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We describe a perturbative framework in which finite cutoff (A) effects can be taken into account.
Essentially it consists of keeping terms of O(A ~2) in the usual perturbation theory once the complete set
of dimension-six operators have been included in the Lagrangian with coupling constants proportional
to A2 This is motivated by Wilson renormalization-group arguments. The occurrence of local gauge
anomalies is analyzed within this framework. It is proven that no genuine contribution to the anomaly
arises at O(A~%). The discussion is completely general though special attention is paid to the standard

model.
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1. INTRODUCTION

The understanding of local gauge anomalies [1] in
chiral gauge theories on the one hand (see [2] for a re-
view), and of the triviality problem ([3] in scalar
(nonasymptotically free) theories on the other (see [4] for
a review) have been quoted as two major events in
theoretical physics during the last decade [5]. Both is-
sues, although unrelated at first sight,1 turn out to be
relevant for the standard model (SM). The local gauge
anomaly vanishes in the SM because the sum over hyper-
charges of the leptons and quarks equals zero for each
generation, avoiding the inconsistencies that otherwise
would appear [7]. On the other hand, the scalar-gauge-
boson sector, which is crucial for providing masses to the
gauge bosons, suffers from the triviality problem; i.e., it
becomes noninteracting if the regulating cutoff (A) is ex-
actly (nonperturbatively) removed [8]. In nature interac-
tions are expected to exist. If this is so the SM must be
considered as an effective “low-energy” theory with a
finite built-in cutoff. This fact has physical consequences.
For instance the Higgs-boson mass can be related to the
built-in cutoff by using nonperturbative renormalization
group techniques so that an upper bound for the former
arises [9]. Since standard perturbation theory (PT) is a
fixed cutoff formalism in itself where the cutoff is re-
moved up to O(A™2), the triviality problem does not
alter the usual perturbative calculations. Yet when prob-
ing the SM at high enough energies effects due to the
built-in cutoff are likely to appear and therefore the stan-
dard perturbation theory will have to be modified to ac-
commodate these effects.

In this paper we outline a perturbative framework
which incorporates the leading effects of a finite built-in

*
Present address.
IThe only discussions we know of on the interrelation between
anomalies and triviality are due to Bég [6].

cutoff in a regularization-independent way. Although it
is motivated by Wilson renormalization-group argu-
ments, the practical implementation is entirely based
upon standard PT. We then analyze the occurrence of
gauge anomalies at O(A~2). Anomaly cancellation at
O(A™?) might in principle put constraints on the cou-
plings of the dimension-six operators, and hence on the
physics beyond the SM. We shall prove that this is not
the casze: no genuine contributions to the anomaly arise at
O(A™7).

In Sec. II we describe the above-mentioned framework
which essentially consists of adding to the Lagrangian
dimension-six (“irrelevant”) operators with couplings
proportional to A~? and consistently keeping terms
O(A™?) in a standard perturbative calculation. In Sec.
IIT we explain why local gauge anomalies must also can-
cel in this framework and show, under certain assump-
tions, that no genuine anomalies arise at O (A~ 2). In Sec.
IV the formalism is pinned down for the fermionic sector
of a R; (G) X Rg(G) theory where R;  combine into an
anomaly-free [at O(A°)] unitary representation of the
gauge group G, so that the assumptions made in Sec. III
can be proven. In Sec. V we show that the fermionic sec-
tor of an N-generation SM can be accommodated to the
form employed in Sec. IV, and hence the results obtained
there also hold for the SM. We close with a brief discus-
sion in Sec. VI. For completeness we display the results
of a calculation of the covariant anomaly at O(A™2) in
the Appendix.

II. CUTOFF-DEPENDENT PERTURBATION THEORY

Perturbation theory consists of a well-defined set of
rules which allow us to calculate physical amplitudes in a
local quantum field theory. It requires the introduction
of a regularization, which possesses a characteristic
momentum scale A (the cutoff), in order to smooth out
the short-distance singularities. Any physical amplitude
is expanded until O(A°). A nontrivial statement of per-
turbative renormalization of local quantum field theories
is that all the divergent pieces (when A— ) of all physi-
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cal amplitudes can be absorbed by adding local counter-
terms to the original Lagrangian [10]. If the theory is
power-counting renormalizable this amounts to
redefinitions of the (bare) parameters existing in the origi-
nal Lagrangian only. This implies that the formally uni-
tary theory is actually unitary after renormalization. The
validity of perturbative renormalization is constrained by
conditions of the type

A

Agln 2.1

<1, fi<<1,
A

where Ay is the renormalized coupling constant, say in a
scalar A®* theory, and u the subtraction point typically
chosen at the scale where the experiments are carried out.
The second inequality reflects the fact that one systemati-
cally neglects terms O (A %) and implies that A must be
large compared to physical scales u. The first inequality
is needed when perturbatively expanding the bare param-
eters in terms of the renormalized ones and implies that
A cannot be too large. The fact that the first inequality
has a logarithmic dependence on A and the second a
quadratic one allows in many cases a wide range of A’s in
which perturbative renormalization is valid.

We are going to be concerned with the case where A is
relatively small so that the first inequality holds with no
problem but corrections O (A ~?) must be taken into ac-
count. In order to do so we introduce two modifications
to the standard PT: (i) we keep terms until O (A~2) (in-
cluded) in all our expressions, and (ii) we enlarge our
original Lagrangian by adding the complete set of
dimension-six (““irrelevant) operators with (bare) cou-
pling constants proportional to A~ ? but otherwise arbi-
trary. The latter point is crucial for unitarity since other-
wise our results would strongly depend on the chosen
regularization spoiling the formal unitarity of the theory.
The arbitrariness of the (renormalized) coupling con-
stants of the dimension-six operators reflects the fact that
we need more parameters to probe our theory beyond the
regime it was originally designed for. It is common to
well-established low-energy approaches (see, for instance,
[11).

