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A pseudoclassical model for a relativistic spinning particle is studied. The only physically mean-
ingful world line is the one without Zitterbewegung. The Poincaré realization for this situation is

constructed.

I. INTRODUCTION

The description of a classical relativistic spinning parti-
cle is an old problem.! Recently, there has appeared a
new approach to the problem, making use of the Hamil-
tonian formalism in terms of constraints®® following the
theory developed by Dirac.* :

In this work we want to study a possible pseudoclassical
description of a spinning particle as an example of a con-
strained system with Grassmann variables. We will con-
sider a model that, apart from the usual space-time vari-
ables, has five Grassmann variables: one pseudovector €,
and one pseudoscalar €s.>~7 This model has been exten-
sively studied, since after quantization it gives rise to the
Dirac equation.’ ,

We present the model from a Hamiltonian point of
view. That means we give a graded symplectic structure®
and two first-class constraints. One of these, X, is even
and corresponds to the mass-shell condition; the other
one, Xp, is odd and after quantization yields the Dirac
equation.

Since our interest is to deduce the classical description
of a spinning particle associated with this pseudoclassical
model we will need to define some sort of world line in
Minkowski space starting from the corresponding object
in superspace (Minkowski space plus Grassmann vari-
ables). Taking into account that this model has two gauge
invariances, reparametrization and supergauge corre-
sponding to the first-class constraints, the superspace can-
didate must be gauge invariant, but any such object is a
sheet, rather than a line, in superspace. The question is
then how to construct a good world line in Minkowski
space starting from the sheet. We proceed by introducing
a distribution function® of Grassmann variables in such a
way that we can pass from anticommuting objects in su-
perspace to real numbers in Minkowski space.

In a previous work,” we showed that there is no distri-
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bution function which gives a physical meaning to the
gauge-invariant sheets because different lines on the sheet
give rise to different world lines in Minkowski space. So
that if we want to have a unique world line in Minkowski
space, we need to have a line in superspace. We can con-
struct this line by introducing a new constraint, ¢p, that
breaks the supergauge invariance and selects a line in each
sheet.

The next step will be to find the corresponding world
line in Minkowski space starting from the abstract sub-
manifold M on superspace defined by Xp and ¢,. This is
realized by a suitable distribution function that averages
over Grassmann variables in the submanifold M. Then
we must verify that this is a valid world line, which
means it has to satisfy the world-line condition'® (WLC).
In other words, the canonical and geometrical realizations
must coincide up to a reparametrization. We will see that
the WLC is satisfied for any constraint ¢p.

Once we have a good geometrical candidate for the
world line, we will study the physical properties of this
model. In principle it can contain Zitterbewegung, an im-
portant feature of a relativistic spinning particle,! by
choosing an appropriate constraint ¢p, but a careful
analysis reveals that such a constraint produces a spin
vector functionally dependent on the position of the parti-
cle, which is incorrect for a free particle.

If 'we want to avoid this contradiction we must accept
the parallelism between the four-velocity and the four-
momentum of the particle. This requires the constraint
¢p to be proportional to €.

The organization of the work is as follows. In Sec. II
we introduce the model. In Sec. III we discuss the physi-
cally invariant object and introduce the constraint ¢p. In
Sec. IV we study the distribution function in the submani-
fold M. In Sec. V we discuss the WLC. Section VI is de-
voted to the physical content of the model, and finally in
the last section we give a Poincaré realization for this
model. ’
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II. THE MODEL

We start working in phase superspace (x*,PH,e es)
with a graded® symplectic structure given by the Poisson
brackets (PB)

{xp.’Pv}=__gyv’ {E#,ev}zig”v’ {65765}2_1' ’ (2.1)

where x* represents the instantaneous position of the par-
ticle, P* is the four-momentum canonically conjugate to
x#, and €" and €5 are canonical Grassmann variables asso-
ciated with the spin content of the model, as we shall see
later.

