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Condensation: This study demonstrated altered microstructure in specific brain 

networks (motor and cortico-striatal-thalamic), which is specifically related with its 

respective functional outcome.  

Short title: Altered structural connectivity in IUGR 
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ABSTRACT 

Background: Intrauterine growth restriction is associated with short- and long-term 
neurodevelopmental problems. Structural brain changes underlying these alterations 
have been described using different magnetic resonance based methodologies, 
including changes in whole structural brain networks. However, evaluation of specific 
brain circuits and its correlation with related functions has not been investigated in 
intrauterine growth restriction. 

Objectives: In this study we aimed to investigate differences in tractography-related 
metrics in cortico-striatal-thalamic and motor networks in intrauterine growth 
restricted children and whether these parameters were related with their specific 
function in order to explore its potential use as imaging biomarker of altered 
neurodevelopment.  

Methods: We included a group of 24 intrauterine growth restriction and 27 controls 
that were scanned at one year of age acquiring T1-weighted and 30 directions 
diffusion MR images. Each subject brain was segmented in 93 regions using Anatomical 
Automatic Labeling atlas and deterministic tractography was performed. Brain regions 
included in motor and cortico-striatal-thalamic networks were defined based in 
functional and anatomical criteria. Within the streamlines resulting from the whole 
brain tractography, those belonging to each specific circuit were selected and 
tractography-related metrics including number of streamlines, fractional anisotropy, 
and integrity were calculated for each network. We evaluated differences between 
both groups and further explored the correlation of these parameters with the results 
of socio-emotional, cognitive, and motor scales from Bayley Scale at two years of age.  

Results: Reduced fractional anisotropy (cortico-striatal-thalamic 0.319 (0.018) vs 0.315 
(0.015), p= 0.010; motor 0.322 (0.019) vs 0.319 (0.020), p=0.019) and integrity cortico-
striatal-thalamic 0.407 (0.040) vs 0.399 (0.034), p= 0.018; motor 0.417 (0.044) vs 0.409 
(0.046), p=0.016) in both networks were observed in intrauterine growth restriction 
group with no differences in number of streamlines. More importantly, strong specific 
correlation was found between tractography-related metrics and its relative function 
in both networks in IUGR children. Motor network metrics were specifically correlated 
with motor scale results (fractional anisotropy rho= 0.857, integrity rho= 0.740) and 
cortico-striatal-thalamic network metrics were correlated with cognitive (fractional 
anisotropy rho= 0.793, integrity rho= 0.762) and socio-emotional scale (fractional 
anisotropy rho= 0.850, integrity rho= 0.877) 

Conclusions: These results support the existence of altered brain connectivity in 
intrauterine growth restriction demonstrated by altered connectivity in motor and 
cortico-striatal-thalamic networks, with reduced fractional anisotropy and integrity. 
The specific correlation between tractography-related metrics and 
neurodevelopmental outcomes in IUGR shows the potential to use this approach in 
order to develop imaging biomarkers to predict specific neurodevelopmental outcome 
in infants at risk due to intrauterine growth restriction and other prenatal diseases. 
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KEYWORDS: Intrauterine growth restriction, Connectivity, Tractography-related 
metrics, Integrity, Fractional anisotropy, Magnetic resonance imaging, Brain networks 
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1. INTRODUCTION 

Intrauterine growth restriction (IUGR) is a prevalent condition that affects 5-10% of all 

pregnancies in developed countries, being associated with short- and long-term 

neurodevelopmental problems, including motor and cognitive delay1-3. IUGR has been 

proposed, together with prematurity, as the cause of one-quarter of cases of special 

educational need due to sensory, motor and intellectual disabilities 4. Moreover, IUGR 

has been proposed as a risk factor for developing autism spectrum disorders (ASD) 

5and attention deficit hyperactivity disorder (ADHD)6. Structural brain changes 

underlying altered neurodevelopment have been described using magnetic resonance 

imaging (MRI), starting in prenatal period 7-11, persisting at neonatal and early infancy 

12-17 and at adolescence 18, 19.  However, we are still far from identifying those 

individuals at high risk of abnormal neurodevelopment, which are the potential target 

for early therapeutic interventions. Being a crucial clinical and experimental need the 

development of imaging biomarkers20, it is extremely important to better characterize 

the brain reorganization underlying neurodevelopmental and cognitive dysfunctions in 

IUGR.  