Although the rules above have been given in a purely
perturbative framework, they are best motivated by a
Wilson renormalization-group point of view (see [12] for
a review), which in addition clarifies the regularization
independence of the procedure. Suppose that our physi-
cal amplitudes at the scales p are ultimately calculable
from a fundamental well-defined theory which admits a
path-integral representation. Suppose next that the fun-
damental degrees of freedom can be separated according
to momentum scales so that one can integrate out the
high energy degrees of freedom until an intermediate
scale A. For physical amplitudes at the scale u <<A it is
reasonable to assume that the details of the fundamental
theory at scales beyond A do not matter. Then a local ex-
pansion of the (highly nonlocal) effective action up to
O (A% (i.e., keeping only power-counting renormalizable
terms) should be enough to describe the physics occur-
ring at the scale u. The same should be true if we change
A by A+08A and hence small changes in the scale A (or
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the regulator) must be compensated for by the corre-
sponding change of the bare parameters, up to O (A~ ?)
terms which have already been neglected in the local ex-
pansion of the effective action. This corresponds to noth-
ing but to the hypothesis of universality [13] which was
proved within PT in [14]. In our case we still want to
make experiments at the scale u but we also want to take
into account that an intermediate scale A exists. The nat-
ural way to do so is by just including the leading so-called
irrelevant operators in the local expansion of the effective
action [i.e., we stop at O(A7?) instead of at O(A?)].
These would be dimension-six operators with couplings
proportional to A~? but otherwise arbitrary. By naive
generalization of the argument above to O(A ™ ?), any
small change of the intermediate scale A—A+8A must
be compensated for by the corresponding change of the
bare parameters and the coupling constants of the
dimension-six operators, up to O (A~ *).

In order to describe the main features of this frame-
work concerning Feynman diagrams let us take the sim-
plest A®* theory as example. There are three dimension-
six operators to be added to the Lagrangian:

1 % 1 2 ‘L_ 6
—TZAFPIP, —Z,8,000D7, 57,00,

(2.2)

Z,=Z,(A/u) are bare dimensionless coupling constants
which are assumed to admit an expansion in powers of #:

ZAA/ W) =Z g+ HZy (A /) + - (2.3)

Let us restrict our discussion to one loop and demon-
strate that the Z; (A/u) are enough to compensate the
regularization dependence at O(A~?) in any diagram.
Let us further take Z,,=0 which will be justified later
on. Consider first the two-point function. The tadpole
diagram gives rise to just mass renormalizations even at
O (A~ ?). (One may consider a sharp cutoff regularization
for simplicity.) From the dimension-six operators only
the second in (2.2) contributes but it only gives rise to
mass and wave-function renormalizations (there are no
nonlocal contributions). Consider next the four-point
function. The contribution with no dimension-six opera-
tor vertex at O (A~ ?2) is regularization dependent but lo-
cal and amounts to a Z, renormalization. The local con-
tributions to the diagram with one vertex containing the
second operator in (2.2) correspond to wave function and
Z, renormalizations. The nonlocal contribution is regu-
larization independent because the only cutoff depen-
dence is a global factor A~ coming from the coupling of
the dimension-six operator. The diagram with one vertex
containing the third operator in (2.2) gives rise to a
coupling-constant renormalization only. Consider finally
the six-point function. The contribution with no
dimension-six operator at O(A~2) is regularization
dependent but local and amounts to a Z, renormaliza-
tion. The local contributions to diagrams with one vertex
containing the second or third operators in (2.2) corre-
spond to Z, renormalizations whereas the nonlocal con-
tributions are regularization independent for the same
reasons as in the four-point function. For the n-point
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function, n =8, the contribution with no dimension-six
operator at O(A™?) is zero whereas nonlocal
regularization-independent contributions arise due to the
dimension-six operators similarly to the » =6 case. Dia-
grams with more than one vertex containing dimension-
six operators amount to just renormalizations [the nonlo-
cal parts are O (A~*)] and can be consistently neglected.
Notice that the fact that the nonlocal contributions of the
dimension-six operators are O(A~?) is consistent with
the “irrelevance” of these operators in usual (O(A°)) PT.

Although the first operator in (2.2) has a leading ultra-
violet behavior, it should not be included in the propaga-
tor, since otherwise the latter would contain unphysical
poles. This is overcome by choosing Z,, =0 as a renor-
malization condition. (At one loop one may also choose
Z,; =0 since no diagram requires Z, renormalizations.)
Then this operator is treated as a perturbation O (#).
The choice Zj, =0 may be justified as follows. If we have
an intrinsic scale A we can construct more than one field
with a given dimension and quantum numbers, for in-
stance ® and (1/ Az)aﬂa"(b. A natural way to single out
our basic field is by requiring that it must satisfy the
Klein-Gordon equation when the interactions are
switched off. It is not difficult to convince oneself that
such a field can always be obtained perturbatively in A ™2
by a formal change of variables in the path integral.

If we were interested in higher energies (still small in
comparison with the cutoff) we could extend this pro-
cedure to higher powers of the inverse cutoff. However,
there is a big lose of predictivity each time we need to
take into account an extra power of the inverse cutoff. In
fact if we wanted to take into account all inverse cutoff
powers we would need and infinite number of (renormal-
ized) coupling constants, the theory would become nonlo-
cal, and the physics described by that theory (if it existed
at all) would probably be unrelated to the one of the
power-counting Lagrangian. This reflects nothing but
the fact that in order to describe physics at the cutoff
scale we need a new more fundamental theory. Then the
procedure above must be understood as an improvement
of PT for energies closer to the cutoff but still small in
comparison with it. We would like to emphasize that we
only remove the regularization dependence of our theory.
The cutoff (scale) dependence is still there. In this way,
even if we have a built-in cutoff we can preserve unitarity
at a given order of inverse cutoff power. The price we
pay is the introduction of more (renormalized) coupling
constants.

