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We propose a model for membrane-cortex adhesion which couples membrane deformations, hy-
drodynamics and kinetics of membrane-cortex ligands. In its simplest form, the model gives explicit
predictions for the critical pressure for membrane detachment and for the value of adhesion energy.
We show that these quantities exhibit a significant dependence on the active acto-myosin stresses.
The model provides a simple framework to access quantitative information on cortical activity by
means of micropipette experiments. We also extend the model to incorporate fluctuations and
show that detailed information on the stability of membrane-cortex coupling can be obtained by a
combination of micropipette aspiration and fluctuation spectroscopy measurements.

I. INTRODUCTION

In many cells, a thin layer of cytoskeleton called cor-
tex underlies the plasma membrane. While the cellular
membrane serves as a barrier for the cell and a mecha-
nism to communicate with the extracellular media, the
cortex, made mostly of actin cross-linked filaments and
myosin II, provides rigidity and allows for active remod-
elling of the cell boundaries, essential for instance for
cell motility. The control of membrane-cortex adhesion
is crucial to many cellular processes. Indeed, membrane-
cortex detachment and the formation of cellular blebs,
spherical protrusions of the unbound plasma membrane,
is often a sign of apoptosis [1, 2]. Membrane blebbing
is also used for motility by several cell types, including
amoebae and possibly cancer cells [3–6].

It is acknowledged that membrane-cortex adhesion is
obtained via specific interactions between large numbers
of ligand and receptor molecules [7], such as Talin [8] and
ERM (Ezrin/Radixin/Moesin) Proteins [9]. Spontaneous
membrane detachment, also known as blebbing, has been
associated to myosin activity within the cortex [10, 11].
Externally induced perturbations using micropipette as-
piration or osmotic shocks, show that a sufficiently large
drop of external pressure can induce membrane detach-
ment [12]. Consequently the links between the membrane
and cortex are constantly under stress, which origin is
ultimately related with acto-myosin cortical tension and
osmotic pressure.

In this article, we present a model for adhesion based
on the kinetics of the membrane-cortex ligands [13–16].
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We describe the stability of adhesion by coupling the ki-
netics of the ligands to the stress exerted on them and
to physical properties of the membrane. In its simplest
form, the model establishes the mechanical equilibrium
of the cell considering both the pressure drop across the
membrane and the pre-stressed state of the cortex, and
predicts the outcome of a micropipette aspiration exper-
iment in terms of physical parameters. This predictions
are then compared to experiments from the literature.
We also discuss extensions of the model to include spa-
tial modulations of the membrane and different scenarios
of hydrodynamic interactions, depending on the porosity
of the cortex and its actual distance to the membrane. In
particular, we obtain analytical expressions for the struc-
ture factor and fluctuation spectrum of the membrane in
certain limits, and show how these results may be used
to obtain additional information on the density of lig-
ands by means of fluctuation spectroscopy experiments
on eukaryotic cells.

II. MODEL FOR MEMBRANE-CORTEX
ADHESION

The adhesion of a flexible membrane on a substrate
by means of discrete linkers has been extensively studied
in the past [17–22], mostly using computer simulations.
It is a highly non-trivial problem due to the multiplicity
of energy scales (membrane rigidity and tension, linker
stiffness and binding energy) and time scales (membrane
and cytosol fluidity, linker’s diffusion and binding kinet-
ics). In particular, the role of fluctuations on the un-
binding transition of a membrane possessing meta-stable
bound and unbound states has been characterised numer-
ically [18], but the unbinding of a membrane subjected
to a constant pressure has, to our knowledge, not been
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FIG. 1. Sketch of the system. (a) The ligands are modeled as
springs that link the cortex (red) and the membrane (green).
(b) Kinetic rates kon and koff of the ligands. koff depends on
the load [23]. (c) Forces involved in the cell at steady state:
internal pressure, Pc, and external pressure, P0, exert a nor-
mal force on the membrane and cortex, which is compensated
by the membrane and cortex tension. (d) The normal projec-
tion of the acto-myosin tension in the cortex is transmitted
to the membrane through proteins that link the cortex and
the membrane.

systematically investigated. Our primary goal here is to
assess the role of cortical prestress on membrane-cortex
detachment.