We provide the dynamical content of the model by
means of> 71! two constraints defined on the superspace,

Xo=P?—m?, (2.2)
Xp=P,e'—mes . (2.2a)

Note that X, is even and corresponds to the mass-shell
condition while X is odd and is such that after quantiza-
tion it gives rise to the Dirac equation.

If we compute the PB between the constraints we ob-
tain

{XOvX0} =0, {XO:XD}=O s {XD,XD} =iXp .

Therefore Xy, Xp are first class. Following the Dirac
theory* of constrained Hamiltonian systems we know that
the evolution is generated by the Hamiltonian

Hp=AoXo+ApXp , (2.3)

where A and Ap are arbitrary functions of the evolution
parameter T, so that the equations of motion will be

)5#={x#,HD}= —2}\.0})# +e/t)\’D 5

P{L={P;UHD}=O ’
2.4)
éﬂ={€M,HD} =_i;\’DPy )

€s={es,Hp}=imAp .

This evolution is confined to a sheet S, defined by the
constraints Xo and Xp.

The sheet S, will remain unaltered under gauge
transformations generated by the two first-class con-
straints through the PB, i.e., the sheet is invariant under
the variations

8g={q,aXo+aXp}, (2.5)

where ¢ is any variable of the phase superspace, and a and
a are the gauge parameters which are even and odd,
respectively. Explicitly

Sxt=axt+iae*,
S =aét —aPt , (2.6)
Ses=aes—ma .

These are gauge transformations, and we call them
reparametrization if @ =0 and supergauge when a =0.

The model has global symmetries as well; it is Poincaré
invariant. That means it is invariant under transforma-
tions generated by

G=30"Myg+a°P, 2.7

through the PB (2.1), ®®® and a“ being the transforma-
tion parameters and

MaﬁzxaPB _xBPa —-iEaEﬂ s
(2.8)
P,=P,

are the generators which realize the Poincaré algebra.

III. CLASSICAL CONTENT

Now, we want to discuss the physical content of the
model at the classical level. We begin by defining what
we call a “world line” in superspace as a family of
“events” L(x*(7),e*(7),es5(7)), which is a solution of dif-
ferential equations of motion (2.4).

The world line L is mapped onto itself under a
reparametrization, but under a supergauge transformation
it becomes another line L', that means L is not a gauge-
invariant object and so is not a good candidate for an ob-
ject with physical meaning. Nevertheless we can con-
struct such an invariant object by performing all the pos-
sible supergauge transformations over the line L, obtain-
ing the two-dimensional sheet S defined by the constraints
X 0 and X D

After that, we would think that the physical content of
the model is in the sheets, but, from the analysis of a pre-
vious work® we concluded that the sheets S are not physi-
cal because there does not exist a distribution function® on
the Grassmann variables which gives the same world line
in Minkowski space from different lines of the sheet relat-
ed by a supergauge transformation.

In order to have a unique world line in Minkowski
space, it will be necessary to choose a line L on S by
breaking the supergauge symmetry. We can do that by in-
troducing a new constraint ¢p, an odd function of x, P, €,
€5, and T, such that

{Xp,¢p}+#0 . (3.1)

In that way, Xp becomes a second-class constraint. If
we require the stability of the constraint ¢, by means of
(2.3) we obtain
9¢p 9¢p

=—+A ApD, (3.2
or +{¢D’H} or + 07/+ D ( )

ép=0=
where

y={ép,Xo} , D=—{¢p,Xp} .

Now, if we choose the constraint ¢ such that D has an
even, non-Grassmann, part different from zero, D ! will
exist, and we could use (3.2) to express Ap as
9¢p

_9%0 oy l 1 (3.3)

hp= or D

~ and Dirac’s Hamiltonian will be

——5Xp > (3.4)
T




from which we can define a new first-class constraint X,
t=Xo— L 3.5
Xo=Xo DX D - (3.5)

In order to eliminate the second-class constraints we in-
troduce the corresponding Dirac bracket whose explicit
expression is given by

(4B} ={A.B)+ 5 (4.Xp} (6.6} (Xp.B)

+—;—({A,XD}{¢D,B}+{A,¢D}{XD,B}). (3.6)

The evolution of dynamical variables will now be
X B=Ao{xP X {*~—Ao lzp#— JI;—eﬂ ] ,

PH=Ao{P*X(}*=~0,
3.7

A
éﬂ:ko{eﬂ,xa}*g%yw ,

) .y Ao
€5=K0[€5,Xo}2l—1)—’)/m .

