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A geometrical treatment of the path integral for gauge theories with first-class constraints linear in the
momenta is performed. The equivalence of reduced, Polyakov, Faddeev-Popov, and Faddeev path-
integral quantization of gauge theories is established. In the process of carrying this out we find a
modified version of the original Faddeev-Popov formula which is derived under much more general con-
ditions than the usual one. Throughout this paper we emphasize the fact that we only make use of the
information contained in the action for the system, and of the natural geometrical structures derived

from it.

PACS number(s): 11.15.—q, 03.70.+k, 04.20.Fy

As is well known, the quantization of Yang-Mills
theories experienced a rapid development thanks mostly
to the introduction of functional-integral techniques
[1-3]. Very soon after they were first used in this con-
text, a tremendous amount of work, which continues to
date, went into generalization and a better understanding
of functional-integral methods for gauge theories, not
only in particle physics, but also in other areas as well.
Nevertheless, despite great progress in such endeavors,
which apparently culminated with the work inspired by
Vilkovisky and co-workers [4-7], there is still debate
over certain questions of principle in this subject. In par-
ticular, the relation between the various pre-Becchi-
Rouet-Stora-Tyvtin (BRST) methods for path-integral
quantization of gauge theories, namely, reduced, Po-
lyakov, Faddeev, and Faddeev-Popov methods is not
completely clear. In a previous paper [8] we studied the
question of the relation between the “first reduce and
then quantize” and Dirac’s type quantization, “first
quantize and then reduce,” within the framework of
operator quantization for constrained Hamiltonian sys-
tems with only primary first-class constraints, linear in
momenta. In this note we will try to elucidate the rela-
tionship between the above-mentioned four different ver-
sions of the path integral for gauge theories of this type,
which include Yang-Mills theories [9]. Our setting here
will be based on results obtained in our paper, Ref. [8], to
which we will refer the reader for more details. The type
of systems of interest to us are characterized by a La-
grangian of the form

L=1G ;00%—Vv, (n
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where G 5 and V are functions of configuration-space
variables QA, A=1,...,N. G, is a singular metric ten-
sor of rank n <N. The constraints are linear in
P,=0L/3Q*=G 505,

¢,=U2P,, a=1,...,k=N—-n, )

where the U 2’s define a basis for the space of null vectors
of G 43,0,=U2(Q)3/3Q 4, which in order to guarantee
the first-class condition also have to be Killing vectors for
GAB .

The fact that the set of null vectors is closed under the
Lie brackets [8] implies that

[0,,051=Cls(0)U @)

?/ b
which indeed shows that the constraints are first class;
i.e., they have the following Poisson brackets with each
other:

{Pwep}=—Clpp, . (5)
Finally, the potential ¥ in Eq. (1) has to satisfy (gauge in-
variance)

4 0V _
a aQ A
These observations clearly spell the symmetries of the
system. The Hamiltonian dynamics are described by

H=1M*3Q)P,Pz+V(Q) . (7

o,v)=u 0. 6)

As shown in [8], M “5(Q) can be chosen to be a non-
singular symmetric matrix function only of Q, satisfying

MG . Gpp=Gp . (®)

Hence, the inverse of M “3(Q) naturally provides the
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configuration space with a well-defined (nonsingular) co-
variant metric tensor. Clearly, the choice of such a
metric tensor satisfying Eq. (8) is highly arbitrary, and at
this point it is not obvious how such arbitrariness could
not be a potentially serious problem later on for the
quantization of the theory (in fact, as we showed in [8], it
is at the root of the inequivalence between Dirac’s type
and the “reduce first and then quantize” methods). More
on this below.

Two comments are now in order. First, these results
were all obtained at the classical level; no quantum
mechanics has been invoked yet. In particular, the Kil-
ling vector condition (3), as shown in [8], comes solely
from the requirement that the Lagrangian (1) describes a
classical first-class system with no secondary constraints.
As will be elaborated upon below, sometimes it is said
that a similar condition has to be imposed on the metric
in the space of trajectories. We will see clearly whether
or not we will need to make such an assumption here.
Second, our previous analysis was done in configuration
and phase spaces. We now need to examine the implica-
tions of our results in trajectory space, a task which we
now turn to.