Several brain regions have been demonstrated to be affected by IUGR, including both 

gray and white mater 7, 12-15, 17, 21. Specifically, global reduction of white matter (WM) 

volume 18, 19, but also changes in specific regions such as thinning of corpus callosum 

18have been reported, being part of these changes already present in prenatal 

period22. Recently, diffusion MRI, which provides indirect information about brain 

microstructure 23, has been used to detect changes occurring in IUGR 24-27 and other 

fetal conditions associated with reduced brain oxygen supply such as cardiac defects 28. 

Aside from assessing changes in diffusivity parameters, diffusion MRI allows to 
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reconstruct the trajectory of the WM tracts within the brain by means of tractography, 

which combined with brain segmentation, allows to build brain networks. In this line, 

structural brain networks of one-year-old IUGR infants have been reported to have 

reduced level of organization together with a pattern of regional network features that 

is associated with latter neurodevelopmental outcomes 29, 30.  However, to the best of 

our knowledge, evaluation of specific brain circuits and its correlation with related 

functions has not been investigated in IUGR. Tractography-related metrics can be 

obtained in order to estimate features along the WM pathways among brain regions 

regulating specific brain functions. This approach has been used to identify changes in 

diseases of neurodevelopment such as ADHD 31, ASD 32 and periventricular 

leukomalacia 33, 34.  Several metrics have been proposed to be used to describe WM 

characteristics within specific networks, such as number of fibers, fractional anisotropy 

(FA) 31, 35, and radial diffusivity 36, 37. Recently, INT has been proposed as a parameter to 

further evaluate intrinsic properties of WM tracts 38, which considers both anisotropy 

and radial diffusivity, being more sensitive to lack of linear diffusion into the tissue. 

Applying tractography-related metrics to IUGR could provide additional relevant 

information for a better understanding of the problem and its consequences, since it 

could bring straightforward information in relation to the identification of specific 

disorders in IUGR population.   

In the present study we investigated tractography-related metrics in cortico-striatal-

thalamic and motor networks obtained from a group of one-year-old infants with and 

without IUGR.  We computed the number of streamlines obtained by tractography, 

mean FA and INT of each network and evaluated differences between both groups. We 
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also explored the correlation of these parameters with the results of socio-emotional, 

cognitive, and motor scales of Bayley’s test at two years of age.  
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2. MATERIAL AND METHODS 

2.1. Subjects 

In this study we included part of prospective cohort of IUGR included in a previous 

study of our group 29. From an original sample size of 83 fetuses (42 IUGR and 41 

controls) recruited consecutively we excluded 5 controls that were born below 28 

weeks of pregnancy. We also excluded 8 IUGR and in 5 controls based on structural 

MRI findings (four increased cisterna magna, seven ventricular dilatations and two WM 

lesions). In addition, 10 IUGR and 4 controls did not pass quality criteria due to motion 

artifacts hampering proper tractrography reconstruction, comprising a final sample of 

24 IUGR and 27  controls.  Following well-established criteria39, IUGR was defined as a 

fetal estimated weight below 10th centile confirmed at birth, both according to local 

reference standards40. Control subjects were defined as fetuses with fetal estimated 

weight between the 10th and 90th customized centiles according to local reference 40 

confirmed at birth. Pregnancies were dated according to the first-trimester crown-

rump length measurements 41. Infants with chromosomal, genetic, or structural 

defects and signs of intrauterine infection or neonatal early onset sepsis were excluded 

from this study.  Neonatal data were prospectively recorded including: gestational age 

(GA), birth weight, gender, Apgar at 5 min, umbilical artery pH and neonatal 

complications. Maternal education was recorded as low, intermediate or high 

educational level. Maternal smoking status during pregnancy and breastfeeding were 

also recorded. Growth parameters (weight, length, body mass index and head 

circumference) were recorded at 12 months and were normalized for local standards 

42. The study protocol was approved by the local Ethics Committee, and written 
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informed consent was obtained from the parents or legal guardians of all participants 

(2008/4422). 

2.2. Neurodevelopmental assessment 

Neurodevelopmental outcome was assessed at 21 months of corrected age (±3 

months) with the Bayley Scale for Infant and Toddler Development, Third edition 

(BSID-III), which evaluates five distinct scales of development 43. For this study we 

considered results in cognitive, socio-emotional behavior, and motor scales. The scales 

have scores with a mean of 100 and S.D. of 15. All developmental examinations were 

performed by a blinded single trained psychologist examiner with previous experience 

with the BSID-III.  