The framework above is somewhat similar to consider-
ing a nonrenormalizable theory, i.e., adding dimension-
six operators with dimensionful arbitrary coupling con-
stants. This is so, for instance, as far as the number of
free parameters is concerned. However, in a nonrenor-
malizable framework loop corrections require the intro-
duction of higher and higher dimensional operators. In
order to retain predictive power a range of momenta
must be found such that higher orders are smaller and
smaller (see [11]). In our framework the diagrams that
would require the introduction of higher-order counter-
terms (operators) are suppressed by powers of A72. As
discussed above, the divergences introduced can be ac-
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counted for by the usual (dimension =<4) bare parame-
ters, whereas local terms containing InA/A? or similar
can be disposed of by renormalizations of the couplings
of the dimension-six operators. We believe that the
framework above is essentially equivalent to a suitable
nonrenormalizable setting. It just explicitly displays the
“small” expansion parameter which is identified with
A2 Since the nonlocal contributions to a given diagram
involving a dimension-six operator are proportional to
A72, they must be proportional to the square of the
external momenta as well, which reinforces the view of
this framework as a “low-energy’’ expansion.

III. LOCAL GAUGE ANOMALIES AT FINITE CUTOFF

The fact that local gauge anomalies [1] may spoil the
consistency of theories with chiral couplings was first dis-
cussed within the framework of perturbatively renormal-
izable quantum field theories (QFT’s) [7]. It was realized
by ’t Hooft that the possible existence of local gauge
anomalies has implications beyond perturbation theory
[15]. His “anomaly matching” conditions [15] (see also
[16]) have played a major role in theoretical physics
since, the most celebrated example in the last years being
the cancellation of local gauge anomalies for certain
groups in the 10-dimensional “low”-energy theory of
superstrings [17]. In view of this, it seems to need little
justification to require anomaly cancellation in the frame-
work outlined in the previous section. Yet we would like
to briefly comment on it. Having local anomalies means
that the number of degrees of freedom changes due to
quantum corrections [18]. This is clearly unacceptable,
at least within perturbation theory: one loop effects are
supposed to be small corrections to tree-level calcula-
tions, but in case of having a local anomaly they show up
new degrees of freedom. (Clearly a new degree of free-
dom cannot be regarded as a small correction.) The same
philosophy applies for finite cutoff corrections. Suppose
that we have a theory which has no local anomalies in the
usual (O(A%)) PT, ie., if one neglects O(A7?) terms.
Suppose next that we calculate O (A ~2) corrections ac-
cording to the framework of Sec. II. If the local anomaly
did not cancel, we would find that when probing the
theory at scales closer to A it suddenly describes extra de-
grees of freedom, which is not acceptable for the same
reasons as before. As a consequence anomaly cancella-
tion at O (A~2) is a physical requirement which may put
constraints on the couplings of the dimension-six opera-
tors.

Chiral anomalies are known to be given entirely by one
loop contributions in the usual (O(A®)) PT [19]. They
remain a purely one-loop effect even at O (A~ ?) as we ar-
gue next. Chiral anomalies are better discussed in the
framework of the effective action obtained after integrat-
ing out the fermions. Usually the fermionic fields appear
as bilinears and the effective action can be obtained exact-
ly. This is not the case at O(A~2) since among the
dimension-six operators there are four-fermion interac-
tions. Nevertheless, we can always transform the four-
fermion operators into bilinears by introducing auxiliary
fields (see next section). The propagators can always be
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regularized in a gauge-covariant way by using € regulari-
zation in a Schwinger proper-time representation, for in-
stance, even for the fermionic fields [20]. This is not so
for the determinants of Dirac operators containing chiral
couplings, the essential reason being that they are not
Hermitian in Euclidean space [21]. Therefore the anoma-
ly is going to remain a one-loop effect caused by the
determinants of Dirac operators only, at least at O(A ~2).

As mentioned above the propagator of a Dirac opera-
tor D, which generically transforms as §,D =uD —Du
under the action of the gauge group, can always be regu-
larized in a gauge-covariant way. In order to regularize
the determinant on the same footing we can regularize its
formal variation

8trinD=tr8DD 'L (8D,D)=tr8DD ] ,
D= ["drD'exp(—rDD")
€

reg (3.1
(e=A72) and integrate afterwards. The right-hand side
(RHS) of (3.1) is a functional of the external fields and
their variations. If it can be written as a total variation of
some functional, i.e., if it is integrable, the effective action
can be identified with this functional, which by construc-
tion respects all the symmetries of the classical Lagrang-
ian (except for scale invariance). If the RHS of (3.1) is
not integrable, it signals a possible obstruction to imple-
menting all the classical symmetries in the effective ac-
tion. In the last case, a local integrating functional,
which is unique up to total variations (local counter-
terms), can always be added to (3.1), and hence an
effective action defined [20]. The integrating functional
takes the form

1.(8D,D)=— [ 'dt C(8D(1),D(1),D(1)) ,
0 (3.2)
C€(81D,82D,D )‘_‘azLE(Sl,D,D)_81L5(82D,D)

=[ O‘d Atr[8,D exp(—AD D)8, DT
Xexp(—(e—A)DD")
—(1-2)] .
1.(8,D,D) was shown in [20] to be proportional to the
€79 at O (A®). This is also so at O (A ~2) as we shall see

in next section. Then the effective action can always be
written as [22]

T= foldt LE(D',D)—HG(D',D)-Hocal counterterms

=N 05,
1
o= J dt L (d,D(1),D(1),
0
1 : (3.3)
Q5=f0 di[AS,,(A,,D)+1.(D,D)],
A&, (u,D)=tr8,DD
=tr[u exp(—eDD")—% exp(—eD'D)],

where 8, means gauge variation, d, is a covariant deriva-
tive,
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d,-=%-+ A, —- A1),

