context where a single high-risk multidrug-resistant (MDR) 70	

strain could have a relevant role at the population level. We opted for Equatorial 71	

Guinea, a small, densely populated country in central Africa, recently revealed as a 72	

MDR hot-spot [10]. Indirect data point to the presence of a prevalent strain leading 73	

MDR transmission in this country. We found particularly relevant data [11]	 showing 74	

that all 10 Equatorial Guinean immigrants who arrived in Spain in different years and 75	

were residing in 6 different cities shared the same MDR strain, thus suggesting 76	

multiple independent importations of a highly prevalent MDR strain from the country 77	

of origin.  78	

In the present study, we go one step further in the application of novel 79	

strategies based on WGS. Our objectives were as follows: i) to evaluate the efficiency 80	
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of the strategy in the most relevant challenge that TB control offers today, namely, 81	

monitoring of transmission of multidrug resistance; and ii) to activate a fully 82	

comprehensive design that included both the prospective surveillance of transmission 83	

of MDR strains in a specific population and to perform a retrospective historical 84	

analysis to locate the time-point when the culprit MDR strain emerged in that 85	

population.  86	

  87	
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Methods 88	

 89	

Clinical specimens 90	

For the prospective study, we used the remnants of the mixtures of sputa with 91	

GeneXpert MTB/RIF Sample Reagent (Cepheid, Sunnyvale, CA, USA) used to 92	

perform GeneXpert tests in a study running between February 1st and April 30th 2015 93	

in Equatorial Guinea [10]. The study followed the standard ethical regulations. All 94	

smear-postive specimens from consecutive TB cases notified to the 2 main TB units 95	

in the country during the study period were collected. Sputa were mixed 1:2 with 96	

Sample Reagent and the reaction mixtures were stored at room temperature until 97	

delivery to our laboratory in Madrid, Spain. Deliveries were organized to ensure a 98	

maximum delay of 20 days between specimen collection in Equatorial Guinea and 99	

reception in our laboratory. 100	

 On arrival, mixtures were used to perform the GeneXpert assay. Three 101	

milliliters of the remaining mixture was used for DNA purification with a column-102	

based purification method (QIAamp DNA Mini Kit; Qiagen, Courtaboeuf, France) 103	

and eluted in 75 µl of buffer AE. We selected all the remnants from reaction mixtures 104	

in which GeneXpert detected MTB, 105	

 For the retrospective analysis, we took a 100-µl microliter aliquot from the 106	

isolates stored frozen at –70ºC, boiled it for 13 minutes, and centrifuged it at 13,000 107	

rpm. The supernatant was taken for analysis.   108	

 109	

 110	

 111	

  112	
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Whole genome sequencing 113	

 114	

WGS from 3 representative isolates was performed as indicated elsewhere 115	

[12]. We followed the standard library preparation protocol and used HiSeq 2000 116	

(GATC Biotech, Constance, Germany) and MiSeq (FISABIO, Valencia, Spain), 117	

which generated 51-300–bp paired-end reads. SNP analysis was performed following 118	

a workflow described elsewhere [12].   119	

Strain-specific SNPs were identified after comparing the SNPs extracted from 120	

WGS data with those from an in-house database of 219 strains representing the 121	

geographic and phylogenetic diversity of MTB complex [13]. We finally selected 122	

synonymous SNPs mapping in essential genes to be targeted in the ASO-PCR 123	

analysis to ensure their stability as genetic markers [14].  124	

 125	

Strain-specific ASO-PCR design 126	

 127	

We designed a multiplex ASO-PCR to target 4 SNPs  (Table)specific to the 128	

Equatorial Guinea MDR strain (EG-MDR strain), in order to rule out false negatives, 129	

as recommended elsewhere [15]. We designed 2 selective primers (SNP2 and SNP4) 130	

to target the alleles found in the surveyed strain, whereas the remaining 2 primers 131	