2.3. MRI data acquisition 

Children were scanned at 12±2 months, during natural sleep using a TIM TRIO 3.0 T 

whole body MR scanner (Siemens, Germany).  High resolution structural T1 and T2 

weighted images and 30 diffusion volumes were acquired as previously described 29. 

Structural T1 and T2 weighted images were evaluate in order to exclude brain 

abnormalities. All acquired MRI structural and diffusion images were visually inspected 

for apparent or aberrant artifacts and subjects excluded accordingly. 

2.4. MRI processing 

The methodology performed to process MRI was previously described in 29, 30. Briefly, 

the acquired images of each subject were skull-stripped 44, segmented into WM, GM 

and cerebrospinal fluid (CSF) 45 using specific probability maps 46. Each subject brain 

was regionally parcellated in the native space with a version of the AAL atlas of 116 

regions 47, adapted to  one-year-old infants 46. Cerebellar regions were merged into 

vermis, right and left cerebellum, resulting in a total of 93 regions per subject. Whole-
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brain deterministic tractography was performed for each subject using a Diffusion 

Tensor Imaging (DTI) based Fiber Tracking algorithm with Log-Euclidean Metrics 48, 

available on MedINRIA 1. FA threshold of 0.2 was chosen as stopping criterion for the 

tractography algorithm 49 and streamlines were confined to the WM mask.  

2.5. Tractography metrics  

Definition of circuits of interest 

In this study two specific brain circuits were studied: motor and cortico-striatal-

thalamic (CST).  Motor network was defined as those fibers starting at the motor 

cortex (primary motor cortex or supplementary motor area) and passing through one 

of the following regions: post-central gyrus, superior parietal gyrus, cerebellum, 

nucleus palidus, caudate nucleus, putamen nucleus, and thalami 50, 51. CST network 

was defined as those fibers starting in frontal cortex (superior frontal gyrus, medial 

superior frontal gyrus, middle frontal gyrus, and inferior frontal gyrus opercular and 

triangular part) and passing through the striatum or nucleus pallidus and the thalami 

31. Within the streamlines resulting from the whole brain tractography, those 

belonging to each specific circuit were selected and described by a set of parameters 

described below (Figure 1, Table S1). 

Tractography metrics 

Three different measures were considered for the quantitative analysis of brain circuits 

previously defined: number of streamlines belonging to each circuit, FA, and INT.  

Number of stream lines was obtained counting those belonging to defined circuits. FA 

describes the diffusion anisotropy 23, which has been related with the presence, 

organization and/or maturation of fibers. The mean FA along each streamlines in the 

circuit was computed, and the resulting values averaged on the whole circuit obtaining 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 11

a single value. INT was defined in 38 as the relationship between FA and radial 

diffusivity, being higher values related to a high level of myelination, and being more 

sensitive to lack of linear diffusion into the tissue. INT was computed in each 

streamline and averaged in all the streamlines of the circuit as: 

 

where   is the radial diffusivity , being λ2 y λ3 the second and 

third eigenvalues of the matrix representing the diffusion tensor. 

2.6. Statistical analysis 

Statistical comparisons among groups were performed by general linear models with 

gender, maternal education level, smoking during pregnancy, and breastfeeding as 

cofactors and GA at delivery as a covariate. When analyzing tractography-related 

metrics, brain volume was added as covariate. For categorical variables, chi-squared 

test was used. Partial correlations between tractography metrics and BSID-III results 

were also performed with gender, GA at delivery, maternal education level, smoking 

during pregnancy, breastfeeding and brain volume as controlling variables. Due to the 

exploratory nature of this analysis, significance was declared at p<0.05 (uncorrected). 

The software package SPSS 19.0 (SPSS, Chicago, IL) was used for the statistical 

analyses.  
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3. RESULTS 

Neonatal data, demographic characteristics and BSID-III scores are included in Table 1. 

No difference was found in the proportion of preterm infants between groups (<37 

weeks: control 10 (37%) and IUGR 8 (33.3%)) No significant differences were found in 

neonatal results among groups. 

 At the time of MR, IUGR babies were significantly lighter and shorter, but no 

differences were found neither in cephalic perimeter, nor body mass index. Regarding 

BSID-III test, IUGR infants showed a trend to present lower score in the three scales, 

reaching statistical significance in motor scale. It should be noted that we only have 

available data about cognitive and motor scale in 68.8% of cases and socio-emotional 

scale in 62.7%. No differences were observed between those with and without 

neurodevelopmental information (mean GA at delivery 38.1(2.7) vs 36.0(4.6) weeks 

and proportion of IUGR 43.8% vs 48.6%, respectively).  

