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The proof of {-function regularization of high-temperature expansions, a technique which pro-
vides correct results for many field-theoretical quantities of interest, is known to fail, however, in
the case of “Epstein-type” expressions such as Z;‘fl _____ ,,N:|( zjyzlajn;’)‘s, a=2,4,.... After

showing where precisely the existing demonstration breaks down, we provide a new proof of this
regularization valid for a wider range of the parameter a. The extra terms are calculated explicitly
for any value of ¢ <2. As an application, we provide the finite results corresponding to the §-
function regularization of expressions associated with field theories evaluated in partially
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compactified, toroidal spacetimes of the form TP X R7*!,

I. INTRODUCTION

Few physicists would nowadays argue against the
statement that the {-function regularization procedure
has proven to be a very powerful and elegant technique.
Its range of applicability is quickly expanding. Let us
briefly mention Actor’s program of associating { func-
tions with Feynman loop diagrams having any number of
external lines, corresponding to field theories formulated
on spacetimes with partial toroidal compactification.!
The power of the diagram ¢ function lies in its ability to
provide an exact power-series expansion in mass and
external momentum of the corresponding regularized dia-
gram. Worthy of being commented is also its relevance
to summation methods in issues concerning the problem
of 2mass generation for the fermionic Gross-Neveu mod-
el.

However, it must be recognized that the {-function
regularization procedure has important limitations. We
will here concentrate only on the ones associated with the
non-naive interchangeability of the order of the summa-
tions of infinite series. These series appear, for instance,
when performing the high-temperature expansion of
different field-theoretical quantities, and the interchange
of the order of the summations is necessary if one wants
to collect common powers of the temperature and to ob-
tain, finally, a series expansion in it. The same would
happen in the aforementioned case of expansions in terms
of the mass and the internal momentum or when trying
to express the energy density of the Casimir effect (ob-
tained by direct summation of the zero modes) in powers
of plate separation and field mass. This only to mention a
few examples where the technique is clearly useful.

A most interesting result concerning the interchange of
order of the summations of infinite series appearing in &-
function regularization is due to Weldon.> His investiga-
tion originated in some difficulties which appeared in a
paper by Actor,* when he tried to obtain the value of the

thermodynamical potential corresponding to a relativistic-

Bose gas by using the {-function regularization. pro-
cedure.
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Weldon’s proof of {-function regularization of high-
temperature expansions has subsequently been used in
several interesting examples,»® and has been redone in
Ref. 6 in great detail. Unfortunately, Weldon’s proof has
its own limitations, and some statements in Ref. 3 con-
cerning the extent of its validity are actually not right.
This is not difficult to check in some particular cases, and
has been stressed in Ref. 6.

The purpose of this work is to extend the proof of §-
function regularization, in a sense that will later be de-
scribed, by finding the new counterterms that were absent
in Ref. 3, and also to provide applications of the extended
proof. The paper is organized as follows. In Sec. II we
summarize the proof in Ref. 3, pointing out its limita-
tions. In Sec. III we extend the proof to more general
infinite series and explicitly provide the additional coun-
terterms in some cases. Finally, in Sec. IV we apply our
results to the case of the “Epstein-type” § functions. We
perform, in particular, the direct calculation of the
Casimir effect corresponding to a massless scalar field in
TPXRI ! spacetime by summing first over the zero
modes and § regularizing the multiple series.

II. THE PROOF OF {-FUNCTION
REGULARIZATION AND ITS LIMITATIONS

We shall here briefly summarize the proof due to Wel-
don of the validity of the {-function regularization pro-
cedure’ and point out its limitations. Using the same no-
tation as in Ref. 3, let us consider the series

© (_l)m+l ©

Sp= 2 s+1 2 m°f(a), (2.1)
m=1 M a=0

Sp= X % > mfla), (2.2)
m=1MmM a=0

o (_1)m+1 © .