To this aim, we first adopt a highly simplified model,
where we assume a nearly planar membrane subject to
a normal external stress σ and attached to the cortex
by a density of linkers ρb, which is necessarily smaller
than a maximal value ρ0 (Fig.1). The cortex is assumed
to be flat and immobile, so that the model is only valid
at length scales below the correlation length for cortex
undulations. For a constant normal stress σ, an equilib-
rium state may exist with a planar membrane at position
u where a uniform density ρb of bound spring-like linkers
with elastic constant k balances the external force. In
order to find the conditions for the existence and stabil-
ity of such an equilibrium state we may write dynamical
equations assuming spatial uniformity, where u and ρb
are only time-dependent:

η
du

dt
= σ − kuρb, (1)

dρb
dt

= kon [ρ0 − ρb]− koff(u)ρb, (2)

where η is an effective viscosity per unit length, and u = 0
corresponds to the position for which the bound linkers
are not stretched. For small membrane displacements,
the relevant contribution to dissipation is due to cytosol
flow through the cortex meshwork, and the effective pa-
rameter η can be estimated as η ∼ ηch/ξ

2 (see section 1
in the Supporting Material for details), where ξ ∼ 30 nm
is the scale of the cortex mesh size [24], h ∼ 500 nm is
the thickness of the cortex, and ηc ∼ 3× 10−3− 2× 10−1

Pa s is the cytosol viscosity [10].
The linker kinetics is defined by the attachment and

detachment rates kon and koff (Fig.1), and is assumed
to be much faster than the typical time scale of mem-
brane shape relaxation. The force-dependent kinetics of
the linkers then imposes a strong nonlinear coupling be-
tween the kinetics and the position of the membrane.
The detachment rate is assumed to follow a Kramers-like
kinetics [25] appropriate of thermally induced processes:

koff(u) = k0
offe

kuδ/(kBT ), (3)

where δ is a characteristic bond length in the nanometric
scale [23]. For simplicity, we assume linker attachment
to be an active process occurring at a constant rate kon.
Therefore, detailed balance is not obeyed, as previously
considered in membrane adhesion problems [17]. This
assumption allows to disregard membrane fluctuations
between attachment points and yield a simple analyti-
cal form for the unbinding transition. However, it does
not capture binding cooperativity occuring due to the
smoothing of membrane fluctuations near attachement
points [18–22].

Two relevant dimensionless quantities characterize the
mechanics of the linkers: the kinetic ratio, χ, and the
ratio of the force on the membrane to an intrinsic force
scale of the linkers, α, with

χ ≡ k0
off

kon
and α ≡ σδ

ρ0kBT
. (4)

Equilibrium solutions to Eq. 1-Eq. 2 exist only for α < α∗

where the latter is defined by:

α∗e1+α∗
= χ−1. (5)

Taking χ ∼ 10−3 [26] and δ ∼ 1 nm, the critical force per
link is σ∗/ρ0 ∼ 18 pN, corresponding to ∼ 4.5 times the
thermal force per link kBT/δ. This fixes the condition
for the detachment of the membrane from the cortex,
which occurs for stresses that surpass the critical stress
σ∗ = ρ0α

∗(χ)kBT/δ.
The adhesion energy w per unit area may be defined

as the work necessary to bring the stress of the linkers
from its rest value to the critical value for detachment in
a quasi-static fashion, that is,

w (ueq) =

∫ u∗

ueq

σ(u)du = ρ0k

∫ u∗

ueq

u

1 + χekuδ/(kBT )
du,

(6)
where σ(u) is the equilibrium stress for each u. Note that
the adhesion energy depends on the actual state of the
cell ueq, which is generically unknown and incorporates
the pre-stress state of the cell due to cortical tension.

Within our simplified model, the average density of
bound linkers ρb,eq, the critical stress σ∗, and the ad-
hesion energy w all scale linearly with the density of
available linkers ρ0. This scaling results from our as-
sumption of a constant binding rate. A different scaling
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is expected if the binding rate depends on the average
position and fluctuations of the free membrane between
anchoring points. If the on-rate obeys detailed balance,
one expects ρb,eq ∼ ρ2

0 in the absence of a pressure differ-
ence [19, 20]. As discussed in the following sections, the
results of micropipette experiments are consistent with a
linear scaling σ∗ ∼ ρ0.