(SNP1 and SNP3) targeted the alleles from the non-surveyed strains (Table). Our 132	

design generated 2 different patterns depending on whether the strain tested was EG-133	

MDR or another strain.  134	

The assay conditions were 1.6 mM MgCl2, 1%DMSO, 0.8 µM of SNP1 135	

primers, 0.3 µM of SNP2 primers, 0.09 µM of SNP3 primers, 0.11 µM of SNP4 136	

primers, 200 µM dNTPs, and 0.4 µL AmpliTaq Gold (Applied Biosystems, Foster 137	
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City, California, USA). The PCR conditions were 95°C for 10 minutes followed by 138	

30 cycles (95°C for 1 minute, 65°C for 1 minute, and 72°C for 1 minute) and 72°C for 139	

10 minutes. 140	

 141	

MIRU-VNTR analysis 142	

 143	

The isolates were genotyped using the MIRU-15 multiplex PCR [1] as 144	

described in Alonso et al. [16], but with 30 amplification cycles. The MIRU-VNTR 145	

loci order was as described elsewhere [11]. 146	

 147	

Susceptibility testing 148	

Susceptibility to isoniazid, rifampin, and second-line anti-TB drugs was 149	

assessed using Anyplex II MTB/MDR/XDR Detection (Seegene Inc, Seoul, Korea). 150	

  151	
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Results 152	

 153	

Optimization of a strain-specific PCR for a prevalent Equatorial Guinean MDR 154	

strain 155	

 156	

 An immigrant who had recently arrived to Spain from Equatorial Guinea was 157	

diagnosed with MDR-TB (resistant to rifampicin, isoniazid, ethambutol, and 158	

pyrazinamide) in October 2014 in our institution. Her MTB isolate was analyzed 159	

using MIRU-VNTR, and the pattern (244214232324115153522722) was identical to 160	

the one, belonging to Lineage 4, described as prevalent in EG immigrants in Spain 161	

[11].  162	

The isolate was analyzed by whole genome sequencing, and the comparison 163	

with the reference strain (the most recent common ancestor of MTB [13,	 17])	164	

revealed 868 SNPs. These SNPs were compared with those found in a global database 165	

of representative MTB strains circulating worldwide, and, after filtering out shared 166	

SNPs, we kept 85 SNPs as potentially strain-specific for EG-MDR strain. Four of 167	

these SNPs (Table) were finally selected to be targeted in a newly designed ASO-168	

PCR (Figure 1).  169	

 170	

The specificity of our EG-MDR strain-specific ASO-PCR was tested on a 171	

selection of strains, including those from the newly diagnosed immigrant and a 172	

selection of 15 unrelated strains randomly selected from our collection (one lineage 2, 173	

one lineage 6 and the remaining lineage 4). The expected ASO-PCR patterns were 174	

obtained in all cases. 175	

 176	
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Prospective application of the ASO-PCR  177	

 178	

When the optimized EG-MDR strain-specific PCR was about to be 179	

prospectively applied on new cases diagnosed in Equatorial Guinea, we found 180	

ourselves faced with a challenging situation, namely, the absence of cultured MTB 181	

isolates resulting from the lack of capacity in laboratories in Equatorial Guinea. The 182	

only material available was the remnants from the reaction mixtures from an 183	

assessment of resistance based on GeneXpert that was simultaneously running in the 184	

country.   185	

The ASO-PCR was applied to 158 purified remnants from the GeneXpert 186	

reaction mixtures from consecutive respiratory specimens. The evaluators were blind 187	

to the GeneXpert resistance data. An interpretable result was obtained in 147 cases 188	

(93.6%) (Figure 1b). The EG-MDR strain was identified in 12 cases (8%) of all those 189	

with an ASO-PCR result. All specimens with an EG-MDR pattern corresponded to 190	

strains shown to be rifampicin resistant by GeneXpert, and 44.4% of all cases with 191	

resistance in Equatorial Guinea corresponded to infections with the EG-MDR strain.  192	