Consider the space of trajectories, €. In order to study
functional integrals on €, we need to know (a) the gauge
orbit structure and (b) a gauge-invariant measure on it.
At this point we should pause to introduce a very con-
venient notation. Even though the results of our previous
investigations [8] were obtained explicitly in the frame-
work of a quantum-mechanical system, the generalization
to include field theories is immediate once one adopts
DeWitt’s condensed notation: in Q‘, i includes all types
of indices, both discrete (group, particle type, spin, ...)
and continuous (spacetime, ...). Contractions of indices
then imply not only discrete sums, but also integrals. In
this manner, it is then obvious that @ inherits an orbit
structure defined also by Eq. (4) (see Fig. 1). Indeed,
infinitesimally, two points Q and Q +8Q belong to the
same orbit iff [10] (S is the action of the system)

oS i OS

88 =—-8Q'=—U!(Q)8e*=0,(S)8c%=0. (9
50702 " 5p7 Vel @ =0, (5)5e ©)
Explicitly [11]
0a=U;i.
Q'
()
= d™x U2 _—, 10
% fspacetime x e (Q(X " 6Q A(x) 1o

S[Ql=S[Q', Q, Qe Orbit Og,.

FIG. 1. Orbit structure of the space of the trajectories, €:

S[Q1=S[Q'], Q,Q'€ orbit O(Q).
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with the UZ(Q) defined as before in configuration space.
Clearly, these 0 s satisfy the corresponding brackets re-
lationship, analogous to Eq. (4), in trajectory space. No-
tice that the summation over y in Eq. (4) will now con-
tain a space-time integration, and that, in general, the
Clg's will be functions of the QP"s. The orbit structure is
so established. In order to define the measure, we
proceed as follows. On @, we can construct a natural
metric tensor out of M 45. Indeed, for any two small dis-
placements 8Q,,8Q, around the point Q € @ we have

(5Q,|8Q2>Q_ fd'"xd 801! (x)

X 9 5(Q(x),x,)80%

=8019,(0)80} , (11)
where
8,(Q)=M 45(Q)8™(x—y) , (12)
1.e.,
(80,180,)=3 [d™x8Q{(x)M 45(Q(x))8Q%(x) .
" (13)

Then, the natural measure on € is

J 0= [ 1401l detg;(0))'2
= JI [dQ4x)[detM 5(Q(x)]'>, (14)
A

spacetime

where we used the diagonality of §;; in the space-time la-
bels to write Eq. (14). This measure is clearly
reparametrization invariant, i.e., invariant under inverti-
ble mappings Q *—Q’4(Q), and hence in particular it is
invariant under mappings Q 41— Q'“ which preserve the
orbits, that is, diffeomorphisms which map points on a
given orbit into points on the same orbit. This subset of
the group of diffeomorphisms on € defines the gauge
group §. Therefore Eq. (14) defines a gauge-invariant
measure, for which we sought. We are now ready to
write the full path integral over €:

Z=f@[dQ](detMAB)meiS[Q]_ (15)

The path integral Eq. (15) suffers from the usual disease:
due to the constancy of S[Q] along orbits, there is a
redundancy when performing the full integration over C.
One way to cure the problem is to work in reduced tra-
jectory space 2. In our previous paper we performed the
classical reduction of our systems in both the Lagrangian
and Hamiltonian versions. A convenient way to do that
was to introduce “adapted coordinates” in the entire
configuration space ®, in order to describe the “physical”
or “reduced” configuration space M. They are defined as
follows: the labels for the orbits, which will hence de-
scribe JM, are defined by the condition

0.(¢%Q0)=0, a=1,...,n;n=dimM ,
a=1,...,k=N—n .