S= 3 ——7 2 (—1)¥m°f(a), (2.3)
m=1 M a=0

Sap= 2 % S (—1)y'm°f(a), 2.4
m=1m a=0

436 ©1989 The American Physical Society



40 RIGOROUS EXTENSION OF THE PROOF OF ZETA-FUNCTION . . . 437

where f(a) =0 for positive integer a. They are assumed
to be convergent, as they stand. The idea of the ¢-
function regularization procedure begins with the inter-
change of the order of the summations of the two infinite
series involved. It has been proven in Ref. 3 that, provid-
ed that f(a) can be defined in the complex a plane and
that it satisfies (1) f(a) is regular for Rea = 0; in the case
of (2.1) and (2.2), (2a) am®f(a)—0, as |a|— o for
Rea =0 and fixed m; and, in the case of (2.3) and (2.4),
(2b) am®f(a)e ~™md _,0, as |a]—> o for Rea >0 and
fixed m, then it turns out that in the fermionic cases, (2.1)
and (2.3), one can naively interchange the order of the
summations to get

Sp= i n(s +1—a)f (a) (2.5)
a=0
S = 2 (—1)n(s+1—a)f(a), (2.6)

a=0

while in the bosonic cases one obtains the additional con-
tributions

Sp= i &(s +1—a)f (a)—mcot(ms)f (s),

SEN, (2.7)
a=0
Sp= 3 Gs+1—a)f(a)+yf(s)—f'(s), sEN, (2.8
A
and
Spp= 3 (—1)%(s+1—a)f(a)
a=0
—mcsc(ms)f(s), sEN, (2.9)
= 2 (—1)%(s+1—a)f(a)
Ao
+H(—=1)[yf(s)—f'(s)], sEN, (2.10)

respectively.
Here {(s) and 7(s) are the Riemann ordinary and alter-
nating § functions

&(s)= i m~5, Res>1, (2.11)
m=1
and
as)= 3 (—=1)"*m ™5, Res>0, (2.12)
m=1
respectively. They are related by
(s)=(1—2'"%)&(s) (2.13)

On the other hand, y is the Euler-Mascheroni constant
and f'(s) means the derivative of f with respect to s.

The proof of the preceding theorem proceeds by in-
tegration in the complex a plane. One writes (2.1)-(2.4)
in the form of contour integrals

oo (_1)m+1

Sr= 3 i gﬁcwmaf(a Jeot(ma) , (2.14)

$3= 3 HIQSC——m"f (a)cot(ma) , (2.15)

Su=3 (_15):11“ gﬁc—mﬂf (@esc(ra), (2,16
m=1

Sp= 3 = ﬁc—m"f(a)csc(rra) , (2.17)

m=1

where C is the closed contour defined by the straight line
Rea = —a,, for fixed a, such that 0<ay <1, and by the
semicircumference at infinity on the right (Fig. 1).

The contribution from the semicircumference is zero in
every case, due to the asymptotic behavior of f(a) and,
as long as Res > —1, the integral extended to the line
Rea = —ag can be interchanged with the remaining sum
over m. The final step is to close the contour C again
with the semicircumference at infinity. In cases (2.15)
and (2.17) there comes then an additional contribution
from the pole of the ¢ function (s +1—a) at a =s. On
the contrary, in cases (2.14) and (2.16) the alternating §
function 7(s +1—a) has no pole in the region enclosed
by C. All the steps in this procedure are right and one
thus obtains (2.5)-(2.10).

However, it was further explicitly stated by Weldon in
Ref. 3 that the results for the alternating fermionic and
for the alternating bosonic cases S, r and S 5, respec-
tively, could be naively extended to the following types of
series:

(N 0 ( —1 )m +1 o »
SuF= 2 s+l 2 (—1)'m™f(a) (2.18)
and
a
-
—T—ad o
L C
FIG. 1. The closed contour C consists of the straight line
Rea = —a,, 0<aq <1, and of the semicircumference at infinity

on the right of it.
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SH=3 —— 3 (—1mPs(a),

m=1Mm a=0

(2.19)

with N any positive integer. By going over the same
proof once more, he just obtained the trivial modification
of the results (2.6), (2.9), and (2.10). In particular, for the
alternating bosonic case he got

SW= i (—1)%(s +1—Na)f (a)
a=0

T s s s
N |y f[N , NEN, (2.20)
SM= 3 (—1)%(s +1—Na)f(a)
a‘;&:s:/ON
/N s |1 ,.,]s s
=Dy f NJ NleH, v EN .
2.21)