N t (3.4)
A, (1)~ A (t)=g(t)A,(t)g () +g(1)d,g(t)",

and A,(¢) has been added and subtracted for conveni-
ence. We have also introduced an interpolation 4,,(1),
g(t) such that A4,(0)=0, g(0)=1 and A4,(1)
=4,, g(1)=g [22]. From (3.3) we see that the effective
action can be decomposed into a manifestly gauge-
invariant nonlocal piece (7§,,) and a local piece in (4+1)
dimensions (Q5) (when e—0). Notice, furthermore, that
8,05 must be a local functional in 4 dimensions since the
anomaly is local and 7f,, is gauge invariant. At O (A°),
Q5 consists of 5-dimensional terms (we associate dimen-
sion one to 9, and A4,), which are Euclidean invariant in 4
dimensions and proportional to €***?. It is not difficult to
see that no gauge-invariant term satisfying such condi-
tions exist. Therefore at O(A®), Qf either vanishes for
group-theoretical reasons or gauge invariance is violated.
Moreover, there is only a nontrivial 5-dimensional form
Qs(A4) such that §,Qs(4)=d A, (u, A) and it can actu-
ally be seen that Q¢ reduces to Qs( A) at this order [22].
At O(A™?), it may occur that neither A¢,, (u,D) nor
1.(D, D) vanish but nevertheless the O (A ~?) part of Q¢ is
gauge invariant. This is due to the fact that dimension-7,
Lorentz-covariant (in 4 dimensions) terms proportional
to the € tensor which are gauge invariant do exist. For a
simple gauge group they read

tr(FFK) ,

tr(F,,D,FF), tr(F, FD,F),
te(D,F,F,F), tr(F,D,F,F),
te(D,F,FF,), tr(F,FDF,),
te(D,F,F,F), t(F,D,F,F),
F,=[D,,D], D,=3,+4,, r=pt,

(3.5)

where form notation is to be understood for the omitted
indices. K is a gauge-covariant dimension-three one-form
which accounts for the four-fermion interactions as we
shall see in next section. Furthermore, the only way we
know of to obtain a local anomaly from terms of that
type is that there exists a Lorentz-invariant nontrivial
five-form of dimension-7 such that its gauge variation is a
total derivative. If we assume that all these forms can be
derived from six forms of dimension-8 in the manner of
descendent equations [23], the answer is negative. It is
not difficult to check that all six forms of dimension-8
which are closed are globally exact (exterior derivatives
of gauge-invariant forms). More explicitly, there are only
two gauge-invariant closed forms which can be written as

te(FFF,F,+1FD ,FD ,F)=d tr(D ,FF,) , e
tr(FFDK)=d tr(FFK) .

Thus we are led to the conclusion that the O (A~ ?) con-
tributions induce no genuine anomalies.

An alternative way of looking at the problem is the fol-
lowing. If the effective action is gauge invariant, the ex-
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pectation value of a certain current must be covariantly
conserved [1,2]. If a gauge-covariant regularization is in-
troduced, the current is to be normalized by gauge-
covariant counterterms only:

(tr(uD,,(j,+gauge-covariant counterterms)))

= A, (u,D)=tr8,DD oy  (3.7)

(angular brackets denote an expectation value over the
fermionic fields). From this point of view, the problem of
whether or not a genuine anomaly exists reduces to
whether gauge-covariant counterterms can be found such
that they account for all the contributions to A4 ¢, (u,D)
in (3.7). The possible counterterms give rise to the contri-

butions to the LHS of (3.7) listed below:
tr(uD (FK)), tr(uD(KF)),
tr(uD,(FD,F)), tr(uD,(D,FF)),
te(uD(F,D,F)), tr(uD(D,F,F)),
te(uD (FD,F,)), tr(uD(D,FF})) .

(3.8)

On the other hand, the possible contributions to
A¢,,(u,D) follow:

tr(uDKF), tr(uFDK) ,
tr(u {D,F,D,F}), tr(u{D,D,FF}),
tr(u {F(F,,F,}}), tr(u[D,D,F,F]).

(3.9)

It is a matter of linear algebra to see that a suitable
combination of the counterterms (3.8) can always account
for any combination of the terms (3.9). Thus we reach
the same conclusion as before, i.e., there is no genuine
anomaly at O (A™2).

IV. THE R, (G)X Rz (G) CASE

In order to make the arguments in the previous section
substantial we have to prove that A4°¥(u,D) and
1.(8D, D) are proportional to the € tensor, and that only
one extra (dimension-3) one-form (K) in addition to
gauge fields appears in these objects at O (A ™2).

Consider a gauge theory in Euclidean space with left
(right) fermions belonging to the unitary representation
R; (G) [Rr(G)] of a Lie group G, as it is customary in

general discussions on anomaly cancellation [2]. Its fer-
mionic part is given by the Euclidean Lagrangian
L=V¥DV¥, D=y*D,, D,=3,t4,,
4.1)

A,=App;+Agpr, Ap,=TgA,, H=LR,

where p; p =(1%ty5)/2 and Tf,T:—T,‘Q are the genera-
tors of two representations of the Lie algebra of G. L is
invariant under the local gauge transformations

W—»g\l/, \i—’wé\,
A4,—gA,8 '+gd g™, 4.2)

8=8.PL +8RrPR >
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where g belong to the corresponding representations of
the gauge group G. Carets mean interchanging p; and
pr here and in the rest of the paper. If G is simple the
complete set of dimension-six operators to be added to
(4.1) reads (H,H'=L,R)

Wy“cl(DpF#p)\ll , (4.3a)
iWyte,(D,,F,,}¥ , (4.3b)
We”"”"‘y“qFVng\l/ , (4.3¢)
FHEEG Yty W ylp W | (4.3d)
fHEQYrTEp W OYHTE DV (4.3¢)
h¥p, VUp ¥ , (4.3)
where
F,,=[D,,D,], (D, )=0,+[4,,"], s

ananpL+canR’ n =1’2’3 .