III. RESULTS AND DISCUSSION

The simplified stochastic model of adhesion outlined in
the previous section is used below to analyse two different
kinds of experiments that can probe membrane-cortex
interaction. First, we analyse micropipette experiments
where the critical suction pressure required to unbind the
cell membrane from the cortex was measured in different
cellular contexts, where the density of adhesion molecules
and of cortical motors have been altered. Second, we
derive the effect of membrane-cortex interaction on the
membrane fluctuation spectrum. There is as of yet no
experimental data that can be directly confronted to the
latter derivation. We hope that the present paper will
foster experimental spectroscopy studies that will couple
membrane fluctuation analysis with cell micromanipula-
tion, along the lines described in Sec.III E below.

A. Mechanical equilibrium of the cell

Force balance at the membrane involves the difference
of pressure across the membrane, ∆P , and the normal
projection of the cortex and membrane tension, γm and
γ, respectively: ∆P = 2 (γm + γ) /R, where R is the
radius of the cell, assumed spherical. At equilibrium, the
links sustain the stress needed to maintain the cortex and
the membrane adhered, σeq = 2γm/R, which accounts for
the difference between the pressure and the membrane
tension stresses, ∆P − 2γ/R. Whenever the equilibrium
stress exceeds the critical value σ∗, we expect the cell
membrane to detach spontaneously.

Micropipette aspiration [12, 16, 27–29], amongst other
techniques [11, 30, 31], allows to apply pressure perturba-
tions of controlled intensity and area. Pressure perturba-
tions can be supplemented with perturbations on relevant
cell parameters such as myosin activity and link or cor-
tex density, by genetics [27–29] or direct drug treatment
[10, 11, 31]. Tether pulling experiments have also been
used to probe membrane-cortex adhesion [32], but their
interpretation is rather non-trivial [33]. In the following,
we restrict ourselves to a quantitative interpretation of
micropipette aspiration experiments.

B. Micropipette aspiration

During a micropipette experiment, a pressure drop is
applied on a small region of the membrane defined by the

micropipette radius Rp. A new equilibrium state in the
micropipette requires an increase of the stress exerted on
the links with respect to σeq:

σ = ∆Pp − 2γ

(
1

Rp
− 1

R

)
+ 2

γm
R
, (7)

where ∆Pp ≡ P0 − Pp is the difference between the ex-
tracellular media and the aspiration pressure, and R is
the radius of the cell after deformation. Characteristic
bounds for membrane tension γ . 10−4 N/m and radius
of cell R ∼ 10 µm and pipette Rp ∼ 5 µm allow mem-
brane tension to compensate for a pressure of about ∼ 20
Pa, which is small compared to the range of experimen-
tal pressures ∼ 100−1000 Pa. As a consequence, we will
neglect the membrane tension contribution in the follow-
ing. The last term in the right hand side accounts for
the cortical stress, or pre-stressed state of the cell σeq.
In general, force balance does not need to be satisfied
and the cell will eventually be entirely sucked inside the
pipette if the suction pressure ∆Pp is too large [16]. Here
we focus on the case where the cortex is able in principle
to compensate for the pipette pressure.

Using our previous analysis for the membrane-cortex
adhesion, we can relate the critical stress for the links,
σ∗, with the critical aspiration pressure needed to unbind
the membrane via Eq. 7:

∆P ∗p = ρ0α
∗ kBT

δ
− 2

γm
R
. (8)

The critical aspiration pressure has two contributions:
the pressure needed to detach a certain number of relaxed
links, given by the density of ligands and the critical force
per link (first term), and the contribution from the pres-
ence of acto-myosin tension in the cortex which sets a
non-zero stress on the links at equilibrium, hence reduc-
ing the amount of pressure needed to reach the critical
stress (second term, Fig.2a).

As in determining the critical aspiration pressure, we
find that the adhesion energy per unit area measured
when detaching the membrane (Eq. 6) depends on the
level of cortical rest tension, σeq = 2γm/R, which ulti-
mately determines the effective number of ligands to be
broken:

w = w0ρ̄0

∫ z∗

zeq

z

1 + χez
dz. (9)

Here, w0 ≡ (kBT/δ)
2/(kξ2) is an upper bound for the

adhesion energy, that corresponds to non pre-stressed lig-
ands, and for clarity we have used rescaled quantities for
the stretching, z ≡ u/u0 with u0 ≡ kBT/ (kδ), and lig-
and density ρ̄0 ≡ ρ0ξ