After that it is possible to define a world line in super-
space as a uniparametric family of events
L(x*™7),e(7),e5(7)): the solution of the differential
equation (3.7). This line will be invariant under gauge
transformations (reparametrizations) generated by the
only first-class constraint X;: they are

w:nw,xg;*:{—é# ) (3.8)
0

865——‘0{65,)((')}*:7‘3‘0‘

€s .

Therefore, L is a gauge-invariant object which carries the
physical content of the model in superspace.

" Now we want to pass from this world line in superspace
to a “good” world line in Minkowski space. We can do
that by a means of a distribution function, p, acting in the
submanifold M on the phase space defined by X and ¢p,
such that we can average over the Grassmann variables
and in this way pass from the model with Grassman vari-
ables to a model with real quantities. In the next section
we will explicitly study this distribution function.

IV. DISTRIBUTION FUNCTION
ON GRASSMANN VARIABLES

At this point the model is defined by the first-class con-
straint X on the submanifold M of the phase superspace
defined by Xp and ¢p. As was first demonstrated by
Berezin and Marinov,® we can pass from the superspace to
the Minkowski space by means of a suitable distribution
function on the Grassmann variables. In our case the dis-
tribution function p’ works in the submanifold M.

A way to parametrize the coordinates of the submani-
fold M is to perform a Shanmugadhasan!? transforma-
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tion, which is a canonical transformation characterized by
the fact that the constraints Xp and ¢, become a subset
(€,&s) of the new set of canonical variables, P ¥, X *,&,,€,€s
(A=1,2,3). Evidently we must do the transformation re-
quiring that €=0, €&=0 determines the same submanifold
given by Xp=0 and ¢, =0. Furthermore, we know the
graded symplectic coordinates of M given by x,PH&,.
Therefore, the phase-space distribution function on M
will be a function p'(X#,P ¥ ,€,).

If we want to give a correct meaning to p'(X*,P*,&,) as
a distribution function we must demand two conditions.

(i) Normalization condition:

[ dwp@prPrz,)=1, 4.1)

where du’ is the measure in the reduced space.
(2) It must also satisfy a Liouville equation with the
Hamiltonian (3.4), '

B Hy 1 = (o=
3, TP HD) =2+ {p.Hplr=0 4.2)
with { ]} being the PB in the reduced space.

At this point, if we know p’ explicitly we can calculate
the “average” of any function A4’ depending on the sub-
manifold variables by writing

(4= [dup'a’. @.3)

Although, in principle, this procedure requires us to ex-
plicitly perform the Shanmugadhasan transformation, we
can ask if it is possible to obtain the physical results
without explicitly performing that transformation. This
in fact can be done. In (4.2) we write the Liouville equa-
tion in terms of the Dirac brackets, which enables us to
work with redundant variables. Therefore we can use a
distribution function depending on all superspace phase
variables, p(€,x,P), but in such a manner that p vanishes
outside of M. It is easy to construct this function,

ple,P)=8(Xp)ple,P)S(dp) , (4.4)
with the property
p(€9Psx) | M:p'(glaﬁyf) . (4-5)

If we use the distribution function p, the normalization
condition (4.1) must change since p(€,P,x) is defined in all
phase superspace. The new condition becomes