That this generalization of (2.9) and (2.10) for any posi-
tive integer N is not right is very easy to check. In partic-
ular, it has been noticed by Actor in Ref. 6. As an easy
example let us consider the simplest case after the (only
correct) one N =1 (explicitly considered in Ref. 3), i.e.,
N =2. Let

© mZa

o= ,—mi_ 1 < (_
S= 3 e 2 s+1 aéo( 1y al ’

m=1 m=1 M s=—1
(2.22)

where the last operation consists in making the analytic
continuation of the resulting series to s = —1. The func-
tion f(a) is here f(a)=1/I'(a+1) and all the hy-
potheses of the theorem are satisfied. Use of Weldon’s
formula (2.20) gives

_ (m/2)csc(—m/2)

S=a§0 al §(——2) F(l“%)
__ 1. V7
= 2+ 5 (2.23)

which is false, though numerically almost undetectable.
In fact
S$=0.3863186, l/’;—"1=0.386 2269 ,

(2.24)

_ V-1 _

5 S§=-—9.17X1077° .

A

Going on to N =2,3,4, ..., it is not difficult to see that,
if N is constrained to be a positive integer, Eq. (2.20) is
true only for N =1 [i.e., Eq. (2.9)].

It was Actor’s conjecture that, even if we allowed N to
be any positive real number, then also (2.20) and (2.21)
would be true only for N = 1. In the next section we shall
prove that this is not the case either. Another important
question one would like to answer is “where is exactly the

error in Weldon’s proof?” This has been dealt with in
Ref. 6, Appendix C. However, the essential point has
been overlooked [see the statement between Egs. (C8) and
(C9) in Appendix C of Ref. 6]. In fact, the step which
fails to be correct in Weldon’s proof for general N is the
last one, namely, even if the asymptotic behavior (2b) of
the function f(a) allows us to suppress the contribution
from the curved contour in the second step, this will be
no longer true when we try to close again the circuit C in
the last step. There is in fact a contribution coming from
the integral of (s +1—Na)f (a) over the semicircumfer-
ence at infinity (due to the asymptotic behavior of the &
function). And this is so whatever the value we choose
for s. The study of the asymptotic behavior of
§(s +1—Na) immediately distinguishes the case N =<1
from N > 1. It is, however, misleading in some sense, be-
cause the fact that the § function diverges for N > 1 does
not necessarily mean that the contour actually provides a
nonzero contribution invalidating Weldon’s proof (that
was Actor’s conjecture). Things must be done with
greater care due to the presence of highly oscillating fac-
tors.

III. EXTENSION OF THE PROOF OF ¢(-FUNCTION
REGULARIZATION: ADDITIONAL CONTRIBUTIONS

We shall restrict ourselves to the case f(a)=1/
['(a +1). This will be enough for the application to the
Casimir effect to be developed in Sec. IV. In this case a
slight modification of Weldon’s procedure is in order.
The fact that the poles of I' are the nonpositive integers,
and suitable application of the ¢ function reflection for-
mula, will allow us to write the additional contribution as
a contour integral over a curved path in the complex left
half-plane. Besides, the use of the relation

T(z/2)E(z)= fo“’dt ?2718,(1), Rez>0, (3.1)

where S,(t) is defined through (3.6), will be crucial. Oth-
erwise, for a general f, there will be no way of kicking
out the csc(wa) factor. Whether or not the technique
here developed might be appropriately modified so as to
work in such cases is left for the reader as a matter of fur-
ther thought which is beyond the scope of the present
work. Owing to the behavior of the complex function

I'(z) which has simple poles at z=-—n for
n=0,1,2,..., with residues
__1\n
ResZ:_nF(z)z( 1') , (3.2)
we can write
o 1 @ maa
S= -1y , a€R, 33
AB mzzl T a§=‘,0( ) ret1) © (3.3)
as
- 1 da _
(a) _eae a
SA“B:mE:l — sﬁgzm_m “p(g) (3.4)

where now the contour C consists of the line Rea =a,,
with a, fixed, 0 <a, <1, and of the semicircumference at
infinity on the left (Fig. 2). Given that the case of special



I&

FIG. 2. The closed contour C consists of the straight line
Rea =a,, 0<aj <1, and of the semicircumference at infinity on
its left.

interest will be the one associated with s =—1, it is ap-
propriate to rewrite (3.4) in the following manner:
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® (—1)4
!