By means of MRI analysis, no significant differences were found in brain (8.44 (0.90) 

×105mm3 vs 8.04 (0.77) × 105mm3, p=0.085) and WM volume (3.52 (0.38) ×105mm3 vs 

3.45 (0.34) × 105mm3, p=0.508). Quantitative metrics results showed significant 

reduction in mean FA and INT in both brain networks, with no differences in number of 

streamlines (Figure 2). When correlation between these parameters and BSID-III scores 

were evaluated in IUGR group, a specific correlation was found between each circuit 

and their associated test outcome. On the contrary, correlations between motor 

network and cognitive socio-emotional scales and between CTS network and motor 

BSID-III outcome were not significant (Table 2). 
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4. COMMENT 

Although differences in brain development of IUGR babies have already been 

described using different approaches 7, 8, 10, 12-19, 21, 22, to the best of our knowledge, this 

issue had not been tackled from the analysis of specific brain circuits associated to a 

given function. The results obtained demonstrated a significant reduction in mean FA 

and INT of both motor and CST networks, suggesting the existence of altered 

maturation and organization of the fiber tracts within these networks in IUGR infants. 

In addition, we demonstrated that these parameters were highly and specifically 

correlated with related neurodevelopmental outcomes at two years of age supporting 

the notion that tractography related metrics in specific circuits could be used as 

imaging biomarkers to predict neurodevelopmental outcome of IUGR infants.  

The group of babies included in our study did not showed differences in GA at delivery 

or neonatal morbidity, which allow us to exclude the impact of these parameters in the 

neurodevelopmental outcome obtained at two-year-old infants.  Additionally, no 

differences were identified in the proportion of babies that were breastfeed at least 3 

months after birth, which have been related to positive effects on WM development 

and maturation 52 and neurodevelopment, especially in IUGR babies 53. However, 

mother smoking during pregnancy status, which has been previously described to 

increase IUGR risk 54, 55, was found significantly increased in IUGR group. We 

acknowledge that just including this variable as a co-factor in the statistical analysis 

could not be completely disentangling the real effect of smoking on 

neurodevelopment, but it certainly would reduce its effect on the analysis.  In our 

population, despite being all averaged scores within normal range in both populations, 
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IUGR infants showed lower averaged performance in cognitive and socio-emotional 

areas with significant decrease in motor scale, which is in line with previous data 

showing poorer neurodevelopment in IUGR 1-3. Impaired motor performance has been 

described in IUGR as soon as in neonatal period 56, persisting during childhood 57 and in 

adulthood58, involving both gross and fine motor. Effects on socio-emotional 

development have also been documented after growth restriction with a reduction of 

social interaction in neonatal period 56, decreased performance in personal-social and 

communication areas at two years 59 and behavioral effects in adulthood58. Finally, 

cognitive delay has been extensively reported during childhood, which partially 

determines poor performance at school 57. It has been reported that, at 14 years of 

age, up to 27% of the children with IUGR attended special education or private 

education compared to 5% in the general population 58. Lack of statistical significance 

in cognitive and socio-emotional areas when comparing neurodevelopmental 

outcomes in our study could be related with small sample size, since part of this 

population has been included in a previous study in which significant differences were 

found 29. 

Analysis of quantitative metrics showed significant reduction in mean FA and INT in 

motor and CST networks of IUGR babies, with no differences in number of streamlines 

reconstructed. Analysis of specific WM tracts have been previously applied in babies 

with focal brain lesions and congenital hemiparesia, demonstrating that diffusion 

parameters in corticospinal tract were different in those babies with hemiplegia, being 

correlated with severity of motor outcome 60, 61. Corticospinal tract has also been 

analyzed in children with spastic cerebral palsy demonstrating that those with worst 

motor functioning have decreased number and volume of fibers with no differences in 
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diffusion parameters 34. In contrast with our results, metrics based in number or 

volume of WM tracts was significantly different in these studies. This could be 

explained by the fact that population included were severely affected children that 

have suffered serious brain damage including ischemic or hemorrhagic damage and 

periventricular leukomalacia, two conditions that imply WM damage per se. However, 

this metric should be taken with caution, since is highly influenced by several 

parameters such as fiber length, curvature, and acquisition quality 62, while parameters 

based in anisotropic characteristics of the tissue are more reliable63. Reduction of FA in 

specific WM circuits have been demonstrated in neurodevelopmental disorders such 

as ADHD 31, 64 and ASD 32. This change has been suggested to reflect axonal 

degeneration or less well-organized tract 35, as demonstrated in ADHD children with 

reduction in FA with no changes in magnetization transfer ratio 31, which is a marker of 

myelin content 65. In our study, reduction of FA in both circuits in IUGR was associated 

with decreased INT, a parameter that provide information about organization of fibber 

bundles within a WM tract 38. This parameter takes into account the radial diffusivity, 

which is highly related with myelin density and have been demonstrated to be 

increased after hypoxic-ischemic encephalopathy66 and in children with focal brain 

injury with mild asymmetry in motor function 60.  Reduction in both FA and INT for 