2. The adhesion energy per unit
area depends linearly on the saturation density of links,
w ∼ w0ρ̄0, but contains a correction factor that includes
the pre-stressed state of the cell. In the presence of cor-
tical tension in the cell, there is both a reduction of the
number of effective bound links, and an increase of stress
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FIG. 2. Theoretical predictions for the critical aspiration
pressure and adhesion energy in a micropipette experiment.
(a) Critical pressure as a function of the density of linkers ρ0

according to Eq. 8. Solid black and red lines correspond to
cells with and without myosin II, respectively. The horizon-
tal dashed lines are the experimentally measured value of the
critical detachment pressure [28] for wild type cells (WT),
mutants lacking myosin (M−), mutants lacking talin (T−)
and double mutants (M,T−). The slope and height of the
two theoretical curves are entirely determined by these crit-
ical pressures (see text). (b) Effective adhesion energy as a
function of the equilibrium cortical tension in the cell accord-
ing to Eq. 9. Solid black and red lines correspond to cells with
and without talin, respectively.

per link. Consequently, close to the unbinding transition,
the adhesion energy is reduced in a strongly non-linear
way by increasing the cortex prestress (Fig.2b).

C. Discussion of micropipette experiments

Our model allows to directly relate the critical pertur-
bation pressure needed to detach the membrane from the
cortex to two physiologically relevant quantities: the den-
sity of membrane-cortex ligands, and the myosin-driven
cortical tension (Eq. 8). This relationship provides not
only a rationale explanation for the membrane unbinding
for a variety of cell phenotypes where either the density
of ligands or myosin activity is altered, but also a method
to directly probe cortex activity by measuring the critical
pressure needed to unbind the membrane.

We refer to previous experimental results concerning
the abrupt unbinding induced by micropipette suction
to assess the validity of our model [12, 28]. In order

to test the relationship between critical pressure, ligand
density and cortical tension, we would ideally need to
measure the critical pressure for cells whose phenotype
has been quantitatively altered. Merkel et al. [28] con-
sidered four phenotypes of the amoebae Dictyostelium:
wild type, myosin inhibited, talin inhibited (a membrane-
cortex linker), and double mutants. These four pheno-
types are sufficient to qualitatively test our model and
obtain values for all the relevant parameters.

Mutations that perturbed ligand density and cortex
activity should be independent within our model. Ac-
cordingly, the difference of unbinding pressure for two
values of ligand density must be the same independently
of the value of cortical activity (Fig.2a). In Merkel et
al. [28], the decrease of critical pressure between the
wild type and talin inhibited amoebae is comparable to
the corresponding decrease between the myosin inhib-
ited and double inhibited mutants (∼ 150 − 200 Pa and
∼ 150 − 500 Pa respectively), even though the actual
values of the cortical tension with and without myosin
differ by a factor of 5 due to cortical prestress. This sug-
gests that the critical pressure scales linearly with the
density of available bounds: ∆P ∗p ∼ ρ0, as predicted by
our simple model (Eq. 8). Comparing the critical pres-
sures in both wild type and myosin-null cells for a fixed
link density (Fig. 3b-4b in [28]), we can estimate the
myosin-driven cortical stress in the wild type amoeba,

γm = (∆P ∗M
−

p − ∆P ∗p )R/2 ∼ 5 × 10−3 N/m. This is
at least two orders of magnitude higher than the typi-
cal membrane tension of a vesicle, γ, and contributes to
the 60% of the ∼ 1600 Pa needed to unbind the mem-
brane. This estimate of the cortical tension agrees well
with direct experimental measurements in Dictyostelium
[27]. Finally, introducing the obtained value of γm into
the rest stress σeq = 2γm/R, and using the station-
ary state solution of Eqs. 1-2, zeq = αeq (1 + χezeq),
the equilibrium stretching of the linkers can be found,
ueq ∼ 100 nm, as well as that roughly all the linkers
are connected in equilibrium conditions for the wild-type
cells, ρb,eq/ρ0 = αeq/zeq ∼ 1.

