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Highlights 

 Genetic-neuroimaging paradigms may aid in the understanding of the 

neurobiology of heterogeneous phenotypes like bipolar disorder; 

 A systematic review of gene-imaging studies conducted in samples with bipolar 

disorder was performed; 

 Forty-four studies (N=2,122 participants with bipolar disorder) met inclusion 

criteria; 

 Replicated evidence suggests that individuals with BD who carry the BDNF 

Val66Met allele may have smaller hippocampi volumes; 

 Studies that employed a genome-wide associated approach failed to reveal 

statistically significant findings. 

 

Abstract 

Genetic-neuroimaging paradigms could provide insights regarding the pathophysiology 

of bipolar disorder (BD). Nevertheless, findings have been inconsistent across studies. 

A systematic review of gene-imaging studies involving individuals with BD was 

conducted across electronic major databases from inception until January 9th, 2017. 

Forty-four studies met eligibility criteria (N=2,122 BD participants). Twenty-six gene 

variants were investigated across candidate gene studies and 4 studies used a genome-

wide association approach. Replicated evidence (i.e. in >2 studies) suggests that 

individuals with BD carrying the BDNF Val66Met risk allele could have reduced 

hippocampal volumes compared to non-carriers. This review underscores the potential 

of gene-neuroimaging paradigms to provide mechanistic insights for BD. However, this 

systematic review found a single replicated finding. Suggestions to improve the 

reproducibility of this emerging field are provided, including the adoption of a trans-

diagnostic approach. 

Abbreviations 

Anterior cingulum, AC; Adverse Childhood Experiences, ACE; Anterior cingulate 

gyrus, ACG; Anterior limb of internal capsule, ALIC; Ankyrin 3, ANK3; Bipolar 
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disorder, BD; Brain-derived neurotrophic factor, BDNF; Blood oxygen level dependent, 

BOLD; Calcium voltage-gated channel subunit alpha1 C, CACNA1C; Corpus 

callosum, CC; Corpus Callosum, body, CCb; Corpus Callosum, genu, CCg; Cingulate 

gyrus, CG; 2',3'-Cyclic-nucleotide 3'-phosphodiesterase, CNP; Catechol-O-

methyltransferase, COMT; Corona radiata, CR; Corticospinal tract, CST; D-amino acid 

oxidase, DAAO; D-amino acid oxidase actiqvator, DAOA; Diacylglycerol kinase eta, 

DGKH; Disrupted in schizophrenia 1, DISC1; Dorsolateral prefrontal cortex, dlPFC; 

Default mode network, DMN; Docking protein 5, DOK5; Diffusion tensor imaging, 

DTI; Excitatory amino-acid transporter 2, EAAT2; Erb-B2 Receptor Tyrosine Kinase 2, 

ERBB2; Fractional anisotropy, FA; Forceps major, FM; Functional MRI, fMRI; 

Fusiform gyrus, FG; Fronto-occipital fasciculus, FOF; Gamma-Amino Butyric Acid, 

GABA; Polypeptide N-Acetylgalactosaminyltransferase 7, GALNT7; Gyrification 

index, GI; Grey matter, GM; Globus pallidus, GP; Glutamate ionotropic receptor 

NMDA type subunit 2B, GRIN2B; Glycogen synthase kinase 3 beta, GSK-3β; 

Genome-wide association study, GWAS; Risk haplotype at the 5' end of the NRG1 

gene, HAP; Healthy controls, HCs; Inferior cerebellar peduncle, ICP; Interleukin-1 

beta, IL-1β; Inferior parietal lobule, IPL; Inferior occipital gyrus, IOG; Lateral 

ventricles, LV; Longitudinal fasciculus, LF; Minor allele, MA; Middle cerebellar 

peduncle, MCP; Mean diffusivity, MD; Myelin oligodendrocyte glycoprotein, MOG; 

Medial prefrontal cortex, mPFC; Magnetic resonance imaging, MRI; Middle temporal 

gyrus, MTG; Nucleus accumbens (NAc), NA; N-methyl-D-aspartate, NMDA; 

Neuregulin 1, NRG1; Teneurin transmembrane protein 4, ODZ4; Orbitofrontal cortex, 

OFC; Posterior cingulate gyrus, PCG; Prefrontal region, PF; Prefrontal cortex, PFC; 

Polygenic risk score, PGR; Parahippocampal gyrus, PHG; Radial diffusivity, RD; SZ, 

Schizophrenia; Serotonin-transporter-linked polymorphic region, 5-HTTLPR; Single 
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nucleotide polymorphism, SNP; Spectrin repeat containing nuclear envelope protein 1, 

SYNE1; Sterol regulatory element-binding transcription factor 1, SREBF1; Sterol 

regulatory element-binding transcription factor 2, SREBF2; Superior Temporal Gyrus, 

STG; Tract-based spatial statistics, TBSSBD; Tumor necrosis factor, TNF; Temporal 

pole, TP; Thalamic radiation, TR; Uncinate fasciculus, UF; Voxel-based morphometry, 

VBM; Ventrolateral prefrontal cortex, vlPFC; White matter, WM; Zinc finger protein 

804A, ZNF804A 

Key words: Bipolar disorder; genetic polymorphisms; neuroimaging; magnetic 

resonance imaging; functional MRI; diffusion tensor imaging, voxel-based 

morphometry. 

 

1. Introduction 

Bipolar disorder (BD) may affect approximately 2.4% of the population worldwide, and 

is associated with significant disability and elevated mortality rates compared to the 

general population (Grande et al., 2016; Hayes et al., 2015; Merikangas et al., 2011). 

The pathophysiology of BD has not been completely elucidated, and the current state of 

knowledge on putative mechanisms underpinning different clinical features and illness 

trajectories is limited (Craddock and Sklar, 2013; Hasler and Wolf, 2015). Several lines 

of evidence indicate that hereditary factors play a relevant role in the patho-etiology of 

BD, with phenotypic concordance rates ranging from 40-70% in monozygotic twins, 

and 8-10% in first-degree relatives (FDRs) (Kerner, 2014; Smoller and Finn, 2003). 

Genome-wide significant loci for BD have emerged from meta-analyses of GWAS, 

while loci near the TRANK1, ANK3, ODZ4, CACNA1C, and NCAN genes had at least 

one additional replication (Goes, 2016; Green et al., 2013; Muhleisen et al., 2014). A 



5 

 

recent GWAS identified two additional novel loci associated with bipolar disorder i.e. 

an inter-genic region on 9p21.3 and markers within ERBB2 (Hou et al., 2016). In 

addition, the CACNA1C gene differed in expression in the prefrontal cortex of patients 

with BD compared to controls (Nurnberger et al., 2014). However, identified genome-

wide significant signals seem to explain a low proportion of phenotypic variance of BD 

(Goes, 2016), and a polygenic risk score accounts for only 3% of its phenotypic 

variance (Group, 2011). It has been proposed that the effects of risk genes for BD could 

be larger and more evident on intermediate phenotypes neurobiologically linked to the 

disorder, thus providing an impetus to the emergence of ‘gene imaging’ studies in the 

literature (Bigos and Weinberger, 2010; Gurung and Prata, 2015; Ivleva et al., 2010).  

Precise mechanisms through which genetic variations may influence neural 

pathways accounting for the phenotypic heterogeneity of BD are yet to be established. 

Significant efforts have been conducted to identify phenotypic characteristics that are 

thought to lie more proximal to the genetic factors (i.e. endophenotypes) with the aim 

that this approach would aid in the identification of biological mechanisms of BD 

(Gottesman and Gould, 2003; Kurnianingsih et al., 2011). In this context, a large body 

of literature indicates that BD is associated with significant functional and structural 

neuroimaging alterations (Kempton et al., 2011; Kupferschmidt and Zakzanis, 2011). 

Furthermore, meta-analytic evidence indicates that functional and structural 

neuroimaging abnormalities may be evidence  in individuals at-risk for BD (Fusar-Poli 

et al., 2012), and a recent systematic review indicates that functional and structural 

neuroimaging abnormalities are also evident in healthy FDRs of patients with BD 

(Piguet et al., 2015). Altogether this literature provides support to the view that subtler 

functional and structural neuroimaging abnormalities in at-risk individuals could 

represent vulnerability markers of BD. ‘Imaging genetics’ has emerged as a field with 



6 

 

an underlying rationale that genetic variations that confer risk to mental disorders may 

exhibit higher penetrance at such brain functional/structural alterations than at the more 

distal psychopathological/behavioral levels (Hashimoto et al., 2015; Rasetti and 

Weinberger, 2011). Hence, an ever-increasing number of studies has attempted to 

investigate the associations between genetic variations expected to play a 

pathophysiological role in BD and structural and functional neuroimaging 

abnormalities. However, different age groups, neuroimaging modalities, treatment-

related effects and investigated genes (or polygenic risk scores) are potential 

confounders which might have contributed to the heterogeneity of studies so far 

(Kurnianingsih et al., 2011). To overcome such a strong heterogeneity a systematic 

review of ‘neuroimaging genetics’ studies which considered genes which have been 

previously found to reach genome-wide significance in schizophrenia and BD was 

conducted (Gurung and Prata, 2015; Lee et al., 2012). However, this previous 

systematic review considered studies performed solely in healthy individuals, while 

only seven studies performed in samples with BD were included (Gurung and Prata, 

2015). A comprehensive systematic overview focusing on ‘imaging genetics’ 

specifically in people with BD is currently lacking.   

Therefore, our systematic review aims to provide a comprehensive and up-dated 

synthesis of all available ‘imaging genetics’ literature in BD. Both structural and 

functional magnetic resonance imaging studies will be considered. Our goal was two-

fold: (1) to summarize and facilitate the integration of findings in this evolving field; 

and (2) to provide an illustrative structural and functional brain map of significant BD-

associated gene risk variants, which are expected to be linked to brain regions with 

known alterations in BD. 

2. Methods 
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A systematic literature search of genetic variations and functional and structural 

magnetic resonance imaging (MRI) studies in BD was conducted. We followed the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

statement (Moher et al., 2010), using an a priori defined but unpublished protocol. 

2.1. Search strategy 

The EMBASE, PubMed/MEDLINE and PsycINFO electronic databases were searched 

from inception up to January 9th, 2017. The following search string was used: (bipolar 

disorder OR mania OR bipolar depression) AND (structural magnetic resonance OR 

functional magnetic resonance OR fMRI OR BOLD fMRI OR magnetic resonance 

imaging OR magnetic resonance neuroimaging OR tractography) AND (SNPs OR 

single nucleotide polymorphism OR haplotypes OR gene expression OR gene OR 

genetic score OR genetic* OR methylome OR epigenetic* OR genome OR 

transcriptome OR polymorphism OR genetic polymorphism OR genome wide OR 

genome-wide). In addition, the reference lists of eligible articles were hand searched to 

identify additional eligible references. 

2.2. Eligibility Criteria 

The articles included in this review fulfilled the following criteria: (1) human studies 

with participants at any age with a diagnosis of type I BD (BD-I), type II BD (BD-II), or 

BD not otherwise specified (BD-NOS) using standard diagnostic criteria (DSM-IV, 

ICD-10 or Research Diagnostic Criteria regardless of the current mood state (euthymic, 

manic or depressed); (2) combined investigations of genetic factors and brain imaging 

protocols (structural or functional). The included articles had to investigate imaging-

genetic associations of BD patients that were carriers of high-risk alleles compared to 

either healthy controls (HC) and/or BD patients who were non-carriers of the 
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investigated risk alleles. No language restrictions were applied. Studies that reported a 

sub-analysis of a well-defined sample of participants with BD within a broad mood 

disorder group were also eligible. 