Siy= > §(s+1-aa)+(—i—I‘

_51

a=0 :
—Al9), iEN, 3.7)
S'a) = i r (s +1—aa)
o5 ta
1 F(s/?t;+1)&al'"(s}a+l)
—A9), —;—EN, (3.8)

where A(j‘}g is the contribution of the curved part of the
contour C:

d
AAB=fC—2-;alf§(s+l+aa)F(a). (3.9)

This contribution is not zero for any value of s. We are
going to see that it actually provides the term missing

o0 o0 aa 00
SPs=—1=3 3 (—1) =3 e m'=5,(1), from (2.23).
m=1 a=0 a! m=1 Before proceeding to the actual calculation of (3.9), one
can, as an illustrating exercise, reclose the contour on the
3.5) right instead of the left, and verify that the same series is
obtained.
where Let us now come back to Eq. (3.9) and proceed similar-
. ly for s =—1 and a=2. Now, we cannot employ (3.1)
St)= 3 e kil (3.6)  unless we make use first of the reflection formula’
m=1
=1/
Let us go through the same steps as in Weldon’s proof D(z/2)§(z)=n""1T |~ lé‘( 1—2) (3.10)
(see Sec. II). By correctly making the last step, we end up
with We thus find
|
A% (s=—1)= f f dtt 7128, (7*)=——= lim f dtt a"“l/zsz(wzt)————Sin(R In?)
c 2i \/ T \/ T Roow Int
—(ay~1/2)u/R e
=~-\7;1m lim [ due Sy(mret/ M) =
=—\/1TS2(1T ). (3.11)
[
Another way of writing this is oo )
e O(z,r)= 3 e ™ HIm ;eC, rERY  (3.14)
(1>—~3+~2—”+vﬂs2( ). (3.12) T

Surprising as it may look, this result happens to be noth-
ing but a particular case of the famous 6-function identity

1

lT T

Oz, 7)=7"1/2¢m /79 | 2 , (3.13)

with 6 being the elliptic function

(R* denotes the positive real numbers). This can easily
be checked by noticing that S, (7¢)=1[6(0,t)—1]. Equa-
tion (3.11) is an exact value. Once more, we observe that
the contribution of the contour provides, in fact, the
missing term in (2.20), (2.21), (3.7), and (3.8).

Let us now again consider (3.2) for general a, and, we
must insist, s =—1. Equations (3.1) and (3.6) read, in
this case,



P(z)(az)= [ “dr 1 7'S,(0) (3.15)

with S, (¢) being the function given in (3.6). However, no
simple reflection formula similar to (3.10) exists for a#2.
We have, instead,

7 csc(7z)
= 3.16
I'(z) -2 ° (3.16)
Haz)= zr(ll__az)sin TAZ |e(1—az) . (3.17)
(2m) ~*
Consider (3.7) and (3.8) for s =—1:
S,=S,(1)= 3 e ™"
’ m=1
_ 5 (=1 1
_a§0 pr {(—aa)+—T p A, ,
(3.18)
being the contribution of the contour
f —; aa)T(a) . (3.19)

Using (3.16), (3.17), and (3.15) we can write, after some
work,
a

(3.20)

27
a

bala) [ “dr 1/ ls,

da
A = =
@ fc iV2ra

where the function ¢,(a) comes from the asymptotic be-
havior of the integrand (3.19) [see (3.16) and (3.17)] for

|a|—>00:

¢a(a)=exp| 2—a)+ %—-017 In(—a)
+(a—2)a+ 7—— 7|Imal|
+sgn(Ima)in %—1 [Real}. (3.21)

It is immediate that, for a =2,
(3.22)

so (3.20) is in agreement with (3.11). Note also that for

a <2 we have

b.(a)—0, (3.23)

|a|—>oo .

For the sake of completeness, we quote the following re-
sult obtained as a by-product of this instructive exercise.
When, putting ¢,(a)=1 in (3.20), the remaining integral
is finite and yields (see the proof for =2 above)

172 a

2m
a

2m (3.24)
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It is also important to notice that, in (3.20) the factors of
quickest oscillation in ¢,(a) and in the function of a
defined by the ¢ integral have an analogous functional
dependence on R =|al|, namely, exp(icR InR sin6), where
6= Arga and c is a constant.