For myosin-inhibited amoebae, the micropipette pres-
sure is directly related to the available density of links
(Eq. 8). Using the results from [28], we can esti-
mate the relative concentration of talin with respect to

the saturation link concentration: ρt/ρ0 = (∆P ∗M
−

p −
∆P ∗M,T−

p )/∆P ∗M
−

p ∼ 10 − 30%. Assuming the satu-

ration density to be ρ0 ∼ 100 links/µm2, talin density
should be roughly ρt ∼ 20 links/µm2. The asymmetric
distribution of this small density of talin links seems to
be enough to drive direct motion in amoebae [28]. Simi-
lar observations are reported for zebrafish cells [31]. For
completeness, assuming a ligand length δ ∼ 1 nm, we find

α∗ = ∆P ∗M
−

p δ/ (ρ0kBT ) ∼ 4, and the critical force per
link σ∗/ρ0 ∼ 16 pN is four times the thermal force of the
link kBT/δ, which is close to our initial estimate (∼ 18
pN). This quantity is independent of the cell phenotype
and only depends on the kinetic rate ratio χ. In fact, from
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Symbol Description Estimate (Ref.)

ξ cortex mesh size 30 nm [24]

h cortex thickness 500 nm [10]

ηc cytosol viscosity 10−2 Pa s [10]

kon linker attachment rate 104 s−1 [26]

k0
off free linker detachment rate 10 s−1 [26]

δ linker bond length 1 nm [23]

k linker stiffness 10−4 N/m (text)

ρ0 density of available linkers 1014 m−2 (text)

R cell radius 10 µm [28]

γ membrane surface tension 5 × 10−5 N/m [11]

κ membrane bending ridigity 10−19 J [30]

γm cortical tension 5 × 10−3 N/m (this work)

TABLE I. Estimates for model parameters.

the experimental estimate of α∗ we can derive the kinetic
ratio of on and off rates of the membrane-cortex link-
ers, χ ∼ 10−3, in agreement with [26]. Moreover, using
the stationary solution of our model, a critical stretch-
ing u∗ ∼ 200 nm and a critical fraction of bound linkers
ρ∗b/ρ0 ∼ 0.9 are found. Our results show that the rest
stress σeq = 2γm/R is about 60% of the critical unbind-
ing value σ∗ for wild-type cells, while it is around 75%
in talin-null cells. This is consistent with the observation
that spontaneous blebbing of migratory Dictyostelium is
more frequent for talin-null mutants than for wild-type
cells [34].

Finally, our model gives a prediction for the adhe-
sion energy as a function of the ligand density and cor-
tical activity (Eq. 9). In the case of the four pheno-
types discussed above, the maximum adhesion energy is
w0ρ0ξ

2 ∼ 2×10−5 J/m2, and corresponds to the mutant
lacking myosin (a non pre-stressed cell, αeq = 0). For a
mutant lacking Talin and myosin II, the adhesion energy
is reduced by 10 − 30% due to the decrease in ρ0. For
a wild type cell and a mutant lacking talin the adhesion
energies are further reduced, by a 50% and 65% respec-
tively, due to cortical pre-stress (Fig.2b). The dramatic
increase in the adhesion energy for a cell lacking myosin
activity, which can be of the order of 200%, illustrates the
importance of cortex activity in the cell in determining
the experimental measurements of adhesion energy and
detachment pressures. Table I recapitulates the numer-
ical values used for the parameters of the model. These
parameters may vary significantly depending on cell lines
and experimental conditions, so this choice is somewhat
arbitrary. However, we emphasize that both the cortical
tension γm and the fraction of bond that are associated
with Talin ρt/ρ0 do not depend on this choice and can
be directly determined by confronting Eq. 8 with the ex-
perimental results.

D. Membrane undulations

The model for membrane-cortex adhesion discussed
so far considers a flat membrane, disregarding possible
membrane undulations. In this section, we address the
linear dynamics of long-wavelength perturbations around
the flat membrane state:

u (~x, t) = ueq + δu (~x, t) , (10)

ρb (~x, t) = ρb,eq + δρb (~x, t) . (11)

The coarse-grained interface hamiltonian includes the
elastic energy of bound linkers and contributions from
the membrane bending rigidity and tension [35]:

H =

∫

S

[
κ

2

[
∇2u (~x)

]2
+
γ

2

[
~∇u (~x)

]2

+
k

2
ρb (~x)u2 (~x)− σu (~x)

]
d2~x, (12)

where κ is the bending modulus and where σ = ρb,eqkueq.
As before, the restoring elastic forces exerted by the link-
ers is treated within a continuous approximation, and
membrane fluctuations between bound linkers are not ac-
counted for. This description is appropriate for length
scales larger that the average spacing between linkers