Animal and post-mortem studies, case series, literature reviews, conference 

papers, meeting abstracts or meta-analyses were excluded. Studies which included 

samples with mixed diagnoses were excluded, unless data for participants with BD were 

separately provided. Articles that used imaging methods other than structural or 

functional MRI (e.g., magnetic resonance spectroscopy or positron emission 

tomography) were also excluded. 

 

 

2.3. Study Selection 

Two investigators (LPP and BPF) independently screened the titles and abstracts of 

retrieved references for eligibility. Next, the full-texts of the selected references were 

obtained, and the same authors independently reviewed each article for final inclusion 

in this systematic review. Disagreements were resolved through consensus. Whenever a 

consensus could not be achieved, a third author (CAK) made the final decision 

regarding inclusion. The agreement between the two raters was high (83.7%). 

2.4. Data Extraction 

Two authors (LPP and BPF) independently extracted the data of selected papers using a 

standardized spreadsheet. The following variables were recorded: first author, year of 

publication, sample size, age of participants, % of females, diagnostic criteria for BD, 

genetic assessment (name of the gene, method, SNP and allele groups), imaging 
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methods and procedures, the experimental paradigm (in case of fMRI), MRI regions of 

interest (ROI) and the results of the association between the genetic variants and each 

ROI. Whenever the sample contained BD patients as part of a broader sample that 

included other psychiatric diagnoses, only data and associations of the BD group was 

extracted. The agreement between the two raters was 89.6%. 

2.5. Data synthesis 

Due to the anticipated heterogeneity and paucity of homogenous studies, meta-analysis 

of included studies was not feasible. Thus, we synthesized the included studies with a 

best evidence synthesis. First, we considered structural imaging studies and candidate 

genes and GWAS relationships. Second, we considered the relationship between 

functional imaging studies and candidate genes and GWAS studies. We considered 

evidence to be replicated or consistent when a relationship was evident between 2 

studies between a candidate gene/GWAS and a particular structural and/or functional 

neuroimaging abnormality. 

3. Results 

3.1 Search Results 

The literature search found 873 records, and 9 additional references were found through 

searching the reference lists of included articles. After the removal of duplicates, 632 

unique references were screened. Five hundred and seventy-one references were 

excluded after title/abstract screening. Of the 61 full-texts assessed, 17 were excluded 

due to: (1) not an original study (k = 2); (2) no data for BD participant was provided (k 

= 9), (3) not investigating samples with BD (k = 1), (4) no genetic measure (k = 1), (5) 

using other neuroimaging method not specified in the inclusion criteria (k = 2), (6) not 

investigating genetic-imaging associations in BD (k = 1) or (7) article not available (k = 
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1). Therefore, forty-four genetic-neuroimaging studies met inclusion criteria for this 

qualitative systematic review. Figure 1 presents the flowchart of study selection. The 

studies excluded during full-text review and reasons for exclusion are presented in 

Supplementary Table S1 that accompanies the online version of this article. 

<Please insert Figure 1 here> 

3.2 Overview of included studies 

All included studies are described in Tables 1 and 2 (structural MRI, k = 28) and Tables 

3 and 4 (fMRI, k = 16). Forty studies investigated 26 candidate risk genes for BD and 4 

studies used a genome-wide significance analysis. The studies altogether included 2,122 

participants with BD [BD group; age = 38.6 ± 13.6 years (mean ± SD); 56.6% female] 

and 2,389 healthy participants (HC group; age = 35.9 ± 12.4 years (mean ± SD); 53.0% 

female). All studies included only adult samples except for three studies that included 

only pediatric samples (Barzman et al., 2014; Liu et al., 2010; Zeni et al., 2016).  

Twenty-eight studies investigated structural changes using either VBM or DTI, and 16 

studies used functional MRI to investigate changes in brain activity associated. The 

functional studies were based on several tasks, including emotional processing of faces 

(k = 8), Posner emotional task (k = 1), verbal fluency tasks (k = 4), and working 

memory (k = 2). Emotional tasks included contrasts of the task-related activity and 

baseline, and within neutral and affective content. The other tasks compared task-related 

activity with baseline.  

<Please insert Table 1 here> 

<Please insert Table 2 here> 

<Please insert Table 3 here> 
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<Please insert Table 4 here> 

3.3. Structural imaging studies 

3.3.1. Candidate Genes 

Twenty-six studies investigated associations of 19 candidate genes with structural 

imaging data (see Table 1 for studies using VBM and Table 2 for studies using DTI). 

Except for the study by Zeni et al. (2016), all other studies included an adult sample. 

Eighteen studies investigated structural measures [total/regional brain volumes, cortical 

thickness and white matter (WM) integrity] using VBM, 6 studies focused on DTI 

metrics [e.g. fractional anisotropy (FA)] and 2 studies used both methods. The most 

frequently investigated genes were BDNF (5 studies, all VBM), CACNA1C (5 studies, 4 

VBM and 1 DTI), ANK3 (3 studies, 1 VBM and 2 VBM/DTI combined), 5-HTTLPR (3 

studies, 2 VBM and 1 DTI), ZNF804A (3 studies, 1 VBM and 2 DTI), and GSK-3β (2 

studies, 1 VBM and 1 DTI) (Table 1 and Table 2). The remaining genes (EAAT2, 

DGKH, NRG1, HAP, CNP, MOG, IL-1B, ODZ4, SYNE1, DAOA, GRIN2B, SREBF1 

and SREBF2) were investigated by a single study. 

Six studies included only participants with BD (i.e. carriers vs. non-carriers of 

genetic risk variants) (Benedetti et al., 2013; Benedetti et al., 2015a; Benedetti et al., 

2015b; Benedetti et al., 2014; Poletti et al., 2016; Poletti et al., 2014). Three of those 

studies investigated 5-HTTLPR (Benedetti et al., 2015a), GSK-3β (Benedetti et al., 

2013) or SREBF1/2 (Poletti et al., 2016) using DTI. Benedetti et al. (2015a) found that 

carriers of the 5-HTTLPR S (i.e., short) allele had increased radial and mean diffusivity 

in several brain white matter tracts, including the cingulum gyrus, corpus callosum 

(body and genum) and corona radiata compared to non-carriers. Significant increases in 

axial diffusivity measures were observed in carriers of the less active GSK3-β 
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rs334558*C gene-promoter variant in 70 participants with an index bipolar depressive 

episode across several white matter fiber tracts (Benedetti et al., 2013). Interestingly, 

lithium treatment (which inhibits GSK-3β) was also associated with similar changes in 

axial diffusivity, which points to a better integrity of axon and myelin sheaths 

(Benedetti et al., 2013). Poletti et al. (2016) found that carriers of the SREBF2 

rs1052717 polymorphism A/A genotype had increased radial diffusivity and reduced 

FA compared to G carriers in the cingulum, corpus callosum, superior and inferior 

longitudinal fasciculi, and anterior thalamic radiation. The remaining 3 studies 

investigated variations in the 5-HTTLPR (Benedetti et al., 2014), GSK-3β (Benedetti et 

al., 2015b) or EAAT2 (Poletti et al., 2014) genes using VBM. All three studies did not 

verify any significant genetic-imaging associations in BD.  

The other 19 studies included a HC comparison group. Fourteen of these studies 

found significant associations of brain structural changes and genetic variants, in both 

grey and white matter. These included associations of the BDNF (k = 4), 5-HTTLPR (k 

= 1), CACNAC1 (k = 1), DGKH (k = 1), NRG1 and HAPICE haplotype (k = 1), IL-1β (k 

= 1) with brain volumes using VBM, and also ANK3 (k = 2), 5-HTTLPR (k = 1), GSK-

3β (k = 1) and GRIN2B (k = 1) with white matter integrity using DTI. See section 3.5.1 

for details. 

3.3.2. Genome-Wide Association Studies 

Two studies used Genome-Wide Association Studies (GWAS) to identify genes 

associated with BD, and then investigated associations with structural changes using 

VBM (Bakken et al., 2011; Oertel-Knochel et al., 2015) (Table 1). Oertel-Knochel et al. 

(2015) investigated 7 SNPs obtained from a GWAS study in SZ (MIR137, CCDC68, 

CNNM2, NT5C2, MMP16, CSMD1 and PCGEM1) to identify genetic variants 
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associated with structural brain changes across the psychosis spectrum. No statistically 

significant association was observed for the group that included only participants with 

BD. Bakken et al. (2011) examined associations of 597,198 SNPs with average cortical 

thickness using the PLINK analytic tool (Purcell et al., 2007) to fit an additive linear 

model with minor allele counts, sex, age and diagnosis, using a conservative Bonferroni 

correction for genome-wide significance. No statistically significant imaging-genetic 

associations were found in the BD group. 

3.4. Functional Imaging studies 

3.4.1. Candidate Genes 

Fifteen studies investigated associations of variations in 11 candidate genes and blood 

oxygen level dependent (BOLD) fMRI. The most frequently investigated genes were 

CACNA1C (4 studies) and ANK3, DAAO and DISC1 (2 studies each) (Tables 3 and 4). 

The remaining genes (TNF, G72, BclI, COMT, DOK5, 5-HTTLPR and NRG1) were 

investigated in a single study. 

Barzman et al. (2014) investigated a small sample of pediatric BD patients, and 

found that the expression of 11 TNF-related genes in peripheral blood mononuclear 

cells of participants with BD significantly correlated with activation of the amygdala or 

anterior cingulate gyrus during the affective Posner task. 

All other studies included only adults, and included a HC group for comparison. 

Eight of these studies found significant gene × brain activity associations in BD 

patients. The CACNAC1 gene was associated with increased amygdala activation in the 

face recognition paradigm (k = 2). The ANK3 gene was associated with increased 

activity in the cingulate cortex during a working memory task (k = 1). Both the ANK3 

and CACNAC1 genes were associated with reduced activation of the vlPFC during the 
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emotional facial processing task (k = 1). The DISC1 gene was associated with 

decreased activation of the IPL and left CG during a verbal initiation and sentence 

completion task (k = 1). Also in a verbal fluency paradigm, the DAOA (k = 1) genotype 

was associated with a greater deactivation of the let precuneus in BD patients, while the 

NRG1 genotype was associated with increased activation of the right posterior OFC. 

Finally, the 5-HTTPLPR was associated with lower ventral anterior CG activity during 

emotional processing of faces (k = 1). See section 3.5.2 for details. 

3.4.2. Genome-Wide Association Studies 

Liu et al. (2010) investigated a sample of adolescents with BD and HCs of similar age. 

These authors performed a GWAS, and found that the rs2023454 SNP of the DOK5 

gene was associated with right amygdala activation under contrast to hostility faces 

although no significant differences between and within BD and HC samples were 

observed. Dima et al. (2016) calculated a polygenic risk score (PGR) from genes that 

were associated with BD in a GWAS. Although the PGR was associated with changes 

in brain activity during a facial processing task and a working memory task in both the 

BD and HC groups, no statistically significant differences emerged between the two 

groups or within the BD group as a function of the PGR. 