Collecting everything together, it becomes clear that

we have proven the following.

Theorem. (i) For — o <a <2, the contrlbutlon of the
semicircumference at infinity is zero, i.e.,

A,=0, a<2. (3.25)

(ii) For a=2, the contribution of the semicircumference

at infinity is given by
A= —V7S,(7?) . - (3.26)

The result for @ =1 was already known and constitutes
Weldon’s proof of {-function regularization. The result
for a=2 shows, on the contrary, that the statements in
Ref. 3 about the validity of the proof for any positive in-
teger a were false, the (very simple) reason being that the
semicircumference at infinity does not have a zero contri-
bution. It was precisely the last step of the proof in Ref.
3 that was wrong. This had not been clearly appreciated
in Ref. 6, on the contrary, the same false statement as in
Ref. 3 was repeated (see Appendix C). Finally, the result
of our theorem for 1 <a <2 shows that the conjecture by
Actor that the validity of Weldon’s proof would be re-
stricted to o =1 does not hold. Notice, by the way, that
the fact that, for a > 2, ¢,(a) diverges as |a| — o« does not
mean that A, is going to blow up for these values of c.
In fact, the strong oscillation [imaginary exponential in
#,{a)] of the values of ¢,(a) for |a|— o yields a finite
value for the integral (3.20). However, it is not easy to
obtain such a simple result as (3.26) for any value of a.

The fact that the numerical value of A, is so small [it
can be thought of as an infinitesimal correction, see
(3.26)] as compared with the rest of the terms in Egs. (3.7)
and (3.8) gives sense to the whole procedure of {-function
regularization.

However, this is strictly true only for small . In fact,
by working on Eq. (3.20) it is not difficult to extract an
accurate estimation for the additional terms A, for large
a. Itis given by
a
2T

— (3.27)
a

We observe that, for large a, A, ceases to be an

infinitesimal contribution. Actually,

a

A,=0, a<2,

A,=9.17X107°%, A,=0.04, A,=0.07, (3.28)

A,—0.13, a—x ,

which represent, respectively, contributions of the 0%,
0.02%, 11%, 19%, and 36% on the whole value of S, (1).
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IV. THE CASIMIR EFFECT FOR A MASSLESS and defining
SCALAR FIELD IN T?XR?™*! .
_ I 27972
As a direct application of the {-function regularization €ls)=32m) 7| I L j T(a/2)
theorem we have just proven, let us obtain the Casimir =1 9
effect through direct summation of the zero modes. For o .
simplicity, we shall only consider the case of a massless X f 0 dk k19
scalar field in a partially compactified (p +¢q +1)-
dimensional spacetime T?XRY*! (T” is a p-dimensional o p [an, 1?7572
torus). It will be immediate, however, that our method X > K2+ > TL R
can be generalized to very different massless or massive Mooty =1 J=1 i
fields in different spacetimes with different kinds of 4.4)
boundary conditions.»® There are general expressions :
which relate the different cases.®
As is known, the vacuum-energy density corresponding  after some calculations we obtain
to a massless scalar field ¢(#;x,, . ..,x, ) satisfying the
eriodic boundary conditions p (=g —
p y SO(S)=27q_17Tq/2_S HL] I'( (q S)/Z)M
BlE3x 5 Xy y) j=1 I'(s/2)
=¢lt;x;+Ly, ..., x, T L,X, 0150, X,14)  (41) s—g
4.y 2 —2.
can be obtained® from the (more direct to deal with) x 2 Lt Ly 52,002 (4.5)
Dirichlet case
—1 . .
p Now, by representing (4.3) in the int 1 fi
c0=102m"| 11 L, y rep g ) in the integral form
j=1
211/2 M(s;ay,...,ayn;aq, ..., ay)
® , . & |7y
X [dx 3 K+ 3 | ] 4.2) N
e = = j 1 hed w _
ppeeon,=1 ji=1 J = 2 f dt t* lexp —t ¥ an;’|,
. . I'(s) -1 70 ~ I
In terms of the general multiple series Mpeees ny j=1
M(s;a,,...,aN;Q ... ,ay) (4.6)
o0 =S . . .
— a; and by making repeated use of the {-function regulariza-
s S an @.3) d by mak d f the £-fi 1
YN e I ’ tion theorem from Sec. I1I, in the manner"
J
172
© 9 © 0 (__nZI)k © (_t)k 1 T 77,2
S,(t)= e "= 3 = > &(—2k) +—=T(H)+ |— S, |—
2 nél ngl k=0 k' k=0 k‘ 2\/t : t t
) 172 172 )
== |Z| —1|+|Z] 5| %= @.7)
2 t t t
(recall that the last term is a very small correction to the others), we obtain for
My(s;ay,...,ay)=M(s;ay,...,ay52,...,2), (4.8)
the recurrence
| 1 [« TGP |
My(ssay,...,ay)=—3My_(s;a,, ... ’aNH_E Z ) My _ (s —35a,,...,ay),
172 (s —1)
2
+ la—l ) AV (s — L7 /a;a,, ,ay) , 4.9)