(16)

This means that the ¢®s are gauge invariant. One adds
to the ¢”s a set of functions ¢*(Q), a=1,...,k=N—n,
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such that det|U,(g?)|#0. These ¢®s parametrize the or-
bits. We then showed [8] that G 45 and M 4% defined ear-
lier become [12] in this “adapted coordinate system,”

gab(qa) 0
Gy p= 0 N 17)
and
b( ,a af
o |18%(g%) m
MAT=1" w e (18)
m mef
where g®=(g,,)”!. Here g,, is a nonsingular metric

which depends only on the physical variables ¢g¢ and
m®, m are completely arbitrary functions of both g°
and ¢¢, with the only requirement that M “'%’ be regular.
As is shown in [8], when we project our geometrical
structures from @ to the physical configuration space
M = /orbits we then get a nonsingular covariant metric
tensor g,,(g?). Clearly, our previous analysis on the tra-
jectory space € can be repeated now on the reduced tra-
jectory space #. The reduced path integral can hence be
readily written as

Zp= fﬁ[dq“] (detg,, ) /2e™Sla"] (19)

The action S[q°] is the one obtained using the Lagrang-
ian (1) with G 4.5 as in Eq. (17) (it contains only physical
variables). Now, consider the Polyakov path integral for
our system:

z,,=f@

where O(Q) is the orbit to which Q belongs, and Vg,
its volume. In adapted coordinates,

J [dQ *1(detM 1) *= [ [dg°][dg ] (detM ;5)' ,
1)

[dQ #]( detM ,5)'?
Vo)

eStel (20)

where
M, My

(22)
Mab MaB

M yp=

is the inverse of M 4" of Eq. (18). Next, [13] we prove
the following crucial factorization property:

detM aB

detM 4. p.= (23)
4B etgab
Proof: Write M 4.5 and M 4%’ as
A B
Myp=|p pl- (24)
o A" B’
MAP= g p (25)

Since they are inverse to each other, a number of identi-
ties are satisfied by their block components. Important to
us are

A'"A+B'B=I and A'B+B'D=0. (26)
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Next, use the identity

A B I B||A—BD 'B 0
BDp|=lop|| DB 1 @D
which implies
detM ,.5.= detD det(4 —BD " 'B) , (28)
with D=M ;. Finally, using Eq. (28) we get
A(A—BD 'B)=A'"A— A" 'BD7'B
=A'A+B'DD'B
=A'A+B'B=I (29)
from which
deth .= -StD__ detM 4

detA’ detg®

Q.E.D. Hence the measure over @ can be written in
adapted coordinates as

[ [dq®1[detg,, (g1 [ [dg][ detM ,5(g° g*)]' > .
(30)

In Eq. (30) we can easily identify the integration over ¢¢
as the volume of the orbit labeled by g° Indeed, for
infinitesimal 8Q’s along the orbit labeled by ¢° (i.e.,
8¢°=0) we have, from Eq. (13),

(80,180,)=3 [d"x8Q%(x)M4805(x). (1)
a,B

And hence, the volume for the orbit is

Voga) = f [dg®]( detM 5"/ . 32)
We see then, that

Zp=Zp . (33)

Another method of displaying the important factoriza-
tion property Eq. (30) will be shown in the Appendix,
which will have a more geometrical flavor.

Next, we will consider the Faddeev-Popov version.
From our previous discussion, it is clear that the reduced
trajectory space 72 can be considered as the quotient of
the full trajectory space @ by the gauge group § (i.e., the
subgroup of the diffeomorphism group of € which
preserves the orbits): =€ /9. This means that we can
always implement 7, at least locally, [14] by means of a
surface embedded in @ which intersects the orbits only
once (see Fig. 2). More precisely, for any Q € € there is a
unique @ € ¢ such that F¥(Q® )=C? with C“ a set of
numbers. Our task is to try to rewrite the path integral
Eq. (19) over R as a path integral over €. Clearly, this
will imply the use of some notion of gauge fixing which
contains the information about the embedding of % in C.
To achieve this we follow the usual insertion of unity in
the reduced path integral in terms of a path integral
along the orbit @(q°). In adapted coordinates

1= [ [dg®)(detM )" /28[FXQ)—CJu[Q] .  (34)
0%
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and hence
e
plQF)]lp—c=(detM 5)r L2 . (36)

FIG. 2. Embedding of the reduced trajectory space R=€/§
into €.