3.5. Significant genetic-neuroimaging associations in BD 

The statistically significant associations reported across genetic-neuroimaging studies 

using candidate genes are shown in Table 5. In addition, a brief synopsis of possible 

biological functions of gene products is provided.  

3.5.1. Structural VBM and DTI studies 
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Statistically significant structural neuroimaging alterations in BD patients were 

associated with genetic variations of the BDNF, 5-HTTLPR, CACNA1C, DGKH, NRG1, 

IL-1β, ANK3, and GRIN2B genes (Table 5). Nevertheless, there was a lack of replicated 

evidence.  

<Please insert Table 5 here> 

Two studies provided evidence that BD patients who carry the Met allele of the 

BDNF gene may present several structural alterations encompassing several brain areas 

namely the left and right hippocampus (Cao et al., 2016; Chepenik et al., 2009). A four-

year prospective study found that individuals BD participants who were carriers of one 

or more BDNF Met alleles had significantly greater losses in gyrification indexes, an 

effect that correlated with gray matter loss in the left hemisphere (Mirakhur et al., 

2009).  Matsuo et al. (2009) observed smaller bilateral anterior cingulate gyrus volumes 

in BD patients with Val/Met compared to those with Val/Val BDNF genotypes, while in 

both the BD and HC groups participants with the Val/Met BDNF genotype had smaller 

left and right gray matter volumes of the dorsolateral prefrontal cortex. 

Increased volumes of the left amygdala were observed in carriers of the S allele of 

the 5-HTTLPR gene both in BD and HC groups (Scherk et al., 2009a). 

Genetic variations in the CACNA1C genes were not associated with significant 

structural changes in three VBM studies (Soeiro-de-Souza et al., 2012; Tesli et al., 

2013; Wolf et al., 2014), whereas Perrier et al. (2011a) found that euthymic BD patients 

carrying the CACNA1C rs1006737 risk allele had a smaller volume of the left putamen 

compared HCs. 

A significantly increased volume of the left amygdala was associated with the 

DGKH haplotype (rs994856/rs9525580/rs9525584 GAT) in 30 euthymic patients with 

type I BD but not in HCs (Kittel-Schneider et al., 2015). The risk genotype (TT) of the 
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NRG1 SNP8NRG221533 was associated with reduced white matter volumes in the 

fornix, cingulum and para-hippocampal gyrus in a type I BD sample (Cannon et al., 

2012). In the same study, BD participants carrying one or two copies of the HAPICE 

haplotypes of the NRG1 gene had greater white matter volume than those carrying none 

in the fornix, caudate and cingulum (Cannon et al., 2012). Papiol et al. (2008) found 

that a -511C/T SNP (rs16944) of the IL-1β gene was associated with whole-brain and 

left dlPFC gray matter deficits in a sample of 20 participants with BD in a VBM study. 

Two studies found that distinct variations of the ANK3 gene were associated with DTI 

findings (reduced FA) compatible with widespread white matter deficits in several brain 

regions, such as the forceps minor, the uncinate fasciculus, the anterior cingulate gyrus, 

the dorsolateral frontal cortex, the left temporoparietal WM, and in posterior 

dorsomedial WM (Lippard et al., 2016; Ota et al., 2016). Finally, compared to the G 

allele of the GRIN2B gene, brain FA values were significantly lower in BD patients 

with risk T allele in left and right frontal regions, left parietal region, left and right 

occipital regions and the left cingulate gyrus (Kuswanto et al., 2013). 

3.5.2. fMRI studies 

Functional neuroimaging alterations were associated with genetic variations in the 

CACNA1C, ANK3, DISC1, TNF, DAOA, 5-HTTLPR and NRG1 genes (Table 5). 

The most frequent regions with functional alterations significantly associated with 

genetic variations in BD were: (1) the right anterior CG (ACG), where variation in the 

ANK3 and TNF genes were associated with greater activation in working memory tasks 

(ANK3) or Posner task (TNF), whereas the 5-HTTLPR S allele was significantly 

associated with lower activation during an emotional processing task; (2) the left ACG, 

where polymorphisms in the TNF gene were associated with increased activation and 

the 5-HTTLPR S allele with decreased activation during emotional processing tasks; (3) 
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left amygdala, where variation in the CACNA1C and TNF genes were associated with 

greater activation during emotional processing tasks; (4) left CG, where polymorphisms 

in DISC1 were associated with lower activation during a verbal fluency task; (5) left 

para-hippocampal gyrus, where ANK3 polymorphisms were associated with greater 

activation; and during a working memory task; and (6) the left vlPFC, where variations 

in both CACNA1C and 5-HTTLPR genes were associated with greater activation during 

emotional processing tasks. 

The fMRI paradigms that were most frequently used across functional 

neuroimaging studies with statistically significant genetic-imaging findings were 

emotional faces task (8 studies) and the verbal fluency test (2 studies). Three studies 

found associations of the CACNA1C risk allele A with an increase in activation of either 

left or right amygdala (Jogia et al., 2011; Tesli et al., 2013), and a hypoactivation of the 

vlPFC (Dima et al., 2013; Jogia et al., 2011), with one study reported both alterations 

(Jogia et al., 2011) in the emotional faces task. The remaining studies found decreased 

activation of the vlPFC in association with the ANK3 rs10994336 polymorphism risk 

allele T (Delvecchio et al., 2015) or a decreased activation of the ventral anterior 

cingulate gyrus related to the 5HTTLPR S risk allele (Shah et al., 2009). Studies that 

employed the verbal fluency test were inconsistent regarding both genetic variations and 

activated ROIs (Mechelli et al., 2012; Mechelli et al., 2008). 

3.5.3. Illustrative brain map of significant replicated gene-neuroimaging findings 

Figure 2 summarized replicated gene-imaging findings in BD patients in comparison to 

healthy controls. A difference was considered statistically significant (p < 0.05) only if 

the neuroimaging findings of BD patients carrying the risk allele were different from the 

HCs or BD subjects not carrying the risk allele (i.e., a gene x diagnosis interaction). 
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Two fMRI studies found that individuals with BD carrying the A variant of the 

CACNA1C Rs1006737 polymorphism had decreased activity in the right dorsal 

ventrolateral prefrontal cortex during the emotional faces paradigm. However, samples 

across those two investigations appeared to overlap (Dima et al., 2013; Jogia et al., 

2011), and thus this association was not regarded as a true replication. Furthermore, two 

VBM studies found that subjects BD who were carriers of the Met allele of the BDNF 

Val66Met polymorphism had decreased volumes of the left and right hippocampi (Cao 

et al., 2016; Chepenik et al., 2009). 

<Please insert Figure 2 here> 

3.6. Methodological considerations 

The minority of included studies enrolled only euthymic BD participants (k = 10; 

22.7%), while the mood status of participants with BD was clearly described in 21 

(47.7%) studies. Twenty studies (45.5%) controlled results for the effects of medication 

or otherwise included only drug-free BD participants, while most included studies 

controlled findings for multiple comparisons (k = 33; 75.0%). A healthy control group 

was included in 36 (81.8%) studies.  The median (IQR) sample sizes for VBM, DTI and 

fMRI studies were 80 (72-84), 153.5 (87.25-172) and 80.5 (69.5-87.25). A whole-brain 

analysis was conducted in 15 (34.0%) studies, while 18 (40.9%) studies performed only 

a priori defined ROI-based analyses, and 4 (9.1%) studies carried out both types of 

analyses. Twenty-eight studies used a 1.5T magnetic field, 13 studies used 3.0T, 1 study 

4.0T and 2 did not specify the magnetic field of the scanner. 

 

4. Discussion 
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The aim of this systematic review was to assess the extant literature reporting ‘imaging 

genetics’ findings in BD. We included both structural and functional MRI studies. The 

most frequently reported genes (at least 2 studies) with statistically significant 

neuroimaging alterations in BD patients were CACNA1C, ANK3, BDNF, 5-HTTLPR, 

NRG1 and DAOA. Of those genes, loci close to the CACNA1C and ANK3 genes have 

reached genome-wide significant associations with BD, and associations were 

replicated in at least one independent dataset (Goes, 2016). To our knowledge this effort 

represents the largest evidence-based synthesis to date of this field.  

Our findings suggest that the effects of genetic variants on intermediate 

neuroimaging phenotypes could be independent (i.e., pleiotropic) of effects on the 

clinical phenotype per se (Gottesman and Gould, 2003), which is consistent with the 

view that an endophenotypic approach may aid in the search of biological pathways 

underpinning heterogeneous mental disorders like BD (Miskowiak et al., 2016). The 

findings reviewed herein may at least partly explain that although at the population level 

BD is associated with a significant degree of both “cold” and “hot” (i.e., emotion-laden) 

(Miskowiak and Carvalho, 2014; Roiser et al., 2009) cognitive deficits, recent meta-

analyses point to a significant degree of heterogeneity (Bora and Pantelis, 2016; 

Bortolato et al., 2015; Bourne et al., 2013). Nevertheless, a certain degree of uncertainty 

lies on the precise pathways which could be influenced by those gene products with 

relevance to the underlying neurobiology of subsets of individuals with BD. 

Furthermore, one cannot exclude the possibility that those risk genetic variants are not 

inherently causal, but instead may be passed in linkage disequilibrium with causative 

ones. We observed that although several candidate gene studies reported significant 

associations with structural/functional neuroimaging findings, whilst the few studies 

that followed a GWAS methodology did not report statistically significant findings 
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(Bakken et al., 2011; Liu et al., 2010; Oertel-Knochel et al., 2015). Evidence indicates 

that the literature on structural and functional neuroimaging studies could be limited by 

an excess of significance bias (i.e., there is an excess of statistically significant 

findings), which may undermine the reproducibility of the field as a whole (Fusar-Poli 

et al., 2014; Ioannidis et al., 2014). In addition, a selective reporting of outcomes (i.e., 

only those genes with statistically significant findings are reported) could result in a 

type I error (Ioannidis et al., 2014). Moreover, sample sizes varied across studies, and 

due to the few studies available it is difficult to estimate the statistical power of 

individual studies. This aspect may also undermine the reproducibility of gene-imaging 

studies as discussed in detail elsewhere (Carter et al., 2016). Therefore, we focused our 

discussion on candidate genes with at least two statistically significant findings. 

Furthermore, we contextualized the main findings of our review with data derived from 

the preclinical and neuropsychological literature. 

4.1. The CACNA1C gene 

The CACNA1C gene encodes the L-type voltage-dependent calcium channel 1C 

subunit, and at least two GWAS have implicated its rs1006737 SNP as a risk variant 

associated with BD (Sklar et al., 2008). This association has been consistently replicated 

since then (Goes, 2016). Notwithstanding Perrier et al. (2011a) observed a significantly 

reduced volume of the left putamen in a sample of BD patients carrying the rs1006737 

SNP risk allele compared to HCs. However, two subsequent VBM studies failed to 

replicate those findings (Soeiro-de-Souza et al., 2012; Wolf et al., 2014).  

