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Classical motions from pseudoclassical spin-+ particle models
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The classical trajectory and spin precessions of Bargmann, Michel, and Telegdi are deduced from
a pseudoclassical model of a relativistic spin-—;— particle. The corresponding deduction from a non-

relativistic model is also given.

I. INTRODUCTION

In a recent paper we studied the classical content of a
pseudoclassical model of a free relativistic spin-1 parti-
cle.! The model, an example of Dirac’s constraint Hamil-
tonian dynamics,2 contains, in addition to the usual
space-time variables, five Grassmann variables which car-
ry the spin content of the model.>~> The model is intro-
duced by two constraints which are first class by virtue of
the Poisson brackets (PB’s) expressing the graded sym-
plectic structure in the phase superspace.

It was earlier determined that quantization of the model
would express the two constraints as the Dirac and
Klein-Gordon (KG) wave equations.’~> For this reason
the model carries the spin-+ label.

The two first-class constraints imply two gauge invari-
ances: reparametrization and supergauge. To extract the
classical content of the model, the supergauge symmetry
must be broken to confine the evolution in phase super-
space to a unique, reparametrization-invariant line.! This
is done by introducing an appropriate gauge-fixing con-
straint. The phase superspace equations of motion are
then reevaluated with respect to the Dirac brackets.> By
means of a distribution function,* which allows
Grassmann variables to be averaged over, the classical
equations of motion are obtained. These are Zitter-
bewegung free and the world-line conditions (WLC’s) in
Minkowski space are shown to be satisfied.

An identical analysis was done for a pseudoclassical
model of a free nonrelativistic spin-3 particle.” Here the
global invariance group is Galilean rather than Poincaré
and the spin-5 label is applicable because quantization
was shown to yield the Levy-Leblond and Schridinger
wave equations.®

In this paper we extend the analysis of both the relativ-
istic and nonrelativistic models to include the coupling
with external electromagnetic fields, including the effect
of an anomalous moment. In Sec. IT we treat the relativis-
tic case. The two constraints are systematically generated
from the free-particle model. The results of quantization
are quoted.® The classical equations of motion are then
obtained as in the free case.! The supergauge symmetry-
breaking constraint is introduced and the phase-
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superspace equations of motion are obtained. A distribu-
tion function is then used to pass to Minkowski space,
where the classical equations of motion are just those of
Bargmann, Michel, and Telegdi!® (BMT).

In Sec. III a similar analysis is carried out for the non-
relativistic case.

II. RELATIVISTIC MOTION

As mentioned in the Introduction, we want to be sys-
tematic about the introduction of electromagnetic cou-
pling at the pseudoclassical level. This should be done in
accord with the procedure used at the quantum level, or
we have no assurance that the spin-3 label is correctly
worn.’

The phase-superspace variables are, as in the free case,
x,, the instantaneous position four-vector; P,, the four-
momentum canonically conjugate to x,; plus the five
Grassmann variables, €, and €;. The graded symplectic
structure is given by the nonzero PB’s:

1

(x4sPy)=—8uys (€4,€,)=i8p,, (€s5,€5)=—1i . (1)

The first departure from the free case is minimal,® that
is,

P,—m,=P,—ed, b))
and then
(Tym,)=eFy, . (3)

The odd Grassmann constraint is then
Xp=m,e—mes~0. (4)

This constraint is then used to generate the even
Grassmann constraint, i.e., (Xp,Xp)=iX,, where

X0=7T“ﬂ”—m2—ieF,we“e"z0 ; (5)

therefore the two constraints X p and X, are first class.
Following the usual quantization rules,® Eq. (4) yields
the minimally coupled Dirac equation and (5) yields the
corresponding second-order equation.
To include the effects of an anomalous moment at the
pseudoclassical level, we modify (4) to read’

2298 ©1986 The American Physical Society



34 CLASSICAL MOTIONS FROM PSEUDOCLASSICAL SPIN-%

Xp=mye' —mes— "lze—:lF“vé'uEv65z0 , (6)
and then use X p to generate the new X via (Xp,Xp)=iX.
In this way we find

Xo=, 7 —m?—ie(1+a)F ete’— 222 2iea

mF,€"€s
e’a’
+——5F, F o €'€'€e” =0 . (7
m

Now following the usual quantization rules, we have
the Dirac and second-order Dirac equations describing the
interaction of a spin-3 particle, with gyromagnetic ratio
(e/m)(1+a), with prescribed external electromagnetic
fields.