IUGR children suggested that WM tracts within these specific brain networks are less 

organized and myelinated, leading to an altered structural connectivity. 

 Regarding structural-functional correlates in IUGR, we showed a specific association of 

each network tractography metrics with related neurodevelopmental outcome. These 

results are in line with previous data on ADHD, where reduction of FA in the 

frontostriatal WM tracts was specifically correlated with different particular 
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symptoms: orbitofrontal tract was correlated with inattention whereas left 

dorsolateral and right medial prefrontal were correlated with hyperactivity-impulsivity 

symptoms64.  This specificity was also found in a rabbit model of IUGR, in which left 

anxiety network correlate with neurobehavioral performance in an open-field test 25. 

Overall, the results presented are in line with previous data demonstrating changes in 

structural connectivity after IUGR 29, 67and support the evidence of altered structural 

connectivity being involved in the functional impairment associated with IUGR. 

Importantly, the specificity demonstrated between tractography-related metrics at 

one-year period and later performance, supports the idea that these parameters could 

be used not only to identify those babies with abnormal neurodevelopment, but to 

identify specific neurodevelopmental delays.   

Our study has some issues that deserve some discussion. Firstly, the use of generic 

neurodevelopmental tests instead of specific tests to evaluate motor performance and 

ADHD. Since this study was part of a larger prospective cohort of IUGR in which 

postnatal long-term follow-up was done with BSID-III68, we found appropriate to use 

the selected scales for the objective of this study. In addition, the period between MRI 

acquisition and BSID-III could have some effects on the robustness of correlations 

between tractography-related metrics and Bayley results since different factors can 

have an influence in neurodevelopment. However, the evidence of these correlations 

even after one year should be considered as a positive characteristic in terms 

characteristic in terms of obtaining potential imaging biomarkers. Secondly, definition of 

motor and CST network was based in previous knowledge, but, since there is not a 

standard criteria in their definition, we acknowledge that some supplementary regions 

could be included or missed. In addition, in spite of using region of interest analysis we 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 17

decided to apply specific networks analysis, since tract based analysis has showed 

more robustness and reproducibility 69. Thirdly, FA values in obtained in our study are 

lower compared with those reported in previous studies using preterm population 70. 

This difference could be explained by the selection cortico-spinal tract and corpus 

callosum, both tracts being those with higher FA 71 while motor networks computed in 

this study not only included cortico-spinal, but also some short-range tracts that could 

have more crossing-fibers areas (which involves lower FA areas) and can have an effect 

on mean FA on the whole circuit. In addition, differences in acquisition protocol and 

tractography processing could have some effect on this respect 72. Regarding other 

technical considerations, the proposed analysis is based on the streamlines obtained 

by means of a deterministic DTI-based tractography algorithm that is less robust than 

other techniques to detect fibers crossing. However, due to acquisition protocol 

including only 30 gradient directions, the use of other kind of techniques as Q-ball or 

spherical deconvolution is limited. Besides the case-control design, the use of tract 

metrics averaged across circuits makes these measures independent on the number of 

streamlines assessed by the tractography algorithm and less vulnerable to variability in 

the streamlines pathways.  Despite the fact that number of streamlines has been 

extensively used in literature as a direct measure of quantification of white matter 

tracts, there are a lot of concerns regarding its use since is a parameter that is highly 

influenced by a lot of factors 62. In our study, the lack of differences in this parameter 

together with small but significant changes in relative metrics such as mean FA and 

INT, support the use of these relative parameters in further studies.   

In conclusion, analysis of quantitative tractography metrics in IUGR children 

demonstrated altered connectivity in motor and CST networks, as demonstrated with 
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reduced FA and INT, specifically correlated with neurodevelopmental outcomes. 