Significant within-group differences were observed in BD who were carriers of 

the risk allele of the CACNA1C gene after recognition of negative/fearful faces 

(compared to neutral faces) in the facial affect recognition task. For example, carriers of 

the risk allele had a higher activation of the left amygdala in one study (Tesli et al., 
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2013), while another study found higher activation of the amygdala bilaterally in the 

same task (Jogia et al., 2011). Furthermore, two studies found an hyperactivation of the 

left ventrolateral prefrontal cortex in the same experimental paradigm (Dima et al., 

2013; Jogia et al., 2011). Nevertheless, another study did not report significant 

functional brain abnormalities related to this risk allele in the facial emotion recognition 

task (Radua et al., 2013). Methodological differences across studies may explain those 

discrepant findings. For example, Radua et al. (2013) did not explicitly exclude BD 

participants with co-occurring somatic and mental disorders. Furthermore, there was an 

overlap in samples included in the studies carried out by Jogia et al. (2011) and Dima et 

al. (2013). Ou et al. (2015) postulated that the lack of significant differences in 

neuroimaging studies between participants with BD and HCs as a function of the 

CACNA1C risk allele could be due to differences in the prevalence of cardiovascular 

risk factors. Therefore, differences in eligibility criteria across studies may at least in 

part explain contrasting results across studies. Nevertheless, those functional brain 

abnormalities as a function of the presence of the AA/AG CACNA1C risk alleles are 

consistent with the neuropsychological literature. Hence although less unanimous than 

the neuroimaging literature, BD patients who carry those risk alleles may score poorer 

on speed of processing and digit span tests compared to non-carriers (consistent with a 

lower efficiency of the left ventrolateral prefrontal cortex). In addition, carriers of the 

risk allele may display impaired recognition of emotional faces (disgust, sadness, 

happiness, and anger) [see Ou et al. (2015) for a review]. 

4.2. The ANK3 gene 

The ANK3 gene codes for Ankyrin G, a protein which may be involved in the 

stabilization and localization of ion channels and cell adhesion molecules to nodes of 

Ranvier and initial segments of axon (Gasser et al., 2012). Furthermore, an elegant 
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preclinical study found a lack of voltage-gated sodium channels in GABAergic 

parvalbumin interneurons in mice deficient of exon 1b of the ANK3 (Lopez et al., 2016). 

Consistently, mice exhibited an ANK3 gene dose-dependent phenotype characterized by 

manic-like behavior, epilepsy, and sudden death (Lopez et al., 2016).  In addition, 

Ankyrin G has been implicated in neurodevelopment, and in the onset of myelination 

(Ching et al., 1999), and also in the regulation of neurogenesis (Durak et al., 2015; 

Leussis et al., 2012). 

Replicated findings indicate that different risk alleles of the ANK3  gene may 

impact white matter structure in BD. For example, BD patients who were carriers of the 

risk allele rs10761482 SNP had decreased FA in the forceps minor (Ota et al., 2016), 

while BD patients who were carriers of the risk allele of the rs9804190 had decreased 

FA in the uncinate fasciculus and the cingulate gyrus bilaterally among other regions 

compared to CC homozygotes (Lippard et al., 2016). These findings are consistent with 

a recent meta-analysis of DTI studies in BD which evidences widespread white matter 

in this illness compared to controls (Nortje et al., 2013). Greater widespread 

abnormalities in individuals with BD carrying risk variants of the ANK3 gene also 

provide support for a putative role of Ankyrin G in myelination. In addition, risk alleles 

of this gene could lead to accelerated brain aging in BD (Rizzo et al., 2014). 

Furthermore, the risk C-allele of rs10761482 SNP was significantly associated with 

worse performance on verbal comprehension, logical memory and processing speed in 

BD patients in one study (Hori et al., 2014), while another study found that the risk 

allele of the rs10994336 SNP was associated with reduced sensitivity in target detection 

and increased errors of commission during sustained attention in both patients with BD 

and HCs (Ruberto et al., 2011). Altogether, these data suggest that different risk alleles 

of the ANK3 gene could have a deleterious effect on WM structure in BD, which could 
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be related to neurocognitive deficits. This hypothesis is further supported by a study that 

found that the risk allele of the rs10994336 SNP was associated with hyperactivation of 

the right anterior cingulate cortex and left posterior cingulate cortex in patients with BD 

compared to HCs in the N-back test, which measures executive function (Delvecchio et 

al., 2015).  

4.3. The BDNF gene 

The brain-derived neurotrophic factor (BDNF) gene is located on chromosome 11p14.1. 

The BDNF protein is a member of the neurotrophin superfamily, which supports 

neuronal survival, neural differentiation during development, and has been implicated in 

the regulation of activity dependent-synaptic plasticity in mature neurons (Duman and 

Monteggia, 2006; Hempstead, 2015). This neurotrophin is abundantly expressed in the 

hippocampus (Duman and Monteggia, 2006). The BDNF rs6265 SNP has been 

frequently investigated and an alteration at nucleotide 196 (G/A) which produces a 

Val66Met substitution (Notaras et al., 2015a). This SNP may result in a diminished 

cellular trafficking and packaging of the mature BDNF protein into the secretory 

vesicles, thus reducing depolarization-induced release of this neurotrophin (Notaras et 

al., 2015a). Furthermore, carriers of this risk SNP could produce the Met BDNF 

prodomain in larger amounts, with may have opposing effects (i.e., a negative impact in 

neuron architecture remodeling) via an activation of the p75 and sortilin-related VPS10 

domain containing receptor 2 (SorCS2) receptors (Hempstead, 2015). Consistently, this 

systematic review found replicated evidence that carriers of the BDNF met allele 

exhibit smaller hippocampal volumes (Cao et al., 2016; Chepenik et al., 2009). In one 

study BD carriers of this risk allele presented smaller hippocampal volumes compared 

to HCs (Cao et al., 2016), whereas in carriers of the Met allele had smaller hippocampus 

regardless of diagnostic group (i.e., BD or HC) (Chepenik et al., 2009). Zeni et al. 
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(2016) studied a sample of pediatric patients with BD, and found that the Met allele of 

the BDNF gene had no influence on hippocampal volumes. A potential explanation for 

this finding is that this SNP could influence hippocampal volume over time as 

suggested by a previous study (McIntosh et al., 2007). A previous meta-analysis found 

that neuropsychiatric patients with either the Val/Val genotype or Met-carriers had 

significantly smaller hippocampal volumes compared to HCs with the same genotypes 

(Harrisberger et al., 2015). Therefore, it is possible that the Met risk allele could 

mediate within group differences in BD samples, but not differences between 

participants with BD and HCs.  

A recent meta-analysis suggests that the BDNF Val66Met SNP is not associated 

with BD (Gonzalez-Castro et al., 2015), although this association could be significant in 

European populations (Li et al., 2016).  This highlights that the effects of the Met allele 

of the BDNF gene could be more readily demonstrated at the neuroimaging or 

neuropsychological level than at the diagnostic level. Hence, several studies suggest that 

individuals with BD carrying the Met allele could have worse cognitive function in 

several domains including memory (Cao et al., 2016; Rybakowski et al., 2003; 

Rybakowski et al., 2006; Tramontina et al., 2009), although this association has not 

been unanimously demonstrated across studies (Rolstad et al., 2016; Rosa et al., 2014). 

These discrepancies may be related to the influence of concomitant medication (Grande 

et al., 2014). Furthermore, the involvement of BDNF in the pathophysiology of BD is 

supported by a recent meta-analysis which found that peripheral levels of this protein 

could be a biomarker of illness activity (Fernandes et al., 2015). Finally, preclinical 

evidence points to a role for BDNF in BD (de Souza Gomes et al., 2015; Macedo et al., 

2012). 

4.4. The 5-HTTLPR gene 



25 

 

A functional polymorphism (5-HTTLPR) in the promoter of serotonin transporter gene 

(SLC6A4) has been described in 1996 (Lesch et al., 1996). Since then, the impact of this 

polymorphism in a range of mental disorders and intermediate phenotypes have been a 

focus of  substantial research efforts [see Jonassen and Landro (2014) for a review]. In 

addition, evidence suggests that methylation of the serotonin transporter gene may 

provide an epigenetic marker of exposure to life adversities (Provenzi et al., 2016). 

Notwithstanding the 5-HTTLPR polymorphism does not seem to affect the methylation 

status of the SLC6A4 gene, preliminary evidence suggests a possible interaction of 

methylation status and the short (S) allele in the development of stress-related mood 

disorders (Olsson et al., 2010). 

Benedetti et al. (2014) observed that the S allele of the 5-HTTLPR mediated the 

effect of early life stress on gray matter volumes in the right prefrontal cortex in a 

sample with BD. Furthermore, the S allele was also associated with higher right 

amygdala volumes in both patients with BD and HCs. Notwithstanding a previous 

meta-analysis suggests that the S allele could lead to amygdala hyperactivation in 

emotional paradigms (Murphy et al., 2013), our systematic review did not find a study 

to replicate this finding in BD. Nevertheless, one study found that S carriers had lower 

ventral anterior cingulate cortex activation compared to L/L participants during 

processing of happy and fear faces; this effect was evident in both the HC and BD 

groups (Shah et al., 2009). Clearly effects of the ‘S’ 5-HTTLPR on intermediate 

phenotypes in BD deserve further investigation. 

4.5. The NRG1 gene 

Evidence indicates that neuregulin 1 and its cognate receptor ErB4 play significant roles 

in the regulation of synaptic transmission, myelin formation, and neuronal and glial cell 

survival (Mei and Nave, 2014). Although variations in NRG1 gene were initially 
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associated with schizophrenia [see Mostaid et al. (2016) for a review], subsequent 

studies pointed to a possible association with BD (Cao et al., 2014; Georgieva et al., 

2008; Green et al., 2005; Gutierrez-Fernandez et al., 2014), notwithstanding this 

findings has not been supported thus far by GWAS (Goes, 2016). In keeping with this 

view, a study found aberrant cleavage of the neuregulin 1 in the post mortem 

hippocampus of individuals with BD (Marballi et al., 2012). We found evidence that a 

risk NRG1 SNP (SNP8NRG221533) and its HAPICE haplotype was associated with 

greater white matter in the fornix, cingulum, para-hippocampal gyrus, and the corpus 

callosum (Cannon et al., 2012). In addition, a functional neuroimaging study found that 

individuals with BD carrying the high-risk SNP (rs35753505) of the NRG1 gene 

displayed hyperactivation of the right posterior orbitofrontal cortex compared to non-

carriers (Mechelli et al., 2012). Clearly the impact of high-risk variants of the NRG1 

gene on structural and functional brain abnormalities in individuals with BD require 

further study. 

4.8. Limitations 

The findings of this systematic review should be interpreted within its limitations. First, 

the methodological quality of included studies varied. For example, the mood state of 

participants with BD varied across studies. In addition, some studies did not include a 

HC group, while few studies did not control results for multiple comparisons. Second, 

several confounding variables should be considered (e.g., differences in length of 

illness, number of previous affective episodes, and exposure to mood stabilizing 

medications). For example, it has been suggested that hippocampal volumes in BD may 

vary as a function of the number of affective episodes in a subset of patients with 

neuroprogressive forms of the illness (Cao et al., 2017; Lim et al., 2013). Furthermore, 

the large majority of studies included in this systematic review enrolled adult samples. 
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For example, a meta-analysis indicates that hyperactivation of the amygdala across 

emotional face recognition fMRI studies is more evident in BD-youths than among BD-

adults (Wegbreit et al., 2014). Third, although our findings indicate that the effects of 

genetic variants in the risk of BD may be more readily reflected as at the brain 

structure/function level than in the disease per se, this notion has been challenged by 

some experts. For example, Flint and Munafo (2007) provides meta-analytic evidence 

that the effect sizes of illness-related genetic variants on intermediate phenotypes may 

not necessarily be larger than the ones observed for the illness phenotype. Fourth, we 

included structural and functional MRI studies, but not other imaging tools (e.g., 

positron emission tomography). Fifth, although we found promising replicated findings, 

several significant associations deserve replication. For example, converging evidence 

from both preclinical and GWAS studies have implicated ANK3 as a putative risk gene 

for BD, while recent gene imaging studies offered promising initial results (Lippard et 

al., 2016).  In addition, the reproducibility of this field deserves careful examination 

(Carter et al., 2016). Sixth, the use of pre-defined ROI-based analyses could bias some 

of the converging findings of this review. For example, the study by Chepenik et al. 