A mixed pattern including the EG-MDR and non-EG-MDR profiles was found 193	

in 1 case. When the ASO-PCR results were compared with those from GeneXpert, the 194	

11 specimens without an interpretable ASO-PCR result corresponded to specimens 195	

with low (8 specimens) or medium (3 specimens) bacterial load.  196	

MIRU-VNTR for the specimens with an ASO-PCR pattern corresponding to 197	

the EG-MDR strain was performed from the scarce amount of purified DNA that was 198	

available after applying the ASO-PCR. Given the limited material available, a 199	

complete 15-loci MIRU-VNTR pattern was obtained from 5 of the 12 specimens with 200	

a result that was consistent with the EG-MDR strain; only incomplete patterns (9-12 201	
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loci) were obtained for the remaining 7 specimens. In all cases, the allelic values 202	

coincided with those of the EG-MDR strain. As for the specimen with a mixed EG-203	

MDR/non–EG-MDR pattern by ASO-PCR, the mixed infection was confirmed as 204	

indicated by double alleles at 5 loci, with one of the mixed MIRU-VNTR profiles 205	

identical to that of the EG-MDR strain.  206	

In addition to the consecutive Equatorial Guinean specimens, the ASO-PCR 207	

was also applied to a selection of 6 Equatorial Guinean patients who had travelled to 208	

Cameroon to receive treatment for resistant TB. In these cases, the ASO-PCR was 209	

performed on the remnants received from the purified DNA used for the Genotype 210	

(Hain) test performed to confirm resistance in Cameroon. The ASO-PCR revealed 211	

that all 6 cases were infected by the EG-MDR strain, thus confirming its high 212	

prevalence among resistant cases. 213	

Second-line susceptibility patterns were obtained in a selection of 10 cases 214	

infected by the EG-MDR strain. In 1 case, we detected resistance to fluoroquinolones 215	

in addition to resistance to rifampicin and isoniazid. 216	

 217	

Retrospective application of the ASO-PCR  218	

Our objective was to evaluate whether the EG-MDR strain, which is highly 219	

prevalent in Equatorial Guinea today, or alternatively the parental strain preceding the 220	

acquisition of resistance was also present 15 years previously, when multidrug 221	

resistance was not yet a major problem in the country.  222	

The same ASO-PCR used to prospectively survey the EG-MDR in Equatorial 223	

Guinea was now applied to a collection of MTB isolates obtained 15 years ago from a 224	

population-based survey to assess resistance in Equatorial Guinea between March 225	

1999 and February 2001. We selected 93 isolates, which included 1 representative 226	
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isolate of 18 of the 21 clusters detected in that study using IS6110-RFLP [18],	 and the 227	

remaining orphan strains. These included the viable resistant strains from that study (9 228	

isoniazid-resistant, 2 MDR, and 2 polyresistant). 229	

An interpretable pattern was obtained from a crude boiled extract in all 93 230	

isolates (Figure 2). The EG-MDR pattern was identified in 2 cases, which 231	

corresponded to 2 of the 8 MDR cases in that study (1 new isoniazid+rifampicin–232	

resistant case and a previously treated isoniazid+rifampicin+streptomycin–resistant 233	

case). MIRU-VNTR confirmed that the pattern from the 2 cases corresponded to the 234	

EG-MDR strain.  235	

 The 2 representative isolates for the EG-MDR strain identified 15 years ago 236	

were analyzed by WGS to compare data with those from the representative strain 237	

circulating today. All 3 shared the mutations conferring resistance to rifampicin 238	