where the third term AY}’ is a small correction to the first two. It is given, in general, by the expression



Finally, substituting (4.8) into (4.5) for s = —1, we obtain
the {-function regularized value for the Casimir density
corresponding to a massless scalar field between p pairs of
parallel plates with Dirichlet boundary conditions. It is
given by

—1
g 14 '(—(g+1)/2)
—p—q—1_g/2+]1 | L=lg+1)/2)
€e=2 T jl;Il J L(—1/2)
XM, —12i1~;L1—2,...,L,,—2 , (4.16)

where M, is to be calculated through the recurrence (4.9).
From these results one immediately obtains the ones cor-
responding to a massless scalar field in T"XR? 1! (Ref. 8).

When p =1 what happens is that we are compactifying
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2 2
, 1 w anj an;
A(,(,)(s;al,...,aj;ajH,..,,aN): > T fo dtt* lexp | — ; - L +aj+lnj2+lt
TS ny=
+ - 4aynit (4.10)
A recurrence for A% is also easy to obtain
A%)(s;a,,...,aj;ajﬂ,...,aN)=—%A(1\f})_1(s;a1,...,aj;ajH,...,aN)
I/ZF(S—i)
—l—l 2 AY_(s—Lay,...,a;5a; 15 .. ay)
2 {a; 4y L(s) 2 77
I/ZF(S—'-;-) 77'2
+ AGTD fg—Leg . a,——3d;409,...,0a 4.11)
aj+1 F(S) 1& 2 1 j aj+1 j+2 N
We have, in particular,
'(—s)
AM(s;a,, ..., ay)= TG) My(—s;a;,...,ay) . (4.12)
The first terms of these recurrences are given by
M (s;a)= 3 (an?)"*=a ¢(2s), (4.13)
n=1
I'(—s)
AV(s;a)= o) a’t(—2s), (4.14)
— 172, —1/2 1/2—SF(S_%)
M,(s;ay,a,)=—21a,°5(2s)+ 17 “a; /“a, ~Wé’&s-—l)
i TGS 115 —12D(1—s)
%’ITZS 1/2a1s F(s) ;(1_25)“*'%‘”25 la}/Z sa21/2 e g(z__zs)
2s —1 _
+- 7 DA=s) pr sy L L | 4.15)
Viaa, Tls) a, a

on a circle. Considering g =0, 1, 2, 3, and 4, Egs. (4.13)
and (4.16) yield the results for the Casimir energy density
corresponding to a massless scalar field in SIXR, S!XR?,
S'XR3, S!'XR* and S! X R, respectively,® i.e.,

a
ep=1,g=0)=———,
p q E
(3)
elp=1l,g=1)=— ,
P 1 27L3
(p=1,g=2) m’ 4.17)
elp=1,qg=2)= s .
P 7 90L*
3E(5)
(p=1,9g=3) ,
r—hi 47’L’>
2773
6( :1, = ):— R
P=5a 945L 6
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where L is the only compactification distance, which is,
in this case, the length of the circumference.

This illustrates the uses one can make of the extended
theorem of {-function regularization. Of course, things
become much easier when the exponent a is strictly
smaller than 2. When this is so, the correction terms
[e.g., the last one in (4.9)] do not appear and the recursion
formulas are certainly simpler. Closed and explicit ex-
pressions are given elsewhere!? for those cases.
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