(2009) in which the Met allele of the BDNF Val66Met polymorphism was associated 

with bilateral hippocampi reduction in individuals with BD restricted their analyses to 

this brain structure. 

4.9. Implications 

This systematic review open several research implications. It has been increasingly 

recognized that neurobiological abnormalities span conventional diagnostic categories 

in psychiatry. This fact motivated the NIMH to launch the Research Domain Criteria 

(RDoC) initiative (Cuthbert and Insel, 2013), with an attempt to provide a 

complimentary research classification system for mental disorders built upon 
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dimensions of neurobiology and observable behavior, and moving towards precision 

psychiatry (Fernandes et al., 2017; Vieta, 2015). Consistent with this assumption 

several genetic risk variants seem to overlap across major mental disorders (Gatt et al., 

2015). Furthermore, a recent study investigated a large panel of brain-based biomarkers 

and included participants across the psychotic spectrum (schizophrenia, schizoaffective 

disorder, and BD), and found three distinct psychotic biotypes that did not respect 

diagnostic categories (Clementz et al., 2016). Consistently, the only replicated finding 

observed in this review is also apparent in similar studies involving schizophrenia 

samples. For example, the Val66Met BDNF polymorphism has also been associated 

with reduced hippocampi volume in schizophrenia (Notaras et al., 2015b), while a 

recent systematic review found that several putative risk genes for both BD and 

schizophrenia may influence brain structure and function in healthy control samples 

(Gurung and Prata, 2015).  Therefore, future efforts to replicate the findings of this 

systematic review could include participants with different diagnostic categories, and a 

better control of potential confounding variables (e.g. concomitant medication and 

substance use. In addition, the a priori publication of research protocols in the field of 

‘imaging genetics’ could improve its reproducibility and reduce the risk of selective 

outcome reporting (Carter et al., 2016). 

5. Conclusion 

This review synthesis indicates that the ‘gene-imaging’ research paradigm may aid in 

the identification of intermediate phenotypes, and therefore could provide more 

consistent biological mechanistic insights for BD. Variants in the CACNA1C, ANK3, 

and BDNF genes yielded the most consistent findings thus far, by applying 

neuroimaging paradigms to GWAS-emerging candidate genes. Future research efforts 

should include samples with different diagnostic categories, and the development of 
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collaborative consortia with a priori published protocols could enhance the impact of 

future efforts. However, highly robust findings are unlikely if the only source of 

candidate genes are GWAS and gene polymorphisms, and neuroimaging studies are 

particularly difficult in bipolar patients because of the influence of complex medication 

regimes. 
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Figure legends 

 

Figure 1. PRISMA flowchart of the study selection process. 
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Figure 2. Figure 2. Brain map representing the approximate locations of replicated gene-

neuroimaging findings in BD patients compared to healthy control groups. VBM studies (k=2) 

found decreased volumes of the left and right hippocampi in carriers of the Met allele of the BDNF 

Val66Met polymorphism (yellow). 
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Table 1. Studies investigating the association of genetic polymorphisms and brain structure in BD using voxel based morphometry (VBM) in 

magnetic resonance imaging (MRI). 

Author Gene Subjects, n Genetic Polymorphisms, n 

Gender, 

female, n 

(%) 

Age, years, 

mean ± SD 
Methods 

Statistically 

significant 

difference?* 

Main findings 

Cao et al. 

(2016) 

BDNF BD, 48 

HC, 60 

Met carriers, 13 

Met carriers, 19 

32 (66.6) 

39 (65.0) 

41.0 ± 12.6 

40.5 ± 12.9 

MRI 1.5T 

VBM 

ROIs: Hippocampal  

cortical/subcortical 

volume 

Yes BD patients carrying the BDNF met allele had 

smaller hippocampal volumes compared to 

HCs. 

Zeni et al. 

(2016) 

BDNF 

rs6265 

BD, 29 

 

HC, 22 

Val/Val, 19 

Met carriers, 10 

Val/Val, 12 

Met carriers, 10 

 

11 (57.8) 

3 (30.0) 

3 (25.0) 

5 (50.0) 

14.8 ± 2.2 

11.8 ± 2.5 

12.7 ± 2.6 

13.4 ± 3.4 

MRI  

VBM  

ROI: Hippocampal 

cortical volume 

No† No significant differences between BD patients 
and HCs in left or right hippocampal volumes. 

Chepenik et 

al. (2009) 

BDNF BD, 20 

 

 

HC, 18 

Val/Val, 12 

Val/Met, 7 

Met/Met, 1 

Val/Val, 12 

Val/Met, 8  

11 (55.0) 

 

 

12 (66.6) 

21-56*** 

 

 

18-58*** 

MRI 1.5T 

VBM  

ROI: Hippocampal 
cortical volume 

Yes Both hippocampal volumes were significantly 

smaller in participants with BD compared to 

HCs, and the BDNF met allele was associated 

with smaller hippocampal volumes in both 
diagnostic groups. 

Mirakhur et 

al. (2009) 

BDNF BD, 18 

HC, 18 

One or more Met alleles, 6  

One or more Met alleles, 4 

10 (55.5) 

9 (50.0) 

38.4 ± 8.4 

36.7 ± 13.2 

MRI 1.5T 

VBM  

Cortical volume, 
gyrification index 

Yes Individuals with BD carrying one or more 

BDNF met alleles showed greater losses in GI, 

an effect that correlated with GM loss in the 
left hemisphere 

Matsuo et al. 

(2009) 

BDNF BD, 42 

 

HC, 42 

Val/Val, 24 

Val/Met, 18 

Val/Val, 29 

Val/Met, 13 

19 (79.1) 

14 (77.8) 

19 (65.5) 

8 (61.5) 

36.1 ± 9.3 

35.2 ± 9.7 

35.4 ± 10.5 

34.2 ± 10.4 

MRI 1.5T 

VBM  

ROIs: dlPFC, ACG, and 

hippocampus GM 
volumes 

Yes Anterior CG GM volumes significantly smaller 
in Val/Met BD compared to Val/Val BD  

Smaller left dlPFC GM volumes in Val/Met 

compared to Val/Val subjects within BD and 
HC groups. 

Benedetti et 

al. (2014) 

5-HTTLPR BD, 136 L/L, 45 

L/S, 68 

S/S, 23 

32 (71.1) 

42 (61.7) 

19 (82.6) 

45.9 ± 10.9 

46.1 ± 12.2 

48.5 ± 13.6 

MRI 3.0T 

VBM  

ROI: Hippocampal GM 

No Exposure to early stress correlated with GM 

volumes in the right prefrontal cortex 
(Brodmann area 46) in S carriers only. 

Scherk et al. 

(2009b) 

5-HTTLPR BD, 37 

 

L/L, 8 

S carriers, 29 

4 (50.0) 

15 (51.7) 

39.8 ± 14.1 

45.1 ± 11.8 

MRI 1.5T 

VBM  

Yes S carriers showed a relatively increased volume 

of the right amygdala compared to homozygous 
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HC, 37 L/L, 18 

S carriers, 19 

15 (83.3) 

7 (36.8) 

39.6 ± 15.1 

42.3 ± 10.8 

ROI: Amygdala GM 
volume 

L-allele carriers irrespective of diagnostic 
status.  

Wolf et al. 

(2014) 

CACNA1C BD, 28 

 

HC, 16 

A/A+A/G, 16 

G/G, 12 

A/A+A/G, 8 

G/G, 8 

(rs1006737) 

6 (37.5) 

7 (58.3) 

4 (50.0) 

6 (75.0) 

43.9 ± 13.0 

 

33.7 ± 13.4 

MRI 1.5T 

VBM  

ROI: Amygdala GM 
volume 

No† The authors found that the amygdala volume 

was influenced by CACNA1C genotype in BD 
but did not reach statistical significance. 

Soeiro-de-

Souza et al. 

(2012) 

CACNA1C BD, 39 

 

 

HC, 40 

Met/Met, 4 

Val/Met, 20 

Val/Val, 15 

Met/Met, 3 

Val/Met, 15 

Val/Val, 22 

24 (61.5) 

 

 

20 (50.0) 

32.9 ± 10.9 

 

 

25.9 ± 5.8 

MRI 3.0T 

VBM  

ROI: Amygdala and 

hippocampal GM 

volumes 

No† The CACNA1C genotype had no significant 

influence on amygdala or hippocampus 

volumes in either groups. 

Perrier et al. 

(2011b) 

CACNA1C 

Rs1006737 

BD, 41 

 

HC, 50 

A/A+A/G, 24 

G/G, 17 

A/A+A/G, 22 

G/G, 28 

10 (41.6) 

11 (64.7) 

7 (31.8) 

16 (57.1) 

44.4 ± 12.3 

44.1 ± 11.5 

35.6 ± 12.7 

34.4 ± 13.7 

MRI 1.5T 

VBM  

ROI: Basal ganglia, 

hypothalamus and 
amygdala GM volumes 

Yes BD patients carrying the risk allele had smaller 
left putamen than healthy controls. 

Benedetti et 

al. (2015b) 

GSK-3β BD, 150 A/A, 62 

A/G, 68 

G/G, 20 

40 (64.5) 

14 (20.5) 

14 (70.0) 

46.2 ± 11.5 

44.9 ± 11.6 

46.9 ± 10.8 

MRI 3.0T 

VBM  

Whole-brain GM volume 

No GSK-3β rs334558*G carriers and the long-term 

administration of lithium were synergistically 

associated with increased GM volumes in the 

right frontal lobe, including the boundaries of 
subgenual and OFC.  

Poletti et al. 

(2014) 

EAAT2 BD, 86 G/G, 14 

G/T, 43 

T/T, 29 

56 (65.1) 46.4 ± 12.7 

45.3 ± 11.0 

45.0 ± 12.6 

MRI 3.0T 

VBM  

ROI: Hippocampal GM 
volume 

No The effect of SLC1A2–181A > C revealed 

itself only among patients exposed to lower 

levels of ACE, with T/T homozygotes showing 

the lowest and G/G the highest hippocampal 
GM volume. 

Kittel-

Schneider et 

al. (2015) 

DGKH BD, 30 

 

HC, 18 

No GAT, 15 

>= 1 GAT, 15 

No GAT, 13 

>= 1 GAT, 5 

9 (60.0) 

6 (40.0) 

10 (76.9) 

2 (40.0) 

42.1 ± 12.4 

45.8 ± 12.4 

31.0 ± 11.3 

39.4 ± 15.5 

MRI 1.5T 

VBM  

ROI: Amygdala GM 
volume 

Yes There was a significant association of the 

DGKH risk haplotype with increased left 

amygdala volume in BD, but not in HCs. 

Cannon et al. 