ρ
−1/2
0 ∼ 100 nm, and the present analysis is only valid

for length scales larger than this cutoff.
Membrane deformations induce Stokes flows in the

surrounding fluid. These flows mediate long-range hy-
drodynamic interactions in the membrane, leading to
a non-local membrane dynamics that is better treated
in Fourier space. The full dynamical problem requires
a proper treatment of cytosol permeation through the
porous cortex and the (less) porous lipid membrane at
all length scales [36, 37]. For simplicity, we restrict our-
selves to a simplified treatment, where cytosol perme-
ation through the cortex is only included for the lowest
Fourier mode q = 0. The other modes are treated below
neglecting the effect of the cortex on hydrodynamics, as
is appropriate for sufficiently large membrane-cortex dis-
tances and/or large cortex mesh size. The effect of finite
cortex permeation is studied in section 4 in the Support-
ing Material. Using standard results of membrane hy-
drodynamics [38] together with Eq. 12, the dynamics of
long-wavelength membrane deformations read

∂tδũ~0 = −1

η

[
ρb,eqkδũ~0 +

σ

ρb,eq
δρ̃b,~0

]
, (13)

∂tδũ~q = − 1

4ηcq

[(
κq4 + γq2 + ρb,eqk

)
δũ~q + ueqkδρ̃b,~q

]
,

(14)

where ~q is the wave-vector. Within our approximation,
the relaxation dynamics of the mode q = 0, Eq. 13, is
decoupled from the other modes, Eq. 14, at the linear
level of perturbations. Eq. 13 can be seen as a linearized
version of Eq. 2 when transformed back to real space.
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In turn, the dynamics of the long-wavelength pertur-
bations of the density of bonds reads

∂tδρb (~x) = − kδ

kBT
k0

offe
kueqδ/(kBT )ρb,eqδu (~x)

−
[
kon + k0

offe
kueqδ/(kBT )

]
δρb (~x) . (15)

Eq. 13-Eq. 15 completely specify the dynamics of linear
perturbations around the flat membrane state, both for
the membrane displacement u and the density of bonds
ρb. However, in the limit of long wavelengths, membrane
deformations proceed much slower than linker kinetics.
In general, membrane dynamics is slower than linkers
kinetics at length scales above a crossover wavelength
λcross, that is determined from an analysis of the eigen-
values and eigenvectors of the dynamical system Eq. 14-
Eq. 15. With the parameters given in Table I, this
crossover occurs in the bending-dominated regime, for
which λcross ' 2π(κ/(4ηckon))1/3 ∼ 0.4 µm. For larger
length scales, the kinetics of the linkers Eq. 15 is always
essentially equilibrated and an adiabatic approximation
may be used. The system can then be described in terms
of only the slow variable δu:

∂tδũ~q = −κq
4 + γq2 + ρb,eqk

4ηcq
δũ~q. (16)

Under the adiabatic approximation, the dis-
persion relation of membrane dynamics ω (q) =
−
(
κq4 + γq2 + ρb,eqk

)
/ (4ηcq) features a maximum due

to membrane-cortex adhesion (see section 2.1 in the
Supporting Material for details). This maximum natu-
rally defines a correlation length for shape fluctuations,
λc, below which the membrane can be seen as essentially
rigid. This correlation length depends on a combination
of both mechanical properties of the membrane and of
the linkers:

λc = 2π

[
6κ/γ

(1 + 12κρb,eqk/γ2)
1/2 − 1

]1/2

. (17)

With the values given in Table I, we find λc ∼ 0.6 µm
for an unperturbed cell (ρb,eq ' ρ0). This value is larger
than both the crossover wavelength of the free membrane
undulations, λ = 2π

√
κ/γ ∼ 0.3 µm, and the spacing

between linkers, ρ
−1/2
0 ∼ 0.1 µm. The computed cor-

relation length is slightly smaller than the pipette ra-
dius, so the approximation of a rigid membrane is only
marginally valid in that case. However, it becomes more
accurate near the unbinding transition since the correla-
tion length λc increases with decreasing density of bonds
ρb (see section 3 of the Supporting Material for details).
In the general case, including all hydrodynamic effects
of the cortex, the value of λc may differ from Eq. 17 or,
for low cortex porosity and short membrane-cortex dis-
tances, it may not even be well defined (see section 4 in
the Supporting Material for details).