[A few more operators may exist in particular cases, e.g.,
G DSU(2), see the next section.] All the dimensionless
couplings c,,H,fS}”{,r, and h are real so that each term in
(4.3) is Hermitian in Minkowski space. The global factor
A~? has been omitted in each term of (4.3). If G is sem-
isimple two basic modifications have to be introduced.
First, there are as many terms (4.3a)—(4.3c) as normal
subgroups of G since one can define a curvature F L’L for
each ideal of the Lie algebra of G corresponding to a nor-
mal subgroup i Then one may introduce
F, =3, c,(,”F;f‘),, n =1,2,3, which takes values in the Lie
algebra of G. Second, there are as many terms
(4.3d)-(4.3e) as direct products can be formed between
the ideals of the Lie algebra of G by taking in each one ei-
ther the given representation or the identity. If in addi-
tion some normal subgroups have the same representa-
tion for the left and right fermions; i.e., there are vector-
like normal subgroups, there are as many terms (4.3f) as
direct products of the representations of the Lie algebra
of the vectorlike normal subgroups and the identity can
be formed as before.

The four-fermion interactions (4.3d) and (4.3e) can be
written as

1 — ! — 'yra
—a 1 Sml s Y Sy = Vi DV,

+Wyrs, V+UyHy, V],
. 4.5)
S, =SpprL tSpupr> Vu=V{.TipL + VR, TrPR »

by introducing the auxiliary fields Sy, and Vg,,H=L,R.

Notice that Vj, can be encoded in a simple
redefinition of the gauge fields 4, whereas Sy, can also
be traced by thinking of 4y, as taking values in the Lie
algebra of G plus the identity. If G is semisimple one has
as many auxiliary fields as direct products can be formed
according to the rule given after (4.4). The same connec-
tions Ay, are enough to keep track of the auxiliary fields
in this case as well but they must be thought of as taking
values in the direct sum of all the above-mentioned direct
products.



4626
The four-fermion interaction (4.3f) can be written as

\I/chp\I/—\I’pR:pT‘I’-i-%szq) (4.6)
by introducing the auxiliary scalar field ¢. If G is sem-
isimple and has vectorlike normal subgroups there are as
many @’s as direct products can be formed according to
the rules given above.

The introduction of auxiliary fields is not unique. Any
choice, however, is formally equivalent to (4.3d)-(4.3f),
since the functional integral over the auxiliary fields is
Gaussian and can be done exactly. Upon regularization
the equivalence is not so clear but the usual universality
arguments suggest that it still holds. In our case there is
an extra subtlety since the distribution of powers of the
cutoff between the quadratic and linear term in the auxili-
ary fields [in (4.5) and (4.6)] does matter in the end of the
calculations. This is due to the fact that the cutoff acts as
a counting parameter so, as such, it must be kept explicit
after the introduction of the auxiliary fields. This forces
the auxiliary fields to be of dimension-3 as explicitly
displayed in (4.5) and (4.6). (Of course, counterterms de-
pending on the auxiliary fields must now be allowed.) Let
us finally stress that the introduction of the auxiliary
fields is due to technical reasons only. An alternative way
to proceed would be by using an expansion about back-
ground fermionic fields Wo(¥=W¥,+W¥ ) and calculating
an effective action for 4, and ¥, \I/O This is feasible,
though lengthy and more involved After some (not com-
pletely trivial) calculations one may convince oneself that
both procedures are equivalent.

After all the steps above have been carried out, the fer-
mionic part of the Lagrangian can be accommodated to
the form L =WDW where

D=y#* 8 tA,+— A2 {DP,FZM,}
+L PO, D +~L<I>
A26 3JvpHo A2 ’
- L (D F ) +-1k
A#_Au+A ¢y p up) AZHC
(4.7)
Fop=ciF,,, n=123,
+
K#ZSH-FV#, O=@p; —@ pr -

D is the basic operator in our discussion, which we are
going to develop for A{ . (u,D) only. A totally parallel
argument leads to the same conclusions for
C.(8,D,8,D,D) in (3.2) and hence for [.(8D,D). The
operator D' reads

D'= r*

— _Al_zeuvpaj;‘v3vpﬁa —#&’ 4.8)

and hence it can be obtained from D by making
Ys— ~Vs Fy,,— —F3,,, and ®— —®. Since gauge co-
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variance forces ® to appear in pairs, this implies that the
contribution to A4¢ ,(#,D) in (3.3) from terms with an
even number of F;,,’s is proportional to y s whereas that
from an odd number of Fs,,’s is proportional to the iden-
tity. Since each Fj,, is accompanied by an € tensor, only
terms proportional to €**?? arise.

A direct consequence of the covariant anomaly being
proportional to €**?? is that it receives no contributions
from the operator (4.3f). This operator may only contrib-
ute through the scalar field ® which has dimension-three.
Since the terms contributing to the covariant anomaly at
O(A™?%) must have dimension-six, be gauge and Lorentz
invariant, and proportional to €*??, they cannot accom-
modate two scalars of dimension three. This means that
no restriction arises from anomaly cancellation for the
four-fermion operator (4.3f). We drop the scalar field in
the following.