(2012) 

NRG1 

 

HAP 

BD, 33 

 

 

T/T, 9 

C carriers, 18 

Arh1, 8 

6 (67.0) 

11 (61.0) 

5 (63.0) 

37.0 ± 11.0 

42.0 ± 11.0 

44.0 ± 11.0 

MRI 1.5T 

VBM  

Whole-brain WM volume 

Yes The NRG1 SNP and the HAPICE haplotype 

were associated with abnormal WM volume in 

the BD group in the fornix, cingulum and PHG 
circuit 
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CNP 

 

MOG 

 

NRG1 

 

HAP 

 

CNP 

 

MOG 

 

 

 

 

 

HC, 39 

Arh0, 23 

G/G, 16 

A carriers, 14 

G/G, 19 

C carriers, 11 

T/T, 10 

C carriers, 27 

Arh1, 11 

Arh0, 26 

G/G, 21 

A carriers, 16 

G/G, 21 

C carriers, 15 

 

14 (61.0) 

10 (63.0) 

9 (64.0) 

13 (68.0) 

6 (55.0) 

8 (80.0) 

11 (41.0) 

4 (34.0) 

15 (58.0) 

9 (43.0) 

8 (50.0) 

10 (48.0) 

7 (47.0) 

41.0 ± 12.0 

40.0 ± 12.0 

41.0 ± 12.0 

41.0 ± 12.0 

40.0 ± 10.0 

44.0 ± 15.0 

40.0 ± 15.0 

36.0 ± 13.0 

43.0 ± 16.0 

39.0 ± 14.0 

45.0 ± 17.0 

45.0 ± 12.0 

34.0 ± 16.0 

NRG1 (SNP8NRG221533): C carriers > T/T in 
CG/PHG, splenium and anterior CC 

HAPICE haplotype: Arh0 < Arh1 in Fornix, 
caudate, posterior CG 

MOG (rs2857766): HC G/G > C carriers in 
CST, MCP, ICP 

Papiol et al. 

(2008) 

IL-1β BD, 20 

 

HC, 45 

Non carriers, 8 

Allele*2 carriers, 20 

Not reported  

10 (50.0) 

 

21 (46.6) 

43.4 ± 11.7 

 

29.4 ± 9.0 

MRI 1.5T 

VBM  

Whole-brain WM and 
GM volumes; 

ROIs: dlPFC GM, STG 

GM, hippocampus GM 
and LV 

Yes A -511C/T polymorphism (rs16944) of IL-1β 

gene was associated with whole-brain and left 
dlPFC GM deficits in BD patients. 

Tesli et al. 

(2013) 

ANK3 

CACNA1C 

ODZ4 

SYNE1 

BD, 121 

HC, 219 

ANK3 (rs9804190, 

rs10994336 rs10994397 

rs1938526)** 

CACNA1C (rs1006737, 

rs4765913)** 

ODZ4 (rs12576775, 

rs2175420)** 
SYNE1 (rs9371601)** 

71 (58.6) 

102 (46.5) 

 

35.8 ± 11.5 

35.9 ± 9.7 

MRI 1.5T 

VBM  

Whole-brain GM volume 

No There were no significant associations between 

risk SNPs and structural brain alterations in 
BD. 

Zuliani et al. 

(2009) 

DAOA BD, 38 

 

 

 

 

 

M23 CC, 10 

M23 CT, 16 

M23 TT, 12 

M24 AA, 10 

M24 AT, 18 

M24 TT, 9 

7 (70.0) 

7 (43.7) 

5 (41.6) 

7 (70.0) 

7 (38.8) 

4 (44.4) 

38.9 ± 11.0 

41.1 ± 11.4 

37.5 ± 7.7 

41.7 ± 10.9 

40.5 ± 11.1 

37.1 ± 7.8 

MRI 1.5T 

VBM  

Whole-brain; 

ROIs: temporal lobe and 

amygdala-hippocampal 
complex GM volumes 

Yes Both M23 and M24 were associated with 

reductions of GM density within left TP 

(CC<CT<TT) in the BD group.  M23 was also 

associated with reductions in right amygdala 
GM density. 
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* Risk between BD carriers of the risk allele and healthy controls or BD non-carriers of the risk allele. Significant interactions considering only clinical symptoms 

scores or medication use were not considered. 
** Frequencies or N not reported 
*** Mean and SD not reported 

† Small sample size was considered a limitation in the original report  

†† Limitations were not reported 

HC, 81 M23 CC, 25 

M23 CT, 38 

M23 TT, 18 

M24 AA, 26 

M24 AT, 38 

M24 TT, 17 

12 (48.0) 

17 (44.7) 

10 (55.5) 

13 (50.0) 

16 (42.1) 

10 (58.8) 

34.4 ± 10.3 

35.0 ± 11.6 

32.6 ± 8.5 

34.5 ± 10.4 

35.0 ± 11.6 

33.3 ± 8.8 

Bergmann et 

al. (2013) 

ZNF804A BD, 85 

 

HC, 152 

rs13393271, 81 

rs359878, 85 

rs13393271, 148 

rs359878, 151 

43 (53.0) 

 

73 (48.0) 

36.1 ± 11.0 

 

35.9 ± 9.6 

MRI 1.5 T 

VBM 

Whole-brain cortical 

thickness 

No†† There were no associations between any of the 

SNPs and cortical thickness measures in HC or 
BD groups. 

Oertel-

Knochel et 

al. (2015) 

7 risk SZ 

SNPs from a 
GWAS  

 

BD, 20 

HC, 38 

MIR137 (rs1625579) 

CCDC68 (rs12966547) 

CNNM2 (rs7914558) 

NT5C2 (rs111915801) 

MMP16 (rs7004633) 

CSMD1 (rs10503253) 
PCGEM1 (rs17662626)**  

11 (55.0) 

20 (52.6) 

39.0 ± 12.1 

37.1 ± 11.1 

MRI 3.0 T 

VBM  

Whole-brain WM volume 

No Increased additive genetic risk for SZ was 

associated with reduced white matter volume in 

a group of participants consisting of healthy 

individuals, SZ first-degree relatives, SZ 

patients and BD patients, but not in diagnostic 

groups separately. 

Bakken et al. 

(2011) 

GWAS BD, 97 

HC, 181 

None 53 (55.0) 

87 (48.0) 

35.7 ± 11.1 

35.9 ± 9.5 

MRI 1.5T 

VBM  

Whole-brain cortical 
thickness 

No No SNP associations were genome-wide 
significant in the BD group. 
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Table 2. Studies investigating the association of genetic polymorphisms and brain structure in BD using diffusion tensor imaging (DTI) in 

magnetic resonance imaging (MRI). 

Author Gene Subjects, n Genetic Polymorphisms, n 

Gender, 

female, n 

(%) 

Age, years, 

mean ± SD 
Methods 

Statistically 

significant 

difference?* 

Main findings 

Diffusion Tensor Imaging (DTI) and VBM 

Ota et al. 

(2016) 

ANK3 

rs10761482 

BD, 43 

 

HC, 229 

C/C, 24 

T carriers, 19 

C/C, 133 

T carriers, 96 

8 (33.3) 

13 (68.4) 

94 (70.6) 

74 (77.0) 

40.8 ± 9.9 

35.9 ± 7.9 

45.8 ± 15.8 

45.3 ± 15.6 

MRI 1.5T 

DTI/VBM  

Whole-brain GM volume 
and WM FA 

Yes (DTI) Decreased FA was found in the forceps minor 

in non-T-allele BD patients compared with the 

T-carrier BD group. 

No main effect of genetic variations were 

found on the GM volume and the genotype-
by-diagnosis interaction. 

Lippard et 

al. (2016) 

ANK3 

rs9804190 

BD, 90 

 

HC, 97 

C/C, 52 

T carriers, 38 

C/C, 56 

T carriers, 41 

35 (67.0) 

26 (68.0) 

28 (50.0) 

23 (53.0) 

27.5 ± 12.2 

26.5 ± 11.1 

23.9 ± 9.0 

28.6 ± 12.9 

MRI 3.0 T 

DTI/VBM  

Whole-brain analysis 

ROIs: amygdala and OFC 

GM; whole-brain and UF 
FA 

Yes (DTI) BD subjects carrying the T (risk) allele 

showed decreased FA compared with other 

subgroups, independent of age within the UF. 

Compared with BD CC homozygotes, BD T-

carriers had lower FA in the UF and anterior 

CG bilaterally, in dorsomedial frontal WM, in 

left temporoparietal WM and in posterior 
dorsomedial WM, among others. 

DTI         

Benedetti et 

al. (2015a) 

5-HTTLPR 140, BD L/L, 47 

S carriers, 93 

32 (68.0) 

36 (38.7) 

46.4 ± 20.7 

30.3 ± 10.2 

MRI 3.0T 

DTI  

Whole-brain analysis 

Yes S carriers showed significantly increased 

radial and mean diffusivity in several brain 

WM tracts (right posterior CG, left anterior 
CG, CCb, CCg and right posterior CR) 

Benedetti et 

al. (2013) 

GSK-3β 70, BD T/T, 26 

C carriers, 44 

19 (73.0) 

31 (70.0) 

45.7 ± 11.8 

45.7 ± 11.4 

MRI 3.0T 

DTI  

Whole-brain analysis 

Yes The rs334558*C carriers and the long-term 

use of lithium were associated with increased 

axial diffusivity in several WM fiber tracts 

(CC, FM, anterior CG and posterior CG 

bilaterally, including its hippocampal part, left 

superior and inferior LF, left inferior FOF, left 

posterior TR, bilateral superior and posterior 

CR, and bilateral CST). 

Kuswanto et 

al. (2013) 

GRIN2B BD, 14 

 

 

G/G, 1 

G/T, 2 

T/T, 11 

4 (18.1) 

 

 

36.9 ± 12.2 

 

 

MRI 3.0T 

DTI  

Whole-brain analysis 

Yes Compared to G allele, brain FA values were 

significantly lower in BD patients carrying the 

T allele in bilateral frontal regions, left parietal 

region, left occipital region, right occipital 
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* Risk between BD carriers of the risk allele and healthy controls or BD non-carriers of the risk allele. Significant interactions considering only clinical symptoms 

scores or medication use were not considered. 

† Sample size was not mentioned as a limitation in the original report. 

  

HC, 22 G/G, 3 

G/T, 5 

T/T, 14 

11 (50.0) 32.7 ± 12.3 

 

region and left CG. 

Mallas et al. 

(2016a) 

CACNA1C 

rs1006737 

BD, 43 

 

 

HC, 124 

A/A, 15 

A/G, 15 

G/G 13 

A/A, 17 

A/G, 51 

G/G, 56 

25 (58.1) 

 

 

57 (46.0) 

41.1 ± 12.3 

 

 

35.8 ± 13.4 

MRI 1.5T 

DTI  

Whole-brain analysis 

No† There was no significant main effect of the 

CACNA1C genotype on FA. In BD patients, 

the ZNF804A rs1344706 risk genotype 

increased the magnitude of the effect of the 

CACNA1C risk genotype, but the association 

was no longer significant after controlling for 

age. 

Mallas et al. 

(2016b) 

ZNF804A 

rs1344706 

BD, 43 

 

 

HC, 124 

A/A, 19 

A/C, 16 

C/C, 8 

A/A, 59 

A/C, 51 

C/C, 14 

25 (58.1) 

 

 

57 (46.0) 

41.0 ± 12.3 

 

 

35.7 ± 13.4 

MRI 1.5T 

DTI  

Whole-brain analysis 

No No areas with a significant diagnosis by 

genotype interaction were found. 