To extract the classical content of this model, we first
note that at this point the Dirac Hamiltonian is

H =AoXo+ApXp , 8)

with X, given by (7), Xp given by (6), and with Ay and Ap
arbitrary. Introducing the gauge-fixing constraint!

¢D’—‘€5%0 9)

(which selects the physical motions in the free case) re-
quires (€5, H) =0 for stability. This fixes the relationship

Ap=Aof, (10)
with
2ea iea v
f=i |2 E e /l m o+ o Fyete (an

between the previously arbitrary coefficients so that
H*=AyXo+fXp) (12)

is the one first-class constraint in the theory.
The phase-superspace equation of motion for any vari-
able A is now 4 =(A4,H)*=(A,H*). Thus we have

x.ﬂ=)\,0(2'ﬂ'“+6#) s (13)

Trl‘:}\'o(zer,yTTv""efFMvev) , (14)
and

ép=A'0 28(1+a)F;€v+if1r“+_l___%_vaFpaev€p€a

(15)
Notice that 7,7 =0 so that 7°=const, and that
X X P =4AX(m,mH + fre) . (16)

Therefore, to fix A, so that x,,x k=1, i.e., to fix the tem-
poral parameter to be the particle proper time, requires

rgm L

2m

te(l+a)
m?
s 2 -172

2’24 F o F ppeeePe” , (17)

1+ F,e'e”

+

where we have used (6), (7), and (9).
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At this point the model is defined by the Hamiltonian
(12) on the submanifold of the phase superspace defined
by Xp and ¢p, Egs. (6) and (9), respectively. We can now
pass from the superspace to the Minkowski space by
means of a suitable distribution function on the
Grassmann variables.*

For the distribution function we take, as in the free

case,!

p=38(Xp)pd(dp) (18)
where now

p= V"é‘ —— PO €.£,€0 (19)

m 6172 g

thus, normalization is maintained, i.e.,

[ dup=1 (20)
and

(4)= [dup4a, 21)

where if A is any variable in the phase superspace the
(A4) is the corresponding classical variable.
The only Grassmann object to survive this “classicaliza-
tion” is the spin tensor:
. 1
Syy=(—ie,e,)= = —5 €uvpa™ V7 . (22)
Equation (22) can be inverted to give the spin pseudovec-
tor in terms of the spin tensor

VE=e"Por.S,, (23)

as long as V*7,=0 is maintained by the classical equa-
tions of motion.

These equations of motion must be obtained iteratively
to each order in e.!! For the verification we seek, let us
retain terms to order e. Thus the classical equations of
motion are

=(x,) =24 | -3 L F3S,, |, (24)
7= (1, ) =2Ao(eF,,m") , (25)
and, with S"lw= (—i€,€,—i€LE,),
S,v=2Mko |e(14+a)FiS4,—F2S,,)
——77,,F TS pa —TuSva) | (26)
or, equivalently for the spin,
VE=21, e(l+a)F‘“’V,,—%(V“Faﬁ1rﬁ)1r“ : 27)

To this order in e we can replace m, by u, / 2, for an ar-
bitrary temporal parameter and use Ag=+m to specify
the proper time. Then Egs. (25) and (26) or (27) are the
usual BMT equations.'” To this order ¥*7,=0 is main-
tained by the equations of motion.

Finally, we note that, to this order in e, the Liouville
equation
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o, +(p,H*)=0 (28)
is satisfied by the equations of motion. In the literature
attempts are made to deduce the equation of motion for
V, by demanding that (28) be satisfied and putting it in
the form V*e,+ A€, =0 to assert that V¥ =4" is the
sought-after equation of motion. This is wrong as evi-
denced by (27), i.e., the second term is weakly orthogonal
to €,, so the BMT equation would not be recovered this
way.