Once the scalar field has been disposed of the contribu-
tions to the covariant anomaly factorize for the left and
right sectors. The calculation can be carried out by using
standard techniques (see [24] for a recent review), the
only peculiarity being that the cutoff A~ 2=¢ appears
both in the regularization (3.2), (3.3) and in the operators

D (4.7) and D' (4.8), and that we keep all the contribu-
tions up to O (A~ *). The precise form of the result was
not necessary for the discussion in the previous section.
We present it for completeness in the Appendix. Notice
finally that if G is not simple the list of possible contribu-
tions to A ¢, (u,D) in (3.9) increases as it does the list of
possible counterterms (3.8). A general proof that there
exist enough counterterms to remove all the contribu-
tions to A<, (u,D) at O(A~?) is given at the end of the
next section.

V. THE N-GENERATION STANDARD MODEL

In this section we rewrite the fermion -gauge-boson sec-
tor of N-generation SM at O (A~2) in such a way that the
results of the previous section can be applied. The
relevant part of the power-counting renormalizable La-
grangian in Euclidean space reads

(5.1

|I
Mz

z PD \PP

~
ll

where

Vo =puqf, Y/=pylfj, H=L,R (5.2)

(the summation is implicit in repeated indices), g stands
for quark and / for lepton and p; p =(1+y5)/2. Both left
and right quarks and leptons are allocated in doublets.
The left doublets correspond to the fundamental repre-
sentation of SU(2), whereas the right doublets are taken
as such for technical reasons [25]. The quark fields be-
long in addition to the fundamental representation of
SU(3). The differential operator D; is defined
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D;=y"D,;, D,=3,+t A, A,=Ajp+Agpr >
Aj,=W,+Y,B,+8G, , (5.3)
Ag,=(Y;+7)B,+8G, ,

where W#, B w and Gﬂ take values in the fundamental
(anti-Hermitian) representations of the Lie algebras of
SU(2), U(1), and SU(3), respectively, and represent the in-
termediate bosons, photon, and gluon fields. The 8% re-
minds that only the quarks interact with the gluons.
Y, =+ and Y; = —; are the hypercharges.

These fields have the following transformation proper-
ties under local gauge transformations:

Vg, T,
W, —gwW .8l +ewd,gl ,
B,—B,—3,0,

G,—8:G,85+860,8L ,

otyq+#)

oY
8,=8c8we ‘prtgge PR »

oy, +7)
Pr >

g=gWe’ 'p +e
where gy and g; belong to the fundamental representa-
tion of SU(2) and SU(3), respectively, and 6 is a purely
imaginary function. 7;=diag(4, —1) and carets mean in-
terchanging p; and pg.

Lists of dimension-six operators have been given before
in the literature [26,27]. Here we list in a more compact
notation only those relevant for the fermion-gauge-boson
sector. Consider first the operators bilinear in the fer-
mionic fields:

¥,y"(D,Fi, ¥, , (5.5a)

iV, y*{D,,F,,}¥; , (5.5b)

Y, eP Y FL, D, Y, (5.5¢)
where

T * T T — T
(fB ii’(pq)(rs)) _fB ii'(gp)sr) fB ii’(pq)(rs)_fB i'i(rs)(pq) »
T * T T — ¢T'T
(fG (pq)(rs)) —fG (gp)(sr)y fG (pq)(rs)_fG(rs)(pq) ’
* —
(fW ii'(pq)(rs)) _fW ii'(pq)(sr) fW ii’(pq)(rs)_fW i'i(rs)(pq) >

T * — T T — T
(fow o)) =Few (gprsrr Fow (o =S 6w (rs)pg) »
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Ffi#sz:;TppPT’ T=L)+’— >
P =pp-l, Py=ppt™, P_=pgp7r ,
L (to]l _ oo
=10 ol =1lo 1| (5.6)

wLuy =Caw Wyt i Byt 608G,
Fl’;:t;wZC;Binv-'_anisquuv’ n=123,
W, =3, W,—3W,+[W,W,],
B,,=9d,B,—d,B,,
G,,=3,6,—9,G,+[G,,G,] .

The generation indices have not been explicitly displayed.
The ¢’s are Hermitian N XN matrices connecting the
different generations. [The Hermiticity of the c’s follows
from the Hermiticity of (5.5) in Minkowski space.]
Operators containing three derivatives are omitted since
they must be chosen O(#) in order to avoid unphysical
poles in the propagators (see Sec. II), and hence they do
not contribute to the anomaly which is given entirely by
one loop diagrams [19] (see also Sec. III). Consider next
the four-fermion interactions. They can be written as

I8 oY VPPV Ly H PR (5.7a)
f6 bprs@ PY*A°Prq g Y*APrq® (5.7b)
Tw ipar ¥ 2YH D W Ly o W (5.7¢)
Fow Gl PY*ATpLa%g VAT pLg’ (5.7d)
hg ﬁ‘l'n(lfz!zl)(rs)‘7 P [py Y, (5.7e)
he (’iﬁ(ﬁs)‘? PpuAr"q%G py AT, (5.70)
dp o€ TV [y 7 (5.7g)
dg (o€ P A T"4 T Pyt ¢ (5.7h)

h,h'=+,—;7 and A° are the generators of the funda-
mental representation of the Lie algebra of SU(2) and
SU(3), respectively, and € is the antisymmetric tensor act-
ing on the fundamental representation of SU(2). The her-
miticity of these terms in Minkowski space implies that
the coupling constants in (5.7) satisfy