Finally, at the mean-field level, the critical stress σ∗

at which the membrane detaches from the cortex is not
affected by membrane undulations since the q = 0 mode
is the first one to become unstable in the framework of
Eq. 13-Eq. 15. Fluctuations of the membrane shape may
however create regions of locally low linker density and
high linker stress, thereby widening the unbiding transi-
tion boundary.

E. Fluctuation spectroscopy

The formulation of an adhesion model accounting for
membrane undulations provides an appropriate frame-
work to extract additional information about membrane-
cortex adhesion from the statistics of membrane fluctu-
ations. For instance, applying the energy equipartition
theorem to Eq. 12 one obtains, under the adiabatic ap-
proximation, a membrane structure factor

S (q) =
kBT

κq4 + γq2 + ρb,eqk
, (18)

where ρb,eq is the equilibrium value of the density of
bound linkers (see section 2.2 of the Supporting Material
for details). This result is consistent with the situation
of a membrane confined into an harmonic potential [39–
41]. Here, the confinement contribution explicitly arises
from the attachment kinetics of the linkers via the adia-
batic approximation. This fact allows to experimentally
determine the density of bound linkers, ρb,eq, from mea-
surements of the static structure factor of the cell mem-
brane [42]. Specifically, the long-wavelength limit q → 0
needs to be measured in fluctuation microscopy experi-
ments in order to determine ρb,eq from Eq. 18. Trans-
forming Eq. 18 to real space, the mean-square amplitude
of membrane undulations reads (see section 2.3 of the
Supporting Material for details):

√
〈δu2〉 '

√
kBT

8
√
κρb,eqk

∼ 4 nm. (19)

Finally, the model in the previous section also pro-
vides dynamical information on membrane undulations.
Specifically, the power spectral density of membrane fluc-
tuations can be shown to take the form [43, 44]

S (ω) =
4ηckBT

π

∫ qmax

qmin

dq

(4ηcω)
2

+ (κq3 + γq + ρb,eqk/q)
2 ,

(20)
where qmin and qmax are the cutoff values of the wave-
vector q. In our model, either the perimeter of the cell,
the correlation length of cortex undulations, or the ra-
dius of the pipette in the experimental setup proposed in
Fig.3a sets the large-wavelength cutoff, qmin ∼ 1/R, and
the short-wavelength cutoff is set by the spacing of the

linkers: qmax = 2π/ρ
−1/2
0 . In fluctuation spectroscopy

experiments, the laser focal diameter sets the limitation
for the latter [43, 44].
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FIG. 3. Density of membrane-cortex bonds from fluctua-
tion spectroscopy experiments. (a) Illustration of a com-
bined spectroscopy and micropipette experiment that could
probe the density of membrane-cortex bonds. (b) Power spec-
tral density calculated from Eq. 20 in the limit of vanishing
surface tension (γ = 0), both for adhesion-dominated and
bending-dominated membrane fluctuations. The known high-
frequency limits are indicated in dashed lines. The rescaling
length u0 is defined as u0 ≡ kBT/(kδ). Parameters are taken
from Table I, with ρb,eq = ρ0, and the power spectrum is in-
tegrated from qmin = 1/R to qmax = 2π/d, with d = 0.5 µm
the focal diameter of the optical trap [44]. (c) Low-frequency
plateau of the power spectrum for adhesion-dominated fluctu-
ations (Eq. 22) as a function of the pressure on the membrane.

Membrane-cortex detachment induced by micropipette
aspiration is a rather invasive procedure to assess the sta-
bility of the membrane-cortex cellular interface. An al-
ternative approach could be to monitor membrane fluctu-
ations for different aspiration pressures using fluctuation
spectroscopy, as sketched in Fig.3a. Fig.3b shows the
power spectrum density Eq. 20 in the limit γ → 0 both
for bending-dominated and adhesion-dominated mem-
brane fluctuations. The high-frequency limits were pre-

viously obtained: S (ω) ' kBT/(6
(
2κη2

c

)1/3
)ω−5/3 for

λcqmax � 1, and S (ω) ' kBTqmax/(4πηc)ω
−2 otherwise

[43–45] (see more details in section 2.4 of the Support-
ing Material). However, our model gives an analytical
expression for the full power spectrum in the adhesion-

dominated regime (qmax < [ρb,eqk/κ]
1/4

):

lim
κ,γ→0

S (ω) =
kBT

4πηcω2

[
qmax − qmin +

ρb,eqk

4ηcω

×
[
arctan

(
4ηcqminω

ρb,eqk

)
− arctan

(
4ηcqmaxω

ρb,eqk

)]]
. (21)