The factor p is inserted in order to assure the proper nor-
malization. Change variables from g% to F% (the
definition of F¢ guarantees that this is always possible, at
least locally),

1= [ [dF°)(detM )" /*8[ F*—C®|u[Q(F)]

=(detM )" ’u[Q(F)]lp—c , (35)

Zp= [ [dg°1[dg°]( detg,,)"/*(detM ,5)'/2(detM ,5) "'/

= [[dQ](detM ,45)'/*[ detM ,5(Q)]171/? | det

a

q

oF#

M is the metric Mz in the coordinates F (recall we
are using DeWitt’s notation):

= -4 37
@ 3F= 9Fp P
from which
B
wQF)lp=c= detgF—a (detM )~ "% . (38)

Inserting unity as in Eq. (34) into the reduced path in-
tegral, with u given by Eq. (38) we obtain

B . a
det% S[F(Q)—C?]e’Sl4a")
g

F=C

S[F*—C%]e™slQ] (39)

F=C

In Eq. (39) we have used the gauge invariance of the action, S[¢g®]=S[Q]. This expression can be related to the usual
one as follows: consider the orbit-preserving diffecomorphism (8q°=0)8g“ as an infinitesimal gauge transformation [see

Eq. (9)]:
8q*=U$(Q)8¢" .
Then
B B
detaFa = et—aFT (detU§)™! ,
3% |r=c 9" ||r=c F=C

so finally we get our version of the Faddeev-Popov result:

Zg=Zgp= [[dQ][ detM 15(Q)]'*[ detM ,5(Q)] ™/ detU§) ™!

= [[dQ][ detM 45(Q)]/%( det® 5) '/
where
®aB: Oa.ﬁl?:U:UgMAB
=ULUIM,, (44)

is the matrix of scalar products of the 0,1,8, which has
been expressed in adapted coordinates (in which U4 =0).
Equation (44) shows that ® g, by virtue of the linear in-
dependence of the 0,’s, and the nondegeneracy of M 4y,

B
detaLA
oc

(40)
41)
B .
det 2 |5 Fa(@)— el s@) @2)
de
S[F%Q)—C*)e’SIC] | (43)
[

is regular. This fact, combined with |UZ|70 (by
definition of the ¢*’s) shows that M, is regular, which is
a necessary consistency condition within our framework,

as can be seen in Eq. (23).

In Eq. (43) we have omitted the instruction F*=C% in
the corresponding determinants since the presence of the
6 function explicitly enforces it. Notice that we differ
from the usual treatment by a factor ( det®,g)~'/? which
in general will be nontrivial. Now we turn to the Hamil-
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tonian, or Faddeev, version of the gauge fixing. As
shown in paper [8], the dynamics of the reduced system is
encoded in the Lagrangian

L=1g,4°"—VI[q°], 45)

which is to be used in Eq. (19). This equation can then be
rewritten in the Hamiltonian form (using the standard re-
sult for Gaussian path integrals)

Zp= [ 1dg“]idp,1e" "7, (46)
where

I{q%p, 1= [d™x[4°%,—h(q"p,)] 47)
and

h=1g%p,p,+ V(g% . 48)

We have reverted temporarily to the explicit notation in
Egs. (47) and (48) for the sake of clarity. Now, in order
to go to integrations over all phase-space variables
Q4,P,, in Eq. (46), let us introduce the corresponding
representations for unity:

1= [ [dg®18[F*—C“]Ap 49)
and
1= [[dp, 18[@a]A,, , (50)

where, clearly

Ap= detgsﬂ . (51)
and
A,=|detUf]| . (52)
Then, since
\det[Fa,wg}‘z det 25:% .
- detgf;: |det| (53)
we obtain
Zr=Zyp
= [[dQ *1[dP ;]| det{F*, )]
X 8[@,J8[F*—C*]e[&-F] (54)
with
11Q,P]= [d™x[Q*P,—H(Q,P)], (55)
where
H(Q,P)=1M*BP Py +V(Q) . (56)