(kg B E ) =hp Ih’li?{{]z)’)(sr}’ hg S =R B B ey BB B =0 (5.8)
(hg (ast)* =hg (hqlz{?s‘r)a he (i =he (Brioar B (a1 =0 5
(dg ffﬁé‘{(m)* =dp f-{zz;(sr), dp ﬁZZ%mF —dp {{}r’s‘)};pq)’ dp g%)(rs)=0 ’
(dg (};’l;’)l('rs))* =dg @,’iﬁ'm, dg 52’)'{“): —dg (}ish)l(l;q)’ dg {;Z})'(rs)zo
(L=R, R=L). By introduction of the auxiliary fields b{,47,,, 8 {oq) Ty wf{,q)”, riaow OB ,’-}f{m)n, and @g §,). (5.7) reads
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@ﬁ/#b: ) t %b pq)Tp,fB pql(rs)b(rs)T,u’ b(pq PTb(pq)T,u ’ (5.9a)
TPV 8 pgu 9 18 o1l 6 ' b8 i ti> 8o =M Pr&8lpyrye » (5.9b)
Wﬁ/#w{pqmw? (pq)ny i (pq)(rslw(rg),u w;‘pq)p w(pq)yTlpL > (5.9¢)
qp'y“r(pq),uqq—%r?pq)uj‘c;—w (pq)(rs)r;]rs),u’ r(pq)u Al TIer (pgl > (5.9d)
@"CDB ii'(pq)‘l’?'—%(ﬁz; Zﬁlpq (Ml;l )ii'(pans)(PB ii’(rs)’ Dy ff'(pq):PHTh<PB y{pq) ’
My f’:"’(;ﬁm‘shh hyg W1+ 85757 d, o € (g M) =—g@p ?{T{qpl ) (5.9¢)
q°Pg (g4 4‘pG(hHMGl :qflrlz)(Pc L, g (pq):pH)‘aTh(pG a:;{ )
Mg (h:q)l({rfs{ =" hg ﬁ:’ﬁml +8HH dc (pq rs)E (pg f':qH) =@¢ 7;;{1 . (5.90

The 1 and the antisymmetric tensor € in (5.9¢) and (5.91)
act on the fundamental representation of SU(2). The aux-
iliary fields satisfy

it i it o — i
b g b pgs g<pq)y T8 Wipgp Wigpw »
1- P g—
r(pq);t - r(qp)w q)B u’(pq) CI)B i'i(gp) (5.10)
+ _ ~
CI:)G (pg) (DG (gp)

so that (5.9) is Hermitian in Minkowski space. In (5.9)
we assumed that the matrices formed with the coupling
constants appearing in (5.7) are invertible. If this is not
s0, some coupling constants are necessarily combinations
of the rest. In this case, it is not difficult to see that (5.7)
can be written as an invertible matrix coupled to suitable
combinations of fermionic bilinears. One auxiliary field is
then introduced for each one of these combinations. In
fact, the final outcome can be read off the invertible case
(5.9) by taking the auxiliary fields of a particular form
and dropping in the inverse matrices the rows and
columns corresponding to those which have been taken
as combinations of the rest in the original matrix. We
can then proceed without loss of generality as if the ma-
trices (5.7) were indeed invertible. We have just to
remember that forcing particular forms of the auxiliary
fields translates into having relationships between the
coupling constants (5.7).

After all these steps have been carried out, the bilinear
fermionic part of the Lagrangian can be accommodated
to the form WDV, where

1y
D=y* |3, +A, 5 {Dp,qup}-f-TE“ POFy,,D,

f

The quark-lepton and generation indices have not been
explicitly displayed. Recall that A4, is diagonal in the
quark-lepton and generation indices and wppr 1 =1,2,3,
is diagonal in the quark-lepton indices only. The explicit
expressions for K, and ® are

— i i i
Ki(r.\');t_b(rs)y, +w(rs)pr +6 q(g(rs)u+r(r5)upL) ’

o (5.12)
=D i) T80 9D ()

P

i'(rs)

Then K, is diagonal in the quark-lepton indices only and
@ is off diagonal in both quark-lepton and generation in-
dices. Recall also that A, takes values in the direct sum
of representations of the Lie algebras of U(1), SU(2),
SU(3), and SUR)®SU(3), and ® in the direct sum of 1
and the fundamental representation of the Lie algebra of
SU(3). The notation is intended to be a mnemonic. W’s
(w’s) are always related to SU(2), G’s (g’s) to SU(3), and
B’s (b’s) to Abelian pieces.
Notice that (5.11) has the same form as (4.7) and D'

satisfies the same properties as (4.8). Therefore the dis-
cussion after (4.8) applies to the SM as well. The possible

contributions to A4, (u,D) are a generalization of (3.9):

rijtr(uD F;D F;) , (5.13a)
rytt(uD D F;F;) , (5.13b)
rytr(uF;D,DF;) , (5.13¢)
Faiptt(uFF o F ) (5.13d)

The F; and F; are given in (5.6) for the SM (in this case

1
the traces now must be understood for generation indices

-
A (5.11)  as well) or in the discussion after (4.4) for a general sem-
_ 1 1 isimple gauge group G. The counterterms which account
A =4,+—(D_F +—K, .
Y % Dy Fiyp) Az for (5.13d) read
|
Lrgtr{u[ =D (F;D,F)+D,(F,D Fy)+D,(D,F;F)— 1D (D, FFy)+D(F ;D ,F)—2D (D, F,yFy)

+D(D,F,Fy)+D(F;D,F,)—2D(F,D,F,;)+D(D,F,F,;)]}

_ (n) . (n) pa(n)
where Fij _zn:idealsci cj F

(5.14)

for G semisimple and the obvious generalization for the SM (where the ¢ ""s are matrix
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valued in generation space). A simpler set of counterterms accounts for (5.13a)—(5.13c). These are

',1“(3r3ij+r”j_r2ij )tr[qu(FiDij)]+%(3r2,»j+r1,-j—r3,~j )tr[qu(DpF,F])]

+ Ly 1oy —ritr[uD (F ;D F;)+uD(F,D F,.)+uD (D F,F;)+uD (D F,F,)] .

The possible terms in 4, (u#,D) depending on K as
well as the corresponding counterterms are an immediate
generalization of those in (3.8), (3.9) and have not been
explicitly displayed. This concludes our proof that there
are no genuine contributions to the anomaly at O (A™2),
nor for an arbitrary semisimple gauge group G neither for
the N-generation SM.