The density of membrane-cortex bonds ρb,eq can be ex-
tracted by fitting this expression to experimental mea-
surements. In particular, if adhesion dominates mem-
brane fluctuations, ρb,eq can be simply obtained from the
plateau of the power spectrum at low frequencies:

lim
ω→0

lim
κ,γ→0

S (ω) =
4ηckBT

3π (ρb,eqk)
2

(
q3
max − q3

min

)
. (22)

The value of this plateau is plotted in Fig.3c as a func-
tion of the pressure on the membrane, ∆P , which mod-
ifies the density of bound linkers. Experimentally, the
pressure on the membrane can be varied either decreas-
ing cortical tension by inhibiting myosin activity or via
micropipette suction. Hence, we propose combined spec-
troscopy and micropipette experiments, as illustrated in
Fig.3a., to test the predictions in Fig.3 and estimate the
density of membrane-cortex bonds. Note that the tip
of the aspirated membrane is not flat, but is on aver-
age hemispherical with a radius of curvature matching
the pipette radius. A rigorous analysis of the fluctua-
tion spectrum should be done using spherical harmonics
rather than Fourier transform. Furthermore, Eq. 20 does
not account for the hard-wall repulsion introduced by the
pipette walls. As discussed in [44], this introduces differ-
ences in the low frequency limit of the power spectrum.
However, this should not affect the pressure dependence
of the zero-frequency power spectrum shown in Fig.3c.
The correction to Eq. 21 due to a finite average mem-
brane curvature can be reduced by increasing the radius
of the micropipette, or by tuning mysosin activity rather
than using a micropipette to modify the average density
of bond linkers.

The measurement of the density of membrane-cortex
linkers from fluctuation spectroscopy is complementary
to the quantitative determination of the cortical activity
and adhesion energy from micropipette experiments, as
discussed above. Indeed, data on fluctuation spectra of
generic eukaryotic cells other that red blood cells are still
lacking. Peukes and Betz have recently obtained such
spectra in blebs during their growth stage, while the cor-
tex is still reforming and, thus, weak [46]. However, infor-
mation about the full cortex could only be extracted from
experiments probing the fluctuations of strongly adhered
membranes instead of blebs. Peukes and Betz analyze the
fluctuation spectra as that of isolated membranes, with
the effect of the cortex only incorporated into an effec-
tive tension of the membrane [46]. In contrast, our model
accounts for the effect of the adhesion to the cortex via
the kinetics of the linkers, thus providing a theoretical
framework in which to consistently interpret fluctuation
spectroscopy experiments on strongly adhered cell mem-
branes.

As a final comment, it is worth stressing that in this
paper we have only addressed passive fluctuations of ther-
mal origin. In general, different active processes could po-
tentially modify the presented scenario. Typically, active
processes are quantitatively most pronounced at low fre-
quencies. At high enough frequencies it has been shown
that the role of active fluctuations can be incorporated
through an increased effective temperature of the mem-
brane [39, 47, 48]. A detailed analysis of this point is
beyond the scope of this work and is deferred to future
work.



8

IV. CONCLUSIONS

We have described a model for membrane-cortex adhe-
sion that relates the unbinding pressure and adhesion en-
ergy measured in micropipette experiments to two cellu-
lar parameters, the membrane-cortex ligand density and
the myosin-driven cortical activity. The validity of the
model is qualitatively discussed although a complete set
of experiments will be required for a complete validation.
The proposed relationship between unbinding pressure
and cortical activity provides a method to measure the
cortical activity by means of micropipette aspiration ex-
periments. Accounting for membrane undulations allows
to relate the fluctuation spectrum of the membrane to the
density of bound membrane-cortex bonds, thus providing
a method for measuring this quantity in fluctuation spec-
troscopy experiments. Together, these experiments could
give access to quantitative information about membrane-
cortex adhesion in the framework of our model.
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