[ dupPex)=1, (4.6)

where the measure du is du—id’e, and the expression of
the Liouville equation (4.2) in terms of (4.4) is given by

dp .
3, Tl Hp}*=0. 4.7

Now we can pass from the abstract space to the real
phase space by means of

(4)= [dup4, : (4.8)

where A is any dynamical variable of the submanifold M,
but not necessarily expressed in terms of independent vari-
ables.
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In order to construct the function ple,P) we can gen-
eralize the nonrelativistic distribution function®

pnrl€)=c(1)-€— %e,-jke"ejek , (4.9)

where c represents the spin variable of a nonrelativistic
particle. We construct the relativistic distribution func-
tion by means of a covariantization procedure. We as-
sume (4.9) to apply to the particle at rest. There are two
possible reference frames which qualify as rest frames;
they are the one corresponding to U=0, where U= (x),
and the one which corresponds to P=0. They are not the
same in general. However, in this model the first one is
not available because after the covariantization, when we
are in a frame with arbitrary U, the velocity U will ap-
pear in a function that operates in phase superspace.

Therefore, we will write the covariant generalization of
Eq. (4.9) by supposing that this is the expression of the
phase-superspace distribution function in the frame where
P=0; the result is

ple,P)= % — —i—e‘“"‘ﬂP”eveaeB )

= (4.10)

where V* is the Pauli-Lubansky four-vector which satis-
fies

yV-P=0, 4.11)
and in the rest frame, P=0, V* is
V#=(0,c) . (4.12)

Now we can analyze the consequences of conditions
(4.1) and (4.2) or equivalently (4.6) and (4.7). First of all
we take the most general expression for ¢p:

ép=ae+bes+(neee)+m(eecee)es ,

(neee)=eP"on epe €5 , (4.13)

(eeee) = eaﬁyaeaeﬁeyea ,

where a,, b, n,, and n’ are arbitrary functions of x, P, or
7. The terms of third and fifth order in € contribute in
the normalization of the distribution function (4.6), but to
calculate the average for a function of Grassmann vari-
ables, the last two terms of ¢, will be multiplied by at
least three Grassmann variables, so the number of them
will be more than five and these terms will not contribute
to the averages. As a consequence, we can choose
n,=n'=0, without loss of generality.

From the condition (4.6), the relation between a® and b
is

a-P—mb=1, (4.14)

After that p(e,P) is given by

p(e,P)=8(Pe—m65)—l—
) m

Ve— %(Peee) l&(ae+b65) .

(4.15)

The Liouville equation (4.7) also adds information about
p: We have

@ Ve yee oy
OT |8(xp)=8(¢p)=1 m + (¢p) or
and
Ve i
{p,Hp}*=—2 ——?lr;(Péee) ,

but from Egs. (3.7) and (4.11) we conclude

Va€a 8¢D

V%,
8'(ép) =0.
or

S
ar

+{P»HD}*=

s m

As we wish to describe a physical free spinning particle,
we must require that

Va=0, (4.16)

and therefore this gives us a restriction on ¢p. In fact ¢p
must not depend explicitly on 7.

V. WORLD-LINE INVARIANCE

In Sec. III we introduced the physically relevant object
in superspace, the line L(x*(7),e*(7),es(7)). In the
preceding section we discussed the way to transform this
line L into a world line in Minkowski space, explicitly by
means of a “distribution function” p(x,P,€) acting on
phase superspace. This function p(x,P,e) must be a suit-
able distribution function in the sense that it works in the
subspace defined by ¢p=0 and X =0, and that it satis-
fies a Liouville equation.

At the moment the important fact is that we have a
mechanism to construct a world line in Minkowski space

(x#)= [dupx*, (5.1

where du is the measure in the phase superspace. With
the same mechanism we can determine the classical spin
content of the model. From (2.8) the classical spin tensor
should be

(M) =(—ie'e") = [dup(—ie'e") . (5.2)

Now is the moment to determine whether the objects
(x*) and (S*¥) have the correct geometrical transforma-
tion properties, i.e., whether the world-line condition is
satisfied. In order to discuss this condition we need to fix
the evolution parameter by breaking the gauge symmetry
associated with reparametrizations, which means to fix
the parameter 7 by introducing a new constraint ¢, which
depends on 7 such that Xy becomes second class:

{X0,00}* =450 . (5.3)

The corresponding Dirac brackets will be

(.81 =(fg)" + (£ X1 10"

—{/frdo}* {X0:81") (5.4)

where we must choose a constraint ¢ such that A4 has a
non-Grassmann part different from zero in order to en-
sure that 4! exists. By requiring the stability of this
new constraint, ¢,
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%o

' —_— ::0 N (5.5)
{dorAoXo} ™ +- ar
the arbitrary function A, is determined to be
1 9¢o
~_ 190 5.6
Ao A or (5.6)

It is then meaningful to call {(x*(7)) the world line in
Minkowski space.
|

(xM(r+87)) + ({x*,G}) =(xM(1))+ ({x*,G}¥) ,
(SM(r+87)) + ({SH¥,G}) =(SM(7)) + ({S*,G}¥#) ,

-
A or

w_ Y
2P DE‘“

T 403 D

d
( Lﬂl(P”E"—P"e“))ST:(—-})-(e“P"— qu){¢D’G})_|_<.1._¢_°_}'_(€;4Pv_€vpp){¢o,(;}t> .

e etenci)o (-

1989

Now we can check whether or not this line has an ob-
jective reality. In other words, we can construct a canoni-
cal realization of the Poincaré group in terms of the Dirac
brackets (5.4) in phase superspace and also a geometrical
realization in terms of the Poisson brackets. If the world
line has an objective reality,'° the only difference between
these two kinds of realizations must be a reparametriza-
tion, that is, :

(5.7a)
(5.7b)

(5.8a)

Y *
2PI‘._De“]{¢0,G} >

1 9r D (5.8b)

It is easy to see that (5.8b) can be obtained from (5.8a), so it need not be studied separately. In (5.8a) we multiply by P¥,

which commutes with the averaging procedure. We obtain

10 | v __[L.. 1 Lp2_Yp. *>
<—A 20 2t Lep )87——<D6P{¢D,G]>——<A 22— Lpec|(40,G)") ,
and, by making use of the constraints
1 3o __ (L 1 z '
<——A or 2m—~D€5 )5T-——*<D€5{¢D,G}>—<A 2m—D65 {¢0,G} ),

so that we can isolate

(5.9)

The denominator never vanishes because

ey

has a pure scalar term due to the fact that 4 and ¢, have
non-Grassmann parts different from zero. On the other
hand,

<_1__Y_6 ?.?2)

A D™ 3r
has a pseudoscalar character derived from the presence of
the Levi-Civita tensor from integration over Grassmann
variables. Therefore, imposing the world-line condition in
Minkowski space does not lead to new restrictions on the
constraints ¢y or ¢p. We can conclude that geometrical
lines (X*(7)) and (S**(7)) are appropriate objects to
characterize the world line of a relativistic spinning parti-
cle. Now it is necessary to study in detail the physics of

the model given by (X*(7)) and (S**(r)), which will be
done in the next section.

VI. EQUATIONS FOR THE AVERAGED QUANTITIES

Now we want to study the physics of the model in Min-
kowski space; the relevant quantities are

(¢")=(e5)=0, (xt)=xHt,6 (Pt)=P*,

(ete”) =iet™P , (6.1)

Va (bP )
- g+mag

(eu€5>=_’;_euvaﬁavVaPB .

The classical trajectory is obtained from

—j;(x“>=<%>=<{xﬂ,xoxa}*>EUﬂ : 62)
Explicitly, we have then

U¥=RP*+Be*"P x Vg, (6.3)
where R and B are functions of P* and x% The exact

functional dependence will be determined fixing the gauge
in both supergauge and reparametrizations.
The classical spin motion is given by

S v _i _ v
(s# >_d7-( (e*e"))

=Ae""PY Pg+ B PV xp , (6.4)
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‘where A4 and B are functions of x* and P%.