In order to arrive at Eq. (54) we have used the following
facts: (i) the form of the constraints ¢, in adapted coor-
dinates, @,=Ufp, (e, o=0); (i) H(Q,P)|¢,=0
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=[LM*EP Py +V(Q)ll,—o=h(g%p?). Notice that
our expression Eq. (54) coincides, as expected, with
Faddeev’s formula [15]. Finally, as a check of consisten-
cy, we should be able to integrate out the momenta in
formula (54) and reobtain our Faddeev-Popov formula
Eq. (43). First, our previous comment obviously shows
that in Eq. (54) we can use the expression for H(Q,P) in
terms of the reduced variables (q%p,), i.e.,
H—h=¢%,—h(q,p). Next, since the U?’s only depend
on the Q’s, the p , integration is readily performed:

[ 1dp,18lp,)=1detUB| ", (57)

which cancels a similar factor in Eq. (53), leaving only
| det(3F*/9¢”P)| which is a function of the Qs only. We
then integrate out the p,’s:

[ ldp,1e™ " = (detg,, ) %Sl
with S[g°] defined as in Eq. (19). We then obtain

aF“

a__pay,iS[g?]
507 S[F*—C]e’Sl4°) . (58)

[ 1dg°1(dq®]( detg,,)'?

Finally, using the factorization Eq. (23) and the gauge in-
variance of the action, S[q?]=S[Q], we get

a
detaL

an

X8[F*—Cesle],

J1dQ41(detM ,5)'/2(detM ,5) '/

which is nothing but Eq. (39), from which our Faddeev-
Popov formula (43) follows immediately. This concludes
the body of results of this paper, which can be summa-
rized as follows

(a) The reduced path integral Eq. (19) coincides with
the Polyakov path integral, Eq. (20).

(b) We have obtained a new Faddeev-Popov formula,
Eq. (43), which is guaranteed to coincide with the re-
duced path integral.

(c) The usual Faddeev formula [15], Eq. (54) is ob-
tained. The consistency of our approach is then demon-
strated, when we integrate out the momenta from Eq.
(54) and get back our Faddeev-Popov formula, Eq. (43).

We would like to emphasize that our approach is based
entirely on the natural geometrical properties of the tra-
jectory space € for our type of systems. In particular, we
have a prescription to define the invariant measure on €,
Eq. (12), which in turn is defined by Eq. (8). This last
equation is derived directly from the Lagrangian (1), and
nothing else, which is very satisfying. Another nice
feature in our treatment is that, by virtue of the full
equivalence of the different methods with the reduced
path integral, the original ambiguity in the selection of
M “2 plays no role.

At this point it is also clear that there is no need for ex-
tra a priori conditions on the metric $;; on €. This is in
contrast with the usual approaches, in which it is
demanded that [16] (a) the gauge group on € is cut down
to a Lie subgroup, which is characterized by structure
constants, and (b) §;; be a Killing metric for the genera-
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tors of this Lie subgroup. We have seen that our genera-
tors U «» Eq. (10), close with structure functions, which is
enough to define the gauge orbits on . Moreover, this
degree of generality in our treatment is reflected in Eq.
(43): the factor ( det®,5)~'/? makes the path integral in-
variant under arbitrary rescaling (including Q-dependent
ones) of the parameter 8¢* which appear in the Faddeev-
Popov determinant.

This can be seen as follows: a change in
der > 88%=[A"1(Q )]‘588[’ is equivalent to a change in U§j
by means of

8q°=Ug(Q)8eP=U5(0)8%" , (59)
i.e.,

Ug(Q)=AKQIUS(Q) . (60)
Then @4 changes as

@5 Oop= U, Upy=ALAZO. 5 (61)
and therefore

=172

SF“
8eP

—-1/2

SF¢
58P

(62)

| det@,5

I det® 5

which shows the announced invariance. The change of
the O .’s under rescaling, Eq. (60), can be recast in terms
of the constraints ¢,: the gauge transformation

801={04,¢,}8e%, (63)
can also be written, since A depends only on Q, as

8Q={Q .38, (64)
where

P=AQ)pp - (65)

Hence an equivalent way of characterizing this rescaling
invariance is to say that our path integrals are invariant
under arbitrary rescaling (including Q-dependent ones) of
the constraints ¢,. This type of invariance plays a very
important role in Kuchaf’s program [17] which he
developed in order to make reduced and his version of
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Dirac’s quantizations coincide. Another important in-
gredient in this approach was invariance under point
transformations in phase space, which in our case is
clearly guaranteed given the way we obtained Faddeev’s
formula. These observations lead us to conjecture that
our path integral formulation for the gauge theories con-
sidered here realizes his program.