(position 761155CT; rpoB S450L) and isoniazid (position 1673425CT; inhA 239	

promoter mutation –15). One of the two historical isolates showed 2 SNPs not shared 240	

by the others (position 1472358CT, which confers resistance to streptomycin, and 241	

position 2155198GA [katG G305D]). The 2014 isolate yielded 6 SNPs not found in 242	

the historical representatives: embB (M306I), which is involved in ethambutol 243	

resistance, pcnA (X187R), which is involved in pyrazinamide resistance, and 4 244	

additional SNPs in hemC, gidB, ackA, and Rv2090.  245	

 246	

  247	



  12

DISCUSSION    248	

 249	

The implementation of molecular epidemiology strategies in various countries 250	

has demonstrated the usefulness of this approach for identifying recent transmission 251	

chains and the extent to which they occur in contexts where they have been missed by 252	

standard contact-tracing analysis. TB control programs could benefit from being able 253	

to prioritize the often limited resources they assign to transmission control activities 254	

by applying them to the transmission events responsible for the highest number of 255	

secondary cases in their population. Strain-specific PCRs have been developed to 256	

track the most efficiently transmitted strains in a population [2‐5]. However, the 257	

design of strain-specific PCRs requires in-depth knowledge of the genetic 258	

composition of the strains targeted for surveillance in order to identify specific genetic 259	

features or genotypic rearrangements to be targeted. Today, WGS enables us to 260	

identify specific genetic features, namely, SNPs, in any strain, thus expanding our 261	

capacity to design strain-specific PCRs to track the most efficiently transmitted strains 262	

in a population.  263	

We recently proved the effectiveness of these novel strategies for specifically 264	

tracking strains transmitted efficiently in a population with a high proportion of 265	

immigrants [8]	 and for rapid interrogation of a retrospective collection to determine 266	

the presence of an outbreak strain [9]. Another example of the application of specific 267	

PCRs in refining the definition of an outbreak has been published elsewhere [15]. 268	

In the present study, we go one step further, by integrating these 2 challenges 269	

(prospective efficient survey and fast historical analysis) into a single problem, which 270	

is representative of the highest alert in TB from a clinical/epidemiological point of 271	

view, namely, the transmission of multidrug resistance. The application of our 272	
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strategy in this scenario enabled us to illustrate the predominance of a single MDR 273	

strain in Equatorial Guinea 15 years after its emergence. 274	

Our simple and fast test was able to identify cases infected by the prevalent 275	

EG-MDR strain, even in a challenging analytical situation, because cultured isolates 276	

were not available. Our test performed well with the remnants of GeneXpert reaction 277	

mixtures, and we observed a high percentage of interpretable results (93%), 278	

considering that remnants were stored at room temperature for several weeks before 279	

being sent to our laboratory for analysis.  280	

The potential of GeneXpert remnants as templates for molecular epidemiology 281	

analysis had not been previously tested. Our results highlight the value of the 282	

combination of cheap and easy-to-implement surveillance tests with the stabilized 283	

extracted material offered by GeneXpert, which is used worldwide, even in most low-284	

resource countries. Replicating our strategy could improve our limited knowledge of 285	

the molecular epidemiology of TB in many low-resource settings, even in those where 286	

culture facilities are not available.  287	

One interesting additional finding was the identification of a mixed infection 288	

involving an EG-MDR strain and another strain. Although data available were not 289	

sufficient to rule out the involvement of cross-transmission it illustrates the ability of 290	

the technique to identify simultaneous infections by more than one strain.  291	

One added value of our strategy was that it enabled us to integrate the 292	

prospective survey of the prevalent EG-MDR strain with parallel historical tracking of 293	

its emergence in the country. The simplicity of our design facilitated transfer of the 294	

reagents to the laboratory in Barcelona, where the isolates obtained in the first 295	

molecular epidemiology study run in Equatorial Guinea 15 years ago were stored 296	

[18]. The sensitivity of the test made it possible to analyze the stored isolates directly 297	
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from a crude boiled extract, without the need to subculture or purify DNA, thus 298	

making the test fast and inexpensive.  299	

Two cases were infected by the EG-MDR strain in the retrospective collection. 300	