Further studies using different populations of children at risk after suffering perinatal 

insults and more specific test will be of help to support this data. Nevertheless, the 

results presented show the potential to use this approach in order to develop imaging 

biomarkers to predict specific neurodevelopmental outcome, opening the opportunity 

to apply individualized early therapeutic interventions to infants at high risk of 

suffering neurodevelopmental problems of a prenatal origin. 
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TABLES 

 

Table 1. Neonatal data, demographic characteristics, and BSID-III scores in the study 

groups. 

 Controls 

n=27 

IUGR 

n=24 

p 

Neonatal data 

Gestational age at delivery (weeks) 36.6 (5.0) 36.7 (3.2) 0.91 

Birth-weight (gr) 2699 (989) 2053 (608) 0.008 

Birth-weight centile 52.8 (26.4) 1.9 (2.8) <0.001 

Gender distribution  (male/female) 17/15 15/9 0.48 

Demographic characteristics 

Maternal education less than high school 26% 33% 0.56 

Breastfeeding longer than 3 months 74% 59% 0.27 

Smoking during pregnancy 15 % 46% 0.015 

Corrected age at MR (months) 12.9 (1.6) 13.2 (1.6) 0.59 

Corrected age at BSID-III (months)  20.1 (3.2) 21.7 (3.0) 0.12 

Population characteristics at MR    

Weight z-score  -0.47 (0.86) -1.06 (0.85) 0.018 

Height z-score -0.08 (1.21) -1.01 (0.97) 0.006 

Body mass index z-score 17.03 (1.51) 17.07 (1.57) 0.93 

Cephalic perimeter z-score -0.51 (1.04) -1.09 (1.30) 0.10 

BSID-III scores 

Cognitive a 109.7 (12.7) 105.9 (12.7) 0.58* 

Socio-emotional b 119.1 (30.3) 110.3 (24.0) 0.50* 

Motor  a 106.6 (14.7) 101.1 (9.3) 0.042* 

BSID-III: Bayley Scale for Infant and Toddler Development, Third edition; IUGR: 

Intrauterine growth restriction 

a Available only in 18 controls and 17 IUGR, b Available only in 16 controls and 16 IUGR 

* Adjusted by gender, maternal education level, smoking during pregnancy, 

breastfeeding, and GA at delivery. 
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Table 2. Mean correlation coefficients between quantitative tractography metrics 

and cognitive, socio-emotional behaviour, and motor scales of BSID-III in the IUGR 

group. 

 Cognitive Socio-emotional Motor 

Cortico-striatal-thalamic network 

Number of fibers (n) -0.536 -0.441 -0.472 

Fractional anisotropy 0.793* 0.850** -0.256 

Integrity 0.762* 0.877** -0.143 

Motor network 

Number of fibers (n) 0.242 -0.081 0.427 

Fractional anisotropy 0.430 0.129 0.857** 

Integrity 0.217 0.069 0.740* 

Gender, GA at delivery, maternal education level, smoking during pregnancy, 

breastfeeding, and brain volume were included as controlling variables 

*<p 0.05, **<p 0.001 
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FIGURES CAPTIONS AND LEGENDS 

 

Figure 1. Motor and cortico-striatal-thalamic networks definition. 

Motor network: (A) brain regions included (motor cortex, post-central gyrus, superior 

parietal gyrus, cerebellum, nucleus palidus, caudate nucleus, putamen nucleus, and 

thalami) and (B) white matter tracts reconstructed 

Cortico-striatal-thalamic network: (C) brain regions included (frontal cortex, striatum, 

pallidus and thalami) and (D) white matter tracts reconstructed. 

 

 

Figure 2. Quantitative tractography metrics of cortico-striatal-thalamic and motor 

networks in study groups 

Values are mean and standard deviation.   

p values are General Lineal Model significance among groups corrected for brain 

volume, education, smoking, gender, breastfeeding and GA at delivery 
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Table S1- Regions of AAL of motor and cortico-striato-thalamic networks 

 

 AAL regions 

Motor network  

Primary motor cortex 1,2 

Supplementary motor área 19,20 

Post-central gyrus 57,58 

Superior parietal gyrus 59,60 

Cerebellum 91 and 115, 92 and  116 

Globus pallidus 75,76 

Caudate nucleus 71,72 

Putamen 73,74 

Thalamus 77,78 

Cortico-striatal-thalamic network  

Superior frontal gyrus 3,4 

Medial superior frontal gyrus 23,24 

Middle frontal gyrus 7,8 

Inferior frontal gyrus opercular part 11,12 

Inferior frontal gyrus triangular part 13,14 

Caudate nucleus 71,72 

Putamen 73,74 

Globus pallidus 75,76 

Thalamus 77,78 

 