III. NONRELATIVISTIC MOTIONS

The phase-superspace variables are, as in the free
case,”® x;, the instantaneous position three-vector; P;, the
three-momentum conjugate to x;; ¢, the universal time; E,
the energy conjugate to f; plus the five Grassmann vari-
ables, €;, 17, and 7). The graded symplectic structure is
given by the nonzero PB’s:

(xi!Pj)zs,‘j, (t,E):—-l ,
(29

(é'i,Ej)=—i8,'j, (77,-7_])=l .

The first departure from the free case is minimal; that
is, Eq. (2); then Eq. (3) is separated into
(m,mj)=eFy, (m,m;)=eFy; . (30)
The odd Grassmann constraint is then’®
Xpp=mon—m€+mm=0. (3D
Since (X ,X 1 )=iS, where
S =2mmo—mn*—ie(Fome; —Fj€:€;) =0 , (32)

the constraints X;; and S are first class.
To include the effects of an anomalous moment we
modify (31) to read
_ . lea 33
XLL=17'07]—1T,~6,-+m7]+—2-;1;}j€,-6j7]z0. ( )
Since (X7 ,X 1 )=iS, where
S =2mmg—m*—ieFome; +ie(1+a)Fj€;€;

the constraints X;; and S are first class.

The usual quantization rules yield a Levy-Leblond and
Schrodinger wave equation characteristic of a spin-% par-
ticle with gyromagnetic ratio (e /m)(1+a).

To extract the classical content of this model, we first
note that at this point the Dirac Hamiltonian is

H=AS+A X[ (35)

with S given by (34), X, given by (33), and with A; and
Ay, arbitrary.
Introducing the gauge-fixing constraint’

¢LL =7]z0 (36)

requires (17,H)=~0 for stability. This forces A;; =0, so
that
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H*=\,S (37

is the one first-class constraint in the theory.
The phase-superspace equations of motion are

% =—2Am (38)
t=—2mA, , (39)
#ry=2M,(—emPFyo+eFym)) , (40)
mo=2A,eFym; , 41
é=20e(1+a)Fye; , “2)

and
7= —-2’%‘1—17,-1;}'6‘; . (43)

Notice that
Ag=—1tm (44)

ensures
t=1.

For the distribution function, we take, as in the free case,’

p=8Xr.)pd(dLL), (45)
where now
~ Ti€; i 3
p=Cie;— 777— om €ijk€i€j€x — ;'eijkﬂ'iejekn .
(46)

Normalization is maintained and the only Grassmann ob-
ject to survive “classicalization” is the spin tensor:

Sij':(_iel'ej):meijkck . 47)
Equation (47) is equivalent to
Ci = %e,'jksj'k . (48)

In this case the classical equations of motion are exact,
and are given by

u=(x;)=—2A,m; , (49)
t=(i)=—2mA,, (50)
m={m;) =2A,(—emF;o+eFym;) (51)
mo={1o) =2AeFom; , (52)
and
Sy=2As[e(1+a)(FySk—FjSi)] , (53)
or
Ci=2Ae(1 +a)F;C; . (54)
With A,=— %m, these are the nonrelativistic BMT

equations, or the usual Lorentz-Dirac force law, and the
usual magnetic dipolar presessional law for a particle with
gyromagnetic ratio (e/m)(1+-a). Further, the Liouville
equation (28) is satisfied by the equations of motion.



IV. CONCLUSIONS

We have extracted the classical content, i.e., trajectory
and spin precessional equation of motion, from two pseu-
doclassical models of a spin-3 particle interacting with
external electromagnetic fields. The first, a relativistic
model whose quantal content is the Dirac-Klein-Gordon
system, and the second, a nonrelativistic model whose
quantal content is the Levy-Leblond—Schrodinger system.

In each case the classical equations of motion are ob-
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tained after introducing a supergauge symmetry-breaking
(gauge-fixing) constraint to confine the evolution to a line
in phase superspace. A distribution function which aver-
ages over Grassmann variables is then used to pass from
the phase-superspace evolution to the classical equations
of motion.

The classical relativistic motions are those of BMT,
while the classical nonrelativistic motions are the expected
trajectory and spin precessions.

*On leave from Departament de Fisica Teorica, Facultat de
Fisica, Universitat de Barcelona, Barcelona, Spain.
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