Concurrently with and previously to our work other
authors have done work similar to ours. Of particular
relevance to us is the work of Ellicott, Kunstatter, and
Toms [18] and Kunstatter [19]. In the former paper, a
derivation of the Faddeev-Popov formula is performed,
following geometrical methods very close to ours. How-
ever, after inspection of their Egs. (2.14), (3.3), and (3.4),
it is clear that their final formula (3.31) will not reproduce
the reduced path integral, which ours does. One way to
see the difference is to pay attention to our treatment of
the Polyakov method: we divide by the volume of the
gauge orbit, whereas they leave a determinant factor as
can be seen in Eq. (2.14) of their paper. The latter paper
is partly based on the results of the former, and hence we
would still seem to be in disagreement with some of its
conclusions. Clearly a further study is needed to eluci-
date the relationship between the results in these papers
and ours. Finally, it would be interesting to continue our
work along the following lines: (a) the consequences of
our modified Faddeev-Popov formula (if any), (b) the rela-
tionship with BRST methods, and (c) the study of
reparametrization-invariant systems (gravity, strings,
etc.).

One of us (C.R.O.) would like to express his gratitude
to the World Laboratory for its generous support, and to
the Guggenheim Foundation for support during the ini-
tial stages of this work. J.M.P. would like to thank the
Center for Relativity of The University of Texas for its
warm hospitality. He also acknowledges the Ministerio
de Educacién y Ciencia from Spain for a grant. The
research of C.R.O. was supported in part by the Robert
A. Welch Foundation and NSF Grant No. PHY
8605978. J.M.P. was supported in part by NSF Grant
No. PHY 8806567.

[1] B. DeWitt, Phys. Rev. 160, 1113 (1967); 160, 1195 (1967).

[2]L. D. Faddeev and V. N. Popov, Phys. Lett. 25B, 30
(1967).

[3] G. ’t Hooft, Nucl. Phys. B35, 167 (1971).

[4] E. S. Fradkin and G. A. Vilkovisky, Phys. Lett. 55B, 224
(1975).

[5]1. A. Batalin and G. A. Vilkovisky, Phys. Lett. 69B, 309
(1977).

[6] 1. A. Batalin and G. A. Vilkovisky, Phys. Lett. 102B, 27
(1981).

[7] 1. A. Batalin and G. A. Vilkovisky, Phys. Rev. D 28, 2567
(1983).

[8] C. R. Ordétiez and J. M. Pons, Report No. UTTG-20-91,
UTREL-910610 (unpublished).

[9] Rigorously speaking Yang-Mills theory is a theory with
secondary constraints also. Nevertheless, as in the usual
treatments, one can get rid of the pair ( 4§,P§) altogether
from the outset which will render the system as one of
those considered here.

[10] This of course comes from the well-known fact that pri-
mary first-class constraint generate gauge transformations
when there are no secondary class constraints.

[11] Here f d™x denotes the invariant measure in the space-
time for the theory.

[12] From now on primed indices indicate adapted coordi-
nates.

[13] As will be shown below, M .4 is regular.

[14] We are ignoring Gribov ambiguities in this paper.



3712 C. R. ORDONEZ AND J. M. PONS 45

[15] L. Faddeev, Theor. Math. Phys. 1, 1 (1970). [18] P. Ellicot, G. Kunstatter, and D. J. Toms, Mod. Phys.
[16] B. S. DeWitt, in General Relativity, An Einstein Centenary Lett. A 4, 2397 (1989).
Survey, edited by S. W. Hawking and W. Israel (Cam- [19] G. Kunstatter, Report No. LPTHE Orsay 91/17, 1991
bridge University Press, Cambridge, England, 1979). (unpublished).

[17] K. Kuchaf, Phys. Rev. D 34, 3031 (1986); 34, 3044 (1986).