From these last two equations it seems possible to find
some constraint ¢p which allows Zitterbewegung,' the
noncolinearity of the four-velocity and the four-
momentum. However, such a constraint gives us a
strange behavior for the spin. In fact, by assuming the
most general form

ép=[a;(x,P)x,+ay(x,p)P*]€®+b (x,P)es , (6.5)
we obtain
v i v Va
(e'e”) =ie" 7(b +a,m)Pg+maxg| . (6.6)

The spin depends on the position of the particle, which is
not a characteristic of a free relativistic spinning particle.
In order to avoid this we can impose

a =0 )
a, =independent of x ,
b =independent of x,

but in this case we will have for the four-velocity

Ut= —2A,PH 6.7
and, for the evolution of the spin part,
(SH)y=0. (6.8)

Therefore, the problem of a position-dependent spin ten-
sor can only be avoided at the expense of Zitterbewegung.
Actually this should not be surprising since by writing
(4.10) as the covariant generalization of (4.9) we have de-
fined the nonrelativistic limit as P—0. Therefore, unless
(4.9) can be covariantly generalized so that it holds in the
velocity rest frame rather than the momentum rest frame,
any Zitterbewegung intrinsic to the abstract model will
not be manifested at the classical level. So we are left
- with, at most,

¢D=a2P'e+be5 5 (6.9)
but taking into account the normalization condition and
the constraint X it is easy to see that this general con-
straint reduces to

€s

¢p=—".

m

At this point we should note the following. When we
studied the world-line condition (WLC) in superspace we
proved that the only possible constraint was ¢p=aes. In
the case that we have studied here the situation is not the
same, and the world-line condition in Minkowski space
does not give us any restriction on the constraint ¢p, but
when we want to give a physical meaning to the averaged
quantities we recover the same result: ¢p must be given
by (6.10). Therefore, we can infer that two studies, the
WLC in superspace and the WLC in Minkowski space,
are not in contradiction, but are in fact in agreement.
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VII. POINCARE REALIZATION

In this section we construct a canonical realization of
the Poincaré group, with the degrees of freedom corre-
sponding to a spinning particle. We begin by following
the Shanmugadhasan method.!? In order to find the sub-
set of canonical variables characterizing the reduced space

€
Xp=P-e—mes~0, ¢D=;5:0 ,

we choose as new canonical variables

&=¢;s,
(7.1)
~ P-e
€=—,
m
and the reduced space will be
gSZO 3
(7.2)
e~0,
which coincides with X p ~0 and ¢, ~0.
The corresponding Poisson brackets are
{gs,g5}=—~i > {é",g}=l > {gs,g} =O. (7.3)

In order to complete the canonical transformation, we
can elect as new Grassmann variables

Er=¢€ke, » (7.4)
where €} are the polarization vectors
A Pkp
o_ P k_ ok A
G="—, =567+ . (7.5)
M M (PO m)
We then have
{ELE)=ib, [€1,6)={&,€}=0. (7.6)

With regard to the remaining variables x,,P,, we suppose
P,=P,
and
Xy=x,+fu(Peyu€s) .
By imposing the corresponding canonical conditions
(Xu, &) ={X,,8}={x &)= {X,,%,}=0
and

{x*, PV} =—gh,

we obtain
' 1 PEPY o, PYSHY
XP=xM4 A(PH)PF4 ——— |S%®_ S0V
m +P° P? m
(7.7)
The Lorentz generators are
MM =xHPY _x"PHF —jete¥ , (7.8)
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‘which, with P*=P¥, close the Poincaré algebra with the
Poisson bracket. These generators in terms of new vari-
ables will be

MM =xHEpPY _FVPFr LS

and are explicitly

> P,
§Ok=5 k0= —iﬁ?k , ‘ (7.9
m .
Shk=_jgigk | (7.10)
and if

~ ;A c 1 o0f i PR
S‘=';’€Oljks"k, Mx=_2,601jkM1k, K1=M01,

(7.11)

the Poincaré generators on the reduced space (7.2) are

PH=pPF
M=XXxP+S, (7.12)
= < PxS
K=X,P—XP,+—22 |
0 o+ m +Py

This is an 11-dimensional realization of the Poincaré alge-
bra in terms of canonical variables, with the correspond-
ing bracket being

