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Variational analysis of the Gross-Neveu model in an S space

J. Soto
Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
(Received 14 September 1987)

The Gross-Neveu model in an S' space is analyzed by means of a variational technique: the
Gaussian effective potential. By making the proper connection with previous exact results at finite
temperature, we show that this technique is able to describe the phase transition occurring in this
model. We also make some remarks about the appropriate treatment of Grassmann variables in

variational approaches.

The main aim of this paper is to point out that the
variational approach known as the Gaussian effective po-
tential' (GEP) is able to correctly describe phase transi-
tions, at least in a particular well-studied theory: the
Gross-Neveu (GN) model.> The GN model has already
been analyzed in R space by means of the GEP in Ref. 3
where, apart from correctly reproducing the well-known
features of the model in the large-N limit (chiral-
symmetry breaking and mass generation), close analogies
to the so-called precarious phase in the (A¢*), scalar
theory* were found. Since the behavior of precarious
(A¢*), theory has been recently studied in R*x S space®
and a phase transition to a trivial theory has been found
for small enough S! radius, we feel it is worthwhile hav-
ing a check of the GEP reliability in describing phase
transitions in this model which is soluble in the large-N
limit. This will be achieved by making the proper con-
nection with the exact results at finite temperature.® We
also make some remarks about the validity of different
Gaussian Ansdtze and the appropriate treatment of
Grassmann variables in the GEP approach.

The Gross-Neveu Hamiltonian reads

H= fsldx{——Tr"(x)‘yoylaltﬁ“(x)—%gé[#"(x)yol,b"(x)]zl )
(1)
{7i(x),¥0(p)} =i88,,8(x —p), a,b=1,...,N .

We shall use as a variational Ansatz the wave functional
J

in the Schrodinger picture:

Wiy; Yo, To» Q]=const X exp
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where Y{(x), y¥g;, 7i(x), m§; are considered the genera-
tors of a Grassmann algebra with involution [¢¥] (x)
= —imi(x), 1/}8,-‘=—i778,~] (Ref. 7). The + (—) means
projection onto the positive- (negative-) energy subspaces
of the operator —iy%'9,+Q7°% Q=Q(¢g,m,) being
a  variational = “mass”  parameter, and ¥,
=(W | ¢4x)| W), 78, ={W | 7%x) | W). On arbitrary
functionals W[;1,m,] a scalar product that maps

( WW’; Yo, Tols W'[#”H[’o"’ro])“’R WW'“/’O"’TO)
~ [ Dy W T ,m)
X Wl[d’;wO"’TO]

can be defined;*° in our cases [(2) and later (4)]
Ryw (o, m) ER™ as can be seen by changing ¥ — ¢+,
in the functional integral. In a way completely analo-
gous to Ref. 3 creation and annihilation operators can be
defined and the field and momentum operators can be
expressed in terms of these:!°
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i (x)=my; + 2 "=2_w 2a)(k,9.)[u' (k,Q)b%k,Q)e™  +urX(k,Q)a " )e ]
{ak,Q),a™k,Q)}={b%k,Q),b™(k",Q)} =20(k,Q)5,, L , 3)

a®(k, Q)| W)=b%k,Q) | W)=0, Whvom,Ql=(¢|W),

ok, Q)=k*+0H)"? k=Q2n+1)r/L ,

where u;(k,Q),v;(k,Q) are the usual Dirac spinors; k =(2n +1)7 /L implements the physical antiperiodic boundary

conditions for fermions and L is the circumference length.

To justify Ansatz (2) we have proceeded as follows.

We started by considering the most general translational-

invariant Gaussian wave functional satisfying (W | ¢ | W) =1, ( W | 7| W) =7, which reads

Wv;vg,mg, Al=const X exp

a ba
Al(x —p)=—A%(y —x) .
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We computed next the expectation value of H and ob-
served that in the large-N limit it reduces to

1

H)=Nt o
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where the Hamiltonian U(N) symmetry was exploited to
trivialize the color dependence; a=i(78y%3)/N; and
the trace is taken over space and Dirac indices. Minimi-
zation of (5) is rather subtle, the reason being its Dirac
structure similar to that of a free fermionic theory of
mass
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where we know that the minimization of ( H ) leads A to
two different end points in the two different positive- and
negative-energy subspaces.>® This suggests computing
the traces of (5) in suitable variational positive- and
negative-energy subspaces with respect to the operator
—y% %'+ m(k)y° in momentum space [#i(k) is a vari-
ational function] while considering A proportional to the
identity in each subspace. If we neglect the Grassmann
character of a and treat it as a real number, we find
after functional minimization that A, — o, A_—0,
i (k)=Q (k independent), the final result being identical
to that found by starting from (2): namely,

(H)/N=2[-T¥(Q)+Q¥5(Q)]

A
+—ZB—[aZ——4QIo"(Q)a+4921(L,Z(Q)] ,
(6)

Ap=glN, IHQ)=L S [0k, Q)]" .