 

Poletti et al. 

(2016) 

SREBF1 

rs11868035 

 

SREBF2 

rs1052717 

BD, 93 A/A, 10 

A/G, 45 

G/G, 38 

A/A, 27 

A/G, 39 

G/G, 27 

5 (50.0) 

29 (64.4) 

28 (73.7) 

19 (70.4) 

25 (64.1) 

18 (66.7) 

44.8 ± 13.8 

46.1 ± 12.1 

43.8 ± 9.2 

43,8 ± 12.1 

45.7 ± 11.3 

45.3 ± 10.3 

MRI 3.0T 

DTI  

Whole-brain analysis 

Yes No effect on DTI measures of WM integrity 

was observed for SREBF1 polymorphism. The 

SREBF2 rs1052717 polymorphism A/A 

genotype had increased radial diffusivity 

compared to A/G and G/G, and the A/A 

genotype had reduced FA compared to G 

carriers in cingulum, corpus callosum, 

superior and inferior longitudinal fasciculi, 
and anterior thalamic radiation. 
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Table 3. Studies investigating the association of genetic polymorphisms and brain activity in BD using functional magnetic resonance imaging 

(fMRI) during emotional tasks. 

Author Gene Subjects 
Genetic Polymorphism, 

n 

Gender, 

female, n (%) 

Age, years, 

mean ± SD 
Methods 

Statistically 

significant 

difference?* 

Main findings 

Tesli et al. 

(2013) 

CACNA1C BD, 66 

 

HC, 123 

A/A+A/G, 34 

G/G, 32 

A/A+A/G, 71 

G/G, 52 

18 (52.9) 

20 (62.5) 

31 (43.7) 

23 (44.2) 

34.2 ± 10.0 

35.5 ± 11.4 

34.0 ± 7.8 

35.3 ± 10.4  

fMRI 1.5T 

Emotional stimuli 

(negative faces) 

paradigm) 

ROI: Bilateral 
amygdala 

Yes Carriers of the risk allele had increased activation in the 
left amygdala in the BD group.  

Radua et al. 

(2013) 

CACNA1C BD, 20 

HC, 20 

Rs1006737 GG, AG and 
AA 

Letter to the editor, N not 
reported 

8 (40.0) 

10 (50.0) 

43.0 ± 14.0 

42.0 ± 12.0 

fMRI (Tesla not 
reported) 

Fearful faces 

ROIs: MFG, left 

putamen and left 
amygdala  

No†† MTG out-degree connectivity gradually decreased with 

the number of CACNA1C risk alleles (GG<AG<AA) in 
BD and HC groups. 

Jogia et al. 

(2011) 

CACNA1C BD, 41 

 

 

HC, 50 

GG, 17 

AG, 19 

AA, 5 

GG, 28 

AG, 18 

AA, 4 

21 (51.2) 

 

 

23 (46.0) 

44.3 ±11.9 

 

 

34.9 ±13.2 

fMRI 1.5T 

Facial affect 

recognition task 

(fearful vs neutral 
faces) 

ROIs: PFC, ACG, 

amygdala and 

hippocampus 

Yes Independent of diagnostic group, the right amygdala 

showed greater activation during fear-face recognition 

relative to neutral faces in AA/AG compared to GG 

individuals. The right vlPFC expressed reduced 

activation in individuals with the high-risk allele 

compared with those with the low-risk variant in BD 
patients. 

Dima et al. 

(2013) 

CACNA1C 

 

 

 

ANK3 

BD, 41 

 

HC, 46 

 

BD, 41 

 

HC, 46 

A/A+A/G, 17  

G/G, 24  

A/A+A/G, 25  

G/G, 21  

T/T+C/T, 16  

C/C, 25  

T/T+C/T, 14  

C/C, 32  

11 (64.7) 

10 (41.6) 

9 (36.0) 

9 (42.8) 

7 (43.7) 

14 (56.0) 

7 (50.0) 

14 (43.7) 

44.4 ± 12.3 

44.1 ± 11.6 

36.3 ± 10.4 

38.1 ± 13.4 

42.0 ± 10.7 

43.3 ± 2.3 

40.6 ± 12.2 

39.3 ± 12.3 

fMRI 1.5T 

Facial affect 

paradigm 

ROIs: IOG, FG, 

amygdala, vlPFC 

and whole-brain 
analysis 

 

 

Yes BD carriers of either genetic risk variant exhibited 

pronounced reduction in vlPFC activation compared to 
HCs.  

Barzman et 

al. (2014) 

TNF BD, 10 TNF gene expression 

levels, 10 

5 (50.0) 15.0 ± 1.0 fMRI 4.0T 

Posner Task 

Yes Expression of 11 TNF-related genes were significantly 

correlated with activation of amygdala or anterior CG 
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* Comparisons between BD carriers of the risk allele and healthy controls or BD non-carriers of the risk allele. Significant interactions considering only clinical 

symptoms scores or medication use were not considered. 
** Polygenic risk score (PGR) is calculated in each individual by aggregating variation across GWAS loci nominally associated with BD into a quantitative score (Dima 

and Breen, 2015). The study used a PGR based on 16,691 SNPs with p < 0.1. It is presented as mean (SD). 

† Sample size was considered a limitation in the original report 

(Selective 

attention task to 

negative 

emotions) 

Whole-brain 
analysis 

during the affective Posner Task.  

Lelli-Chiesa 

et al. (2011) 

COMT  BD, 40 

 

HC, 50 

Val/Val, 11 

Val/Met+Met/Met, 29 

Val/Val, 15 

Val/Met+Met/Met, 35 

21 (52.5) 

 

24 (48.0) 

 

44.0 ± 11.9 

 

34.9 ± 13.2 

 

fMRI 1.5T 

Sad facial affect 

discrimination 

task 

ROIs: Amygdala 
and ventral PFC 

No†† No significant diagnosis × genotype interaction was 
detected in the BD group. 

Liu et al. 

(2010) 

GWAS BD, 39 

HC, 29 

 

rs2023454 SNP DOK5 

gene 

24 

18 

 

15.0 ± 2.8 

13.0 ± 2.9 

 

fMRI 3.0T 

Face-processing 

paradigm  

ROI: Amygdala 

No† No significant main effect of diagnosis and no 

significant diagnosis × genotype interaction was 

detected. In both the BD and HC samples the  

rs2023454 SNP of the DOK5 gene was significantly 

associated with right amygdala activation under the 

hostility contrast.  

Shah et al. 

(2009) 

5-HTTLPR BD, 30  

 

HC, 48 

 

 

L/L, 10 

S carriers, 20 

L/L, 14 

S carriers, 34 

 

7 (70.0) 

13 (65.0) 

6 (42.8) 

22 (64.7) 

 

36.9 ± 16.9 

29.4 ± 11.0 

26.1 ± 9.3 

29.1 ± 10.3 

 

fMRI 3.0T 

Emotional face 
paradigm 

ROI: Ventral 
ACG 

Yes During fear and happy face processing, ventral ACG 

activation was significantly lower in the BD compared 

to the HC group, and in S carriers compared to L/L 

individuals within both HC and BD groups 

Dima et al. 

(2016) 

Polygenic 

risk score 
(GWAS)** 

BD, 41 

 

HC, 46 

0.37 (0.04) 

 

0.32 (0.06) 

21 (51.2) 

 

21 (45.7) 

44.3 ± 11.9 

 

40.3 ± 13.2 

fMRI 1.5T 

Facial affect 

paradigm; 
2-back task  

Whole-brain 
analysis 

 

No The PGR was associated with task-related changes in 

the BOLD signal in both the BD and HC groups. No 

significant correlation between the PGR score and the 

signal changes observed in BD patients during the facial 

affect paradigm was found (increased activation of ACG 

and decreased activation of the right superior frontal 

gyrus). In the 2-back task, no effect of group was noted 

and no correlation of the PGR score and group was 
observed in the task-related activation. 
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†† Sample size was not mentioned as a limitation in the original report 
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Table 4. Studies investigating the association of genetic polymorphisms and brain activity in BD using functional magnetic resonance imaging 

(fMRI) during verbal and working memory tasks. 

Author Gene Subjects 
Genetic Polymorphism, 

n 

Gender, 

female, n (%) 

Age, years, 

mean ± SD 
Methods 

Statistically 

significant 

difference?* 

Main findings 

Delvecchio et 

al. (2015) 

ANK3 BD, 41 

 

 

 

 

 

HC, 46 

T/T+C/T, 16 

C/C, 25 

(Rs10994336) 

C/C, 21 

T/T+C/T, 20 

(Rs9810490) 

T/T+C/T, 14 

C/C, 32 

(Rs10994336) 

C/C, 28 

T/T+C/T, 18 

(Rs9810490) 

 

7 (43.7) 

14 (56.0) 

 

13 (61.9) 

9 (45.0) 

 

7 (50.0) 

14 (43.7) 

 

14 (50.0) 

8 (44.4) 

 

42.0 ± 10.7 

43.3 ± 12.3 

 

43.5 ± 12.5 

44.8 ± 9.5 

 

40.6 ± 12.2 

39.3 ± 12.3 

 

40.1 ± 13.2 

40.1 ± 11.9 

fMRI 1.5T 

N-back task 

Whole-brain 
analysis 

Yes For the ANK3 rs10994336, the risk T-allele was 

associated with increased activation in the right ACG 

and left PCG in BD patients compared to HCs.  

For the ANK3 rs9804190, the risk C-allele homozygotes 

showed increased activation in right ACG in BD 

patients compared to HCs.  
 

Prata et al. 

(2011) 

DISC1 BD, 35 

 

HC, 53 

 

Ser/Ser, 17 

Cys Carriers, 18 

Ser/Ser, 26 

Cys Carriers, 27 

11 (61.1) 

10 (55.5) 

12 (46.1) 

15 (55.5) 

38.1 ± 13.3 

40.9 ± 11.2 

31.7 ± 11.1 

37.8 ± 9.9 

fMRI 1.5T 

Verbal fluency 
test 

ROIs: Left 

middle/superior 

frontal gyrus and 

whole-brain 
analysis 

No No significant effect of Cys704Ser was detected. 

Chakirova et 

al. (2011) 

DISC1  

 

BD, 36 

 

HC, 34 

T/T, 16 

C/C+C/T, 20 

T/T, 16 

C/C+C/T, 18 

(rs821633) 

14 (38.8) 

 

25 (75.7) 

39.3 ± 10.8 

 

37.3 ± 12.1 

fMRI 1.5T 

Verbal initiation 

and Sentence 

completion tasks 

Whole-brain 
analysis 

Yes Decreased activation in BD carriers of SNP rs821633 in 

the right IPL and left CG compared to non-carriers. 

Mechelli et 

al. (2012) 

DAOA 

(rs746187)  

BD, 33 

 

A/A, 10 

A/G+G/G, 23 

7 (70.0) 

15 (65.2) 

34.6 ± 13.1 

39.2 ± 11.7 

fMRI 

1.5T 

Yes DAOA AA genotype was associated with greater 

deactivation (i.e. repetition > verbal fluency) during task 

performance than the AG/GG genotype in patients with 
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* Comparisons between BD carriers of the risk allele and healthy controls or BD non-carriers of the risk allele. Significant interactions considering only clinical 

symptoms scores or medication use were not considered. 

† Sample size was considered a methodological limitation in the original report. 