During those years most cases were monoresistant to isoniazid, and only 8 cases 301	

(3.4%) were MDR [19]. One of the 2 cases was newly diagnosed and the other 302	

previously treated.  303	

Our findings provide a snapshot of 2 relevant moments in the history of 304	

multidrug resistance in Equatorial Guinea. The first was the emergence of an MDR 305	

strain, most likely in a treated case 15 years ago. In the second, we see the dramatic 306	

consequences of this emergence because today, the same strain is responsible for half 307	

of all resistant cases in the country, most likely because of transmission, as indicated 308	

by the fact that the EG-MDR strain is mainly isolated from new cases (data not 309	

shown). 310	

The identification of representatives of the EG-MDR strain 15 years apart 311	

offers an extraordinary opportunity to analyze the variability acquired by an MDR 312	

strain over a long period. Surprisingly, for an MDR strain that was actively 313	

transmitted over such a long period (when compensatory mutations and additional 314	

variability are likely to be expected) [20,	 21], we observed low variability based on 315	

SNPs within the same range as that expected in a standard recent transmission chain 316	

occurring over a limited period [22]. This finding is consistent with one of the 317	

peculiarities of Equatorial Guinea: the lack of a national program to treat MDR-TB 318	

means that the EG-MDR strain has not been exposed to efficient therapeutic 319	

regimens, thus obviating the selection of variability that had likely occurred under 320	

standard anti-TB selective pressure.  321	
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It is particularly worrying that, compared with its historical ancestor, the EG-322	

MDR strain developed additional resistance within this prolonged transmission 323	

dynamic (ethambutol and pyrazinamide, 1 isolate; fluoroquinolones, 1 isolate). The 324	

acquisition of resistance to fluoroquinolones is probably due to the frequent use of 325	

ciprofloxacin in many African countries, as recently stated in a report alerting to the 326	

cross-border migration of MDR cases from Equatorial Guinea to Cameroon to receive 327	

treatment [23]. In a sample of patients who migrated to Cameroon, all members were 328	

infected by the EG-MDR strain, thus highlighting the importance of tracking the 329	

potential transmission of the EG-MDR strain in the neighboring country. The final 330	

objective of our strategy, which was based on tailoring a strain-specific PCR to 331	

address local transmission challenges, is to transfer the tests to be implemented 332	

locally. We are collaborating with Bamenda hospital in Cameroon to implement the 333	

EG-MDR–specific PCR locally and optimize rapid analysis in situ. 334	

 Our study enabled us to analyze the dramatic consequences of the emergence 335	

of a MDR strain 15 years ago that is responsible for half of the MDR cases in 336	

Equatorial Guinea today. Transmission was likely enhanced by the dramatic 337	

socioeconomic transformation of the country and the lack of a national program to 338	

treat MDR-TB. This worrying situation must be appropriately managed to minimize 339	

the impact on both neighboring countries and on host countries receiving immigrants 340	

from this area. Our novel strategy, which integrated WGS analysis and strain-specific 341	

PCRs, could facilitate surveillance and represent a model for new control programs 342	

based on low-cost, rapid, and transferable tests tailored to the challenges of various 343	

populations. 344	

 345	

 346	
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Figures 452	

1. a) Amplification patterns obtained from EG-MDR strain-specific multiplex ASO-453	

PCR results for control EG-MDR and non–EG-MDR strains. The amplicons 454	

corresponding to each of the 4 targeted SNPs are indicated. b) A selection of EG-455	

MDR and non-EG-MDR strains. MW, 100-bp ladder. 456	

 457	

2. Results obtained after applying the EG-MDR strain-specific multiplex ASO-PCR 458	

to a selection of historical isolates. The isolates identified as EG-MDR or non-EG-459	

MDR are indicated. MW, 50-bp ladder. 460	

 461	

 462	
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