L

1
20(k,Q)

Taking into account the Grassmann character of /7 and
A (both even functions of ¥, 7, to be found by variation-
al analysis) brings not only technical problems but also
conceptual ones. One way to proceed would be expand-
ing (H ), m, and A in terms of the relevant subset of the
Grassmann algebra {a"}, n=0,...,2N in (), i.e.,

2N 2N
(H)= 3 (H),a", m= 3 m,a",
n=0 n=0

and

2N

A= E Anan ’

n=0
and minimizing each term (H ), with respect all m,
and A,. However, since a” do not have a definite sign
for n > 1 due to their Grassmann nature, minimization is
only meaningful for (H ),. For (H),, n>1 we will fol-
low instead the  stationarity  principle, i.e.,
8(H),/6m;=86(H),/8A, =0, n=1,...,2N, k=0,
..., 2N (in contrast with min{mk,Ak‘ (H),). In the

general case stationarity of (H ) under the restrictions
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(¢) =1y, (m)=m, amounts to saying that we are look-
ing for approximate eigenfunctionals of the Hamiltonian
in the presence of external sources,!! while, in the non-
Grassmann case, minimization selects the eigenfunction-
al that best approaches the ground state in the presence
of those sources. Here we expect minimization of (H ),
to accomplish just this. We have not attempted to fully
derive (6) from (5) following the above guidelines, but
have instead limited ourselves to verify that they lead to
(6) up to order a? which is actually the only thing that
we will need below.

One should be aware, however, that for finite N the
expression corresponding to (5) is much more involved
so the simpler Ansatz (2) is not expected to give sensible
results. In fact, we have checked that for a fixed-cutoff
theory (2) reproduces the Callan-Symanzik B function at
one-loop level only if N— o, while perfect agreement
for all N is found if one uses the general Gaussian Ansatz
(4).

From now on let us focus on (6). The divergences ap-
pearing there are regularized by changing

S -3

n=-—oo n=-—ow
where A is an ultraviolet cutoff. Each I(Q) can be
separated in an L-independent part [I,(Q)] that con-
tains all the divergences and an L-dependent finite part
[85(Q)], THQ)=I,(Q)+85(Q) (Ref. 5). The effective
potential itself can also be separated in an L-independent
part which is that found in Ref. 3 and a finite (when A is
removed) L-dependent part

Vola,W)=(H)/N=V&(a,Q)+VE(a,Q),

2 /A2
e-—k /A ,

2

. _ o
VEla,Q)=0at

Via,Q)=-28%Q),

m2

2
1ni—1] , 7)

where renormalization has been carried out in V¢?; and
m? is the dynamically generated fermion mass at L = .
Formulas for 8%(Q) can be found in Appendix A. By
expanding  in terms of the subset {a"}
(Q= 3 ,Q,a"), minimizing the a-independent part of
Vs, and taking the stationary value of the a-dependent
part, one can see that there is a unique nontrivial
(Vgconst) solution which leads to!?

VG(a)E VG(a’Q(a))=EC+mLa+%)\1La2+ I (8)

where

2 m} m}
m L L
E = — _— _— - —_ L
C 4 + pym In mz 1 28|(mL) 5
9)
Ap=—1/[1/m+2m}8% ((m))],
and m; given by the solution of
2
1 mp L
Eln_m—z—ao(ml')=0 , (10)
11 1sL

47T mz

Vs(a) has been normalized in such a way that E is the
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Casimir energy, i.e., subtracting V&(0). Notice that A,
is a negative increasing function of L [from (A4)], m} is
also an increasing function of L [from (11) and (A3)],
and E is negative and lower than that corresponding to
a free fermion of mass m [making a Taylor expansion of
E to first order and using (A3), m} <m?]. Thus, when
the circumference shrinks the particles become less mas-
J

Lon(i/miL—y 2r gk rt 3
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sive and the interaction stronger. Equation (10), howev-
er, cannot always be satisfied. When L <L.=m ~'7e 7
(y =Euler number), (10) is always positive so the
minimum of E. is given by the end point m} =0, mean-
ing that the system undergoes a phase transition at
L =L.. This can easily be seen from the equivalent ex-
pression for (10) [from (AS) and (A6)]:

1 1

4 27 P

Since for L =L, m} =0 is a solution of (12) the phase
transition is continuous (second order). Furthermore,
starting from (7) again for L <L, one finds that V
reduces to a constant. We are then left with a theory of
free massless fermions.

Let us return to the case L >L. and ask ourselves
which {a} configuration in (8) corresponds to the vacu-
um. To answer it we apply the stationary principle
equating to zero the variation of (8) with respect to
6, mo;- Since

e
Y05 &y

form a subset of the Grassmann algebra, the solution
cannot be anything but y§;, =7§; =0. (In Appendix B we
show from a more fundamental point of view that yg;
and 7§; must vanish in the vacuum if no external sources
are present.) In the L =« case this means that, in our
approach, formal Lorentz invariance (absence of mean
fields) is essentially recovered because of the Grassmann
character of the fermionic fields. We have also explicitly
checked that our vacuum functional (2) is annihilated by
the generators of the “hidden” O(2N) symmetry of (1)
(Ref. 13) as well as by those of the explicit U(N) symme-
try including the normal-ordered fermionic number
charge, which does not commute with all the O(2N) gen-
erators.'