VI. DISCUSSION

We have presented a perturbative framework in which
finite cutoff effects can be taken into account in a
regularization-independent, and hence unitarity-
preserving, way. We have focused on the occurrence of
local gauge anomalies, but presumably many other ques-
tions can be addressed. One may be worried, however,
about the consistency of the framework itself, as keeping
a cutoff is traditionally believed to bring in any sort of
trouble. The obvious objection, which is the regulariza-
tion dependence, is overcome by allowing arbitrary cou-
plings in the dimension-six operators as discussed in Sec.
II. Lorentz covariance and the internal symmetries can
be kept manifest by using € regularization. Terms with
higher derivatives are a potential source of problems re-
lated to unitarity (see [28] for a recent discussion). In or-
der to avoid unphysical poles in the propagators they
must be treated as perturbations and this is achieved by
taking them to be O (#). Notice also that keeping terms
O (A™?) at the end of the calculations does not violate lo-
cality (keeping terms at any order in A does). Conse-
quently, we do not expect problems related to unitarity,
though this point should be checked eventually.

We have seen that no genuine contribution to the
anomaly arises at O (A~2). Consequently, anomaly can-
cellation at O (A~?) does not relate coupling constants of
dimension-six operators as one might naively expect, and
hence does not constrain the physics beyond the SM.

If one is not worried about having a unitary framework
to calculate A ™2 effects, but confines oneself to find out
what the effects O (A~2) in the anomaly are in a given
regularization for the power-counting renormalizable La-
grangian, then our conclusion still holds. In fact the im-
plementation is much simpler in this case. We just have
to drop the terms proportional to A~2 in the operator
(4.7). Then the result in the Appendix consists only of
the terms (Ala), (A1d), and (A1i).

Let us also mention that fundamental scalar fields may
also contribute to the covariant anomaly at O(A™2).
Again, it is not difficult to see that all possible contribu-
tions amount to gauge-covariant renormalizations of the
current, so no genuine anomaly is left.

Although the motivation for our analysis as presented
in the introduction was the triviality of Ad*, the actual
scope of our work is wider. In fact, from the phenomeno-

ptpitj ptit pj

(5.15)

Pt pi

f

logical point of view, the basic assumptions are two: (i)
there are new unknown interactions which become
relevant at some scale A (the cutoff), and (ii) the physics
at energies approaching the scale A (but still small in
comparison to it) can be well described by adding to the
power-counting renormalizable Lagrangian higher-
dimensional operators which respect the symmetries of
that Lagrangian. (These assumptions have been used be-
fore [11,26].) The triviality of A®* just provides a pure
quantum-field-theoretical understanding of why the
built-in cutoff must be there. It has been useful to us in
order to present our ideas in a, we hope, coherent way.

In summary, we have described a perturbative pro-
cedure which allows to take into account effects due to a
finite built-in cutoff in a regularization-independent, and
hence unitarity-preserving, way in perturbatively renor-
malizable theories. We have proven that at leading order
there are no genuine contributions to the local gauge
anomaly.
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APPENDIX

We display here the result of the calculation of the co-
variant anomaly at O (A ~2):

A (u)= o %tr‘yw{ﬁuv, . (Ala)
+#tr75u{F#V,DuKV} (A1b)
+2~Kl;tru{173w,D#KV} (Alc)
+%7\1—2-try5u{DprFm,Fm,] (A1d)
- %—/—\%tru {D,D,F,,,Fy,) (Ale)
- %#tr'ysu {D,D,Fy,,,Fy.} (AlD
_ %%trysu {D,D,F\..F,,} (Alg
- —I%tru {D,D,F\,..F,.) (A1h)
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L1 : 11 _
T4 AT D Fu Dy F ] (ALY + 33D, P DyFy] (Al
11 : 11 _
— I A2 tru{Dprvprva} (A1) +€Ftru[F3#V’[FHP’F 1] (Alv)
31 F 1 _
=5 a0 s# (D, Fy Doy} (ALK LU G o By o )
1 F +4[F 3pv’[F}tp’F2vp]])
+ ot {D,Fy,,,D,F,,,} (A1]) 1 At
+_tru(_i F v F 7Fv
! — tru {F3‘uw[Fy,pyF ]} (Alm) AZ 3 { H® { 2up>" 3 P}}

3 A2
1 -~
+X‘2"tr'}’5u(—3{ #v)[F3p,p’F3Vp]}

+’431{F3#v)[F#p:F3vp]])

(Aln)

+ %#tru {(F3u0s[Fup F3,,1) (Al0)
gty su (P Fiypn Pyl (AlD
t2- Sty Pyl PPy )l (Alg
3 Alz try5u[DprF2#V,FW] (Alr)

+ é%tru[Dprsz,F}m] (Als)
_ é_%tm@u [D,Fy.,D,F,,]  (AlD

_16{F3uv’{Fpp’F2vp}}) ’

(Alx)

F,= ewpana .

The traces over Dirac matrices just keep track of the rel-
ative signs between left and right contributions in a com-
pact way. The covariant derivatives in (A1) must be un-
derstood as acting on the closest object on the right only.
Contributions trysu {F 3uv»F3uy} may have occurred but

cancel against each other. For G simple
FoF e =FoFpo=c,Fy Foo =F, F,c,, n=12,3 and
hence (Alt)-(Alx) vanish. For G semisimple

(A1t)-(Alw) also vanish because the commutators split
the contribution into a sum over the contribution of each
ideal which vanishes.

The result for the SM can be obtained from (A1) by un-
doing the definitions (5.6) and (5.12), taking
u=u;p; +ugpr, uy=v+Y;0, ug =(Y,+7°)0 [v takes
values in the Lie algebra of SU(2) and 0 is a purely imagi-
nary function], and considering the traces over the gen-
eration indices as well.
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