(fe} =18} + 5 £iXn) (Xp.g])

+i({f’XD}{¢D’g}+{f,¢D}{XD,g}) ’ (7.13)
which coincides with the Poisson bracket in the reduced

space { }x- ,
By introducing the constraint
po=x"—7, (7.14)

we fix the evolution parameter at each point of the trajec-
tory. Doing that, the constraint X which in our case
(y =0) coincides with X, becomes second class. That en-
ables us to write a nine-dimensional Poincaré realization
which realizes the Poincaré algebra through the corre-
sponding Dirac bracket. In fact we can eliminate two su-
perfluous degrees of freedom making use of the con-
straints ®y,X:

x%=71, P’=(P?+m?)'?, (7.15)
and the Dirac bracket is
(£e}¥ =(fig} + S5 (£ Xo)" (408)"
—{f.do}*{X0g}®) . (7.16)

Due to the Poincaré scalar character of Xp and X, we can
ensure

1991

{Maﬁ,M‘yB} — iMaB’M'yS}* — {MaB,Mya} # ,
{Maﬂ’}—)y} = {MGB’PY}*= {MaBrPy}# ’
{ P2, PP} = (P PP}*— (P PP}#

Now, we are ready to perform the Poincaré realization
in the phase space; the appropriate distribution function
is, from (4.15),

1 i €s
ple,P)=08(Pe)— |VE — —(Peee) |6 | —
m 6

>

which enables us to calculate the average position variable

~ 1
(x)=<X>+‘1‘w(m—‘—P><(S>

+P%)
and also the spin variable
VoP

V—
m +P°

(8y=-—1
m

We see that (X) is the position variable introduced by
Pryce,'® and (S) has the same meaning as the Thomas
spin variable, which appears in the usual representation of
a spinning particle.

Lastly, one can obtain the Poincaré realization, which is
the same as (7.12) but with the position, the four-

.momentum, and the spin variables replaced by their aver-

aged values.

It still remains to specify what is the simplectic struc-
ture which acts in the phase space. We must have an
operator which, when acting on the averaged quantities
like (S; ), (X}, ), verifies

0[(§'i>,<§'j>]=€ijk(§k> ’
O[<fp):<ﬁv>]:_gpv .

This operator can be defined by

O[¢a),(B)]=2A) HB)  H4) ¥B)
A(X*) 9(Pr) 3(PH) O(x*)
+€ijk<§k)Ma—<B—>~
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With this operator it is straightforward to prove that the
realization (7.12) in terms of averaged quantities satisfies
the Poincaré algebra.

VIII. CONCLUSIONS

We have studied a pseudoclassical model for a relativis-
tic spinning particle. This model contains, apart from the
standard space-time variables, five Grassmann vari-
ables:’~7 one pseudoscalar €5 and one pseudovector €,. It
has two first-class constraints X, and Xp, that, at the
quantum level, give rise to the Dirac wave equation.

For a pure classical point of view we have seen that in
order to define a world line in Minkowski space we need
to introduce another constraint ¢, and a suitable distribu-
tion function p that averages over Grassmann variables on
the submanifold defined by X and ¢,. The world line in
Minkowski space defined this way has an objective reality,
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i.e., it verifies the world-line condition!® for an arbitrary
choice of the constraint ¢,. However, the physical con-
tent of this model is not independent of the constraint ¢p;
in fact, there are choices of ¢p that give rise to the Zirter-
bewegung.'* On closer inspection we conclude that the
only possible meaningful choice of ¢p is the one given by

ép ~€5 that yields a world line without Zitterbewegung.
We note also that this severe restriction imposed by the
physics coincides with the one given by the world-line
condition at the superspace level.’ Finally, the Poincaré
realization for this situation is constructed by means of
the Shanmugadhasan transformation.!?
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