The connection between the results in the S' space
and the finite-temperature ones is not direct in the
Schrodinger picture. However, since the effective poten-
tial computed in the manner of Symanzik turns out to be
equivalent to the usual one computed through the path
integral method!"'* and, considering that in this last for-
mulation computing at finite temperature is completely
equivalent to computing with one spatial dimension
compactified (in the Euclidean space), our approach in
the S! space must be equivalent to some approximation
for finite temperature in the R space by just identifying
T (temperature) and L ~!. In order to make thorough
contact with the existing results, we first introduce the
composite operator effective potential in terms of

= —iAg(:my%:) =Q (Ref. 15) by taking the stationary
value of (7) with respect to ¥g;,75; keeping o (2, actual-
ly) fixed. This amounts to dropping « in (7) and consid-
ering =0 as a real number. Since V& in (7) has al-
ready been proved to coincide with the exact result!® we
only have to prove that V% also does. This is easily

a™ ], nm=1,...,2N

- = 12

((m LR +[2n+ D)2 2n+Dr (12)
—

achieved by performing the variable change

—L(x*+0%=—Q% —L?%/4t in (A2) which leads to

© 2 2
L 2 —L(x*+0%
G fo dx In(1+e )

(Q=0, L=T"Y. (13)

in accordance with Ref. 6. This shows that the GEP ap-
proach is able to properly describe phase transitions, at
least in this soluble model.

Finally, let us comment on the analogy between this
model and the precarious phase in Agj theory first no-
ticed in Ref. 3. Precarious Adj theory in R?XS! space
has been studied in Ref. 5. We find here the same quali-
tative behavior for A;, m;, and E. in L, and a phase
transition to a noninteracting theory that also exists
there, though the order of the transition differs. The
presented results give us further confidence that the
triviality-restoring phase transition in precarious A}
really exists.
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APPENDIX A

In order to find the expressions for 85(Q) we use

oo

S fQn+41)=

n=—ow

S fim— 3 fn)

n=-—oo n=-—ow

in the regulated IX(Q) (6) and follow the steps of Ref. 5
for each sum. We obtain

BHQ)=— o= [ “drt %o

had 12,2 12,2
XZ(ze Ln/t_e Ln/4t),

n=1
(A1)

Lioy_ 1 - Y)
Sn(ﬂ)#n+% dQZ n+1

(Q), n<l.

The summation in (A1) can be carried out giving



37 BRIEF REPORTS

af(m=zlﬂ- N dt t=2n(14e -2 -L2/4) (A2)

Bi()=— 5 [ " dri i (A3)

1
47Q?

& ()= J dtcosh /241207 /80) , (A9)
where the required properties are explicit. We need a
further formula to prove that the phase transition is con-
tinuous. From (A1) we have

sk()=2m[286_,(Q,2L)—8_,(Q,L)], (A5)

where &6_,(Q,L) is defined in the Appendix of Ref. 5
and shown to admit the representation'®

l’_+1 QL T

2% T3ar

1
5 (Q,L)=—
1l ) 272 |2 T2 Arn

47 S ([(QL)+(2mn 2]

n=1

—(27n)™Y (A6)

(y =Euler number).

APPENDIX B

In this appendix we formally prove that the expecta-
tion values of the field and momentum (4, and 7, van-
ish in any stationary state of a given fermionic Hamil-
tonian in the absence of external sources. The question
we address might seem like nonsense since ¥, and 7 are
usually taken to be zero by invoking Lorentz invariance

1089

or fermionic number conservation. However, in our
case, Lorentz invariance is lost for L4« due to the S !
space topology, and the fermion number charge does not
commute with some generators of the O(2N) symmetry
so we cannot assure that it belongs to the complete set of
compatible observables [actually the fermionic charge is
given up in favor of the O(2N) generators in Ref. 13].
Since continuous symmetries cannot be spontaneously
broken in two dimensions!’ one could use the O(2N)
symmetry of the vacuum to set ¥, and 7, equal to zero;
however, it seems unnatural to us requiring such a heavy
external result to achieve this goal. Let us proceed then
with our proof. We borrow from Ref. 11 that the prob-
lem of stationarizing (W |H|W) with fixed
Yo={W |y | W), my=(W | m| W) is equivalent to solv-
ing the Schrodinger equation for the Hamiltonian with
external sources:

(H—n*y—mq) | W)=En*n) | W) . (B1)
From here one easily deduces'!
SE SE
__%E _SE (B2)
Ipo 87]* 0 87’

Now from (B1) we see that E must be an even function
of the Grassmann sources 1*,7. Then the right-hand
sides of (B2) are odd Grassmann functions of 7*,%, so
they vanish when %*,7 vanish. If we switch off the
sources in (B1), | W) becomes a stationary state of the
original Hamiltonian which from the previous argument
satisfies ( W | ¢ | W) =(W | 7| W)=0. Notice that this
formal proof is based entirely on the Grassmann nature
of the sources and not on any symmetry of the theory.
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