†† Sample size was not mentioned as a limitation in the original report.  

 

 

DAAO 

(rs2111902) 

HC, 47 A/A, 22 

A/G+G/G, 25 

T/T, 27 

T/G+G/G, 20 

T/T, 16 

T/G+G/G, 17 

11 (50.0) 

12 (48.0) 

14 (51.8) 

9 (45.0) 

10 (62.5) 

11 (64.7) 

32.9 ± 8.2 

34.8 ± 11.8 

34.5 ± 10.3 

33.2 ± 10.3 

39.1 ± 11.0 

38.5 ± 12.0 

Verbal fluency 
paradigm 

Whole-brain 
analysis 

BD, but not in HC in left precuneus.  There were no 

regions showing a significant diagnosis by DAAO 
genotype interaction.  

Papagni et 

al. (2011) 

DAAO BD, 33 

 

HC, 48 

 

C/C, 19 

C/T+T/T, 14 

C/C, 29 

C/T+T/T, 19 

11 (57.8) 

9 (64.2) 

14 (48.2) 

10 (52.6) 

40.1 ± 12.2 

37.0 ± 11.9 

34.9 ± 10.5 

33.5 ± 10.9 

fMRI 1.5T Verbal 
fluency paradigm 

Whole-brain 
analysis 

No No significant effects of diagnosis or of genotype in 
comparisons involving BD patients. 

Ham et al. 

(2016) 

BclI BD, 26 

 

HC, 32 

G/G, 11 

C carriers, 15 

G/G, 18 

C carriers, 14 

 

11 (100.0) 

10 (66.6) 

12 (66.6) 

10 (71.4) 

29.6 ± 8.5 

33.6 ± 9.0 

34.5 ± 4.7 

32.5 ± 6.0 

fMRI 3.0T 

Reward test 
paradigm 

Whole-brain 
analysis 

No† No significant main effects of genotype, diagnosis or 

reward condition involving BD patients solely. 

Mechelli et 

al. (2008) 

NRG1 BD, 29 

 

HC, 45 

 

 

T/T, 16 

C/T, 13 

T/T, 25 

C/T, 20 

 

12 (75.0) 

8 (61.5) 

12 (48.0) 

12 (60.0) 

 

35.1 ± 12.6 

41.1 ± 9.8 

35.7 ± 9.7 

34.6 ± 12.2 

 

fMRI 1.5T 

Verbal fluency 
task 

Whole-brain 
analysis 

Yes The high-risk variant of NRG1 was associated with 

greater deactivation in the left precuneus in both HC and 

BD. Right posterior OFC expressed increased activation 

in individuals with the high-risk variant in the BD 
group.   
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Table 5. Summary of findings of reported genes and statistically significant differences between BD patients with high-risk genetic polymorphisms 

and healthy controls (HCs). 

Gene Name Function 
Reported 

Polymorphisms 

N of 

studies 

Polymorphism 

with positive 

results 

Method 

Neuroimaging finding 
Functional 

paradigm or 

DTI 

parameter 

used 

Increased Decreased 

CACNA1C L-type calcium 

channel α1C 
subunit  

Voltage-dependent Ca2+ channels 

rapidly increase intracellular Ca2+ 

concentration after depolarization, 

initiating a host of responses, 

including neurotransmitter release and 

changes in gene expression (Gargus, 
2009) 

rs1006737, G to A  4 Rs1006737 (Risk 

allele A) 

VBM  L Putamen (v)  

   Rs1006737 (Risk 
allele A) 

fMRI L Amygdala (f)  Emotional 
face task 

   Rs1006737 (Risk 
allele A) 

fMRI R Amygdala (f) R vlPFC (f) Emotional 
face task 

   Rs1006737 (Risk 
allele A) 

fMRI  R vlPFC/ 
L vlPFC (f) 

Emotional 
face task 

ANK3 Ankyrin 3 Encodes ankyrin 3, a large protein 

involved in coordinated assembly of 

ion transporters and cell adhesion 

molecules at axon initial segments 

and nodes of Ranvier in myelinated 
nerves (Linke et al., 2011) 

rs10994336 

rs9804190 

rs10761482  

4 rs10761482 

(cytosine [C] / 

thymine [T]; (risk 

allele C) 

DTI  R Forceps minor/ 

L Forceps minor  

FA 

    rs9804190 (T 

carriers [risk]) 

DTI  R UF/ 

L UF/ 

R Dorsal ACG/ 

L Dorsal ACG/ 

L Temporoparietal 

region/ 

L Dorsal CG/ 

L Parietooccipital 

region/ 

R Parietal region WM  

FA 

    rs10994336 (risk 

allele T) 

fMRI R ACG/ 

L PCG (f) 

 N-back task 
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    rs9804190, risk 

allele C) 

fMRI R ACG (f)  N-back task 

                                  rs10994336; risk 

allele T 

fMRI  R vlPFC/ 

L vlPFC (f) 

Emotional 

face task  

BDNF Brain-derived 

neurotrophic 
factor 

Small protein of the neurotrophin 

family that regulates various brain 

functions; it has been implicated in 

modulation of hippocampal plasticity 

and hippocampal-dependent memory 
(Lu and Gottschalk, 2000) 

Val66Met (rs6265) 3 Met carriers VBM  R Hippocampus/ 

L Hippocampus  

 

    Met carriers VBM  R Hippocampus/ 

L Hippocampus  

 

    Met carriers VBM  R ACG/L ACG/ 

L dlPFC  

 

5-HTTLPR Serotonin 

transporter 
polymorphism  

Polymorphism in the upstream 

regulatory region of the gene – a 44-

bp deletion/insertion (5-HTTLPR) 

located at the 5'-flanking regulatory 

region of the gene coding for the 

serotonin transporter (SLC6A4) on 

chromosome 17q11.2. In vitro studies 

evidenced that the basal activity of the 

long (l) variant was more than twice 

that of the short (s) form of the 5-

HTTLPR, suggesting that serotonin 

transporter gene transcription is 

modulated by variants of the 5-

HTTLPR with the s allele 

corresponding to low serotonin uptake 
activity (Heils et al., 1996) 

Long (l) and short (s) 

variants (risk) 

3 s carriers VBM R Amygdala (v)   

    s carriers DTI R PCG/ 

L ACG/CCb/CCg/ 

R posterior CR  

 RD and MD 

    s carriers fMRI  R Ventral ACG/ 

L Ventral ACG 

Emotional 

face task  

NRG1 Neuregulin-1  Encodes a family of signaling proteins 

in various tissues of the body with 

NRG1 expression being highest in the 

brain. In the nervous system, NRG1 

proteins have been implicated in 

numerous functions, including 

neuronal migration, synapse 

formation and receptor expression as 

well as myelination by regulating 

SNP8NRG243177 

(rs6994992) 

SNP8NRG221533 
(rs35753505) 

2 SNP8NRG221533 

(rs35753505) C 

carriers (high risk) 

VBM L CG/ 

L PHG/CCs/ACC 
  

    SNP8NRG221533 

(rs35753505) C 

carriers (high risk) 

fMRI R posterior OFC  Verbal 

fluency task 
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oligodendrocyte proliferation and 
differentiation (Winterer et al., 2008) 

G72 D-amino acid 

oxidase 

activator 

G72 has been associated with 

modulation of NMDA receptor 

function and with regulation of 

mitochondrial function and dendritic 
branching (Zuliani et al., 2009) 

SNPs M23C/T and 
M24A/T  

2 M23 and M24 T 

carriers 

VBM  L TP/ 

R Amygdala 
 

  SNP rs746187A/G  SNP rs746187 

A/A 

fMRI  L Precuneus Verbal 

fluency 
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DISC1 Disrupted-in-

schizophrenia 1  

Expressed predominantly within the 

hippocampus and codes for a protein 

with a globular N-terminus domain, a 

coiled C-terminus domain, and 

several coiled-coil domains. The 

functional role of DISC1 is largely 

unknown, but these distinct domains 

allow DISC1 protein to interact with 

both centrosomal and cytoskeletal 

proteins as well as with membrane 

associated and signal transduction 
proteins (Callicott et al., 2005) 

Various risk variants 

(rs1538979, rs821577, 

rs821633, rs821616 

[Ser704Cys], rs6675281 

[Leu607Phe] and 

rs1411771) (Chakirova 
et al., 2011) 

1 rs821633, risk 

allele C 

fMRI  R IPL/ 

L CG 

Verbal 

initiation and 

Sentence 

completion 

tasks 

DGKH Diacylglycerol 

kinase eta 
(DGKη) 

The DGKη enzime plays an important 

role in the inositol triphosphate 

second messenger pathway by 

catalyzing the metabolism of 

diacylglycerol (DAG) to phosphatidic 

acid. DAG is an activator of many 

isoforms of protein kinase C (PKC). 

Therefore, DGKH regulates the 

activity of PKC isoforms which play a 

key role in various signaling pathways 
(Kittel-Schneider et al., 2015) 

Risk haplotypes 

(rs9315885, rs1012053, 

rs1170191, TAC), risk 

haplotype (rs994856/ 

rs9525580/rs9525584 

GAT) and/or risk 

polymorphisms in 

DGKH (rs994856, 

rs9525580, rs9525584, 
rs9315885) 

1 rs994856/ 

rs9525580/rs9525

584 GAT (risk 

haplotype) 

VBM L Amygdala   

HAPICE NRG1 HAPICE 

(deCODE) 

haplotype 

It is a core haplotype of NRG1 

consisting of five SNPs and two 

microsatellites (Cannon et al., 2012) 

Arh0 (no copies of the 

haplotype): no risk Arh1 

(1 or 2 copies of the 
haplotype): risk 

1 Arh1: risk VBM R Fornix/ 

L Caudate/ 

L PCG 

  

IL-1β Interleukin-1 
beta 

Encodes for interleukin-1 beta (IL-

1β), pro-inflammatory cytokine which 

has an important role in the induction 

of the dopaminergic phenotype in 

mesencephalic neuronal precursors as 

well as in the regulation of dendrite 

growth in developing cortical neurons 

(Papiol et al., 2008)  

 --511 AvaI 

polymorphic site 

(rs16944) of IL-1B gene. 

Allele*1 (511C) of IL-

1B gene completes an 

AvaI restriction site, 

while allele*2 (511T) 

gives an intact product 

1 Allele*2 carriers VBM  L dlPFC  

GRIN2B NMDA receptor 

subunit 2B 

Encodes the NR2B subunit of the 

NMDA glutamate receptor. This 

subunit is expressed in the cortical 

and medial temporal parts of the 

brain, striatum, and olfactory bulb 

Risk variant rs890 G/T 1 T allele DTI  R Frontal region/ 

L Frontal region/ 

L Parietal region/ 

L Occipital region/ 

R Occipital region/ 

FA 
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(Kuswanto et al., 2013) L CG 

TNF Tumor necrosis 

factor 

Encodes Tumor necrosis factor-alpha 

(TNFα), a cytokine involved in both 

systemic and neuro-inflammation and 

in the acute phase reaction, and may 

influence neuronal and neurochemical 

processes associated with aggression 

in preclinical and clinical studies 
(Barzman et al., 2014)  

TNF family genes 

expression (Barzman et 
al., 2014) 

1 TNF family genes 

expression levels 

(11) 

fMRI R ACG/ 

L ACG/ 

L amygdala 

 Posner Task 

(Frustrative 

non-reward 

task) 


