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It is argued that previous computations of the spin-% anomaly have spurious contributions, as
there is Weyl-invariance breaking already at the classical level. The genuine, gauge-invariant, spin-

% gravitational trace anomaly is computed here.

I. INTRODUCTION AND REVIEW
OF THE SPIN-0, -, AND -1

TRACE ANOMALIES

The aim of this work is the computation of the spin-3
gravitational trace anomaly in four dimensions. We will
consider a vector-spinor spin-2 quantum field, which is
only coupled to an arbitrary classical gravitational field
and is otherwise free. Furthermore, its Lagrangian
should be invariant under local dilatations or Weyl trans-
formations. The integration over the quantum field leads
to an effective action which is a functional of the gravita-
tional field and its derivatives. The exact result is given
by the one-loop contribution. From the effective action
one obtains the vacuum expectation value of the stress-
energy-momentum tensor. It is not zero, but a combina-
tion of local terms which depend exclusively on the
Riemann tensor. This is the gravitational trace anomaly.
The symmetry which is broken by the quantization is
the Weyl symmetry. Thus, the dilatation current is
anomalous. Its divergence is precisely the trace of the
stress(-energy-momentum) tensor.

For spins lower than I the trace anomaly is well
known. We will review it shortly in this introduction.
The next sections will present what is known for spin 3
and our way of approaching the computation. Some
relevant steps of the computation will be presented next.
We wind up with the result and some concluding com-
ments.

Let us consider spin-0, -%, and -1 fields in a gravitation-
al background. Most references concerning these fields
can be found in Birrell and Davies' and we will refer only
to those of more immediate relevance to our work. We
will also follow their notation.

The Lagrangian density of the spin-0 field in a gravita-
tional background is

Lox)=1[—g(x)]"*{g"(x)p(x) ,b(x) ,
—[m?*+ER(x)]4x)} ,

where g(x)=detg,,(x) and R (x) is the scalar curvature.
For the Majorana spin-1 field the Lagrangian density
reads

(1.1)

L13)= 1V () | S (TP, 9 = [V, 500 I p(x)]

1
2

—mP(x)Pix)| , (1.2)

where V(x)zdetV“u(x)E[—g(x)]1/2, Ve,(x) being a
vierbein, and V,, is the covariant derivative acting on a
spinor via a spinorial connection. Finally, for a spin-1
gauge field the Lagrangian density is

Li(x)=—1[ -g(x)]l/sz(x)F“V(x) (1.3)
with the field strength given by

F,(x)=4,x),—4,x),

=4,x),—4,x),, (1.4)
and to which a (covariant) gauge-fixing term
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Le= 2a[ g(x)] [A“(x)m]2 (1.5)
as well as the ghost term

L,=[—g(x)]"*g"(x)3,C(x)3,C*(x) (1.6)

should be added.

Recall that the Lagrangian densities Ly, L, ,, and .L,
are, in n=4 dimensions with m =0 and £=1, invariant
under local dilatations or Weyl transformations of the
metric

8,(x) > Q(x)g ,,(x) (1.7)

if the fields transform as
d(x)=> Q7 x)(x), P(x)—>Q 3 x)p(x),

(1.8)
AMxX)—>Q7Ax) AH(x), A,(x)— A4, (x) .

It should be mentioned here that neither L nor £, are
Weyl invariant. The breaking of Weyl invariance by the
gauge-fixing term has been a subject of much controver-
sy. As we will have to face a similar problem for the
spin-2 particle it will be very useful to review the present
understanding for the spin-1 particle. This will be done
along this section.
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The stress tensor corresponding to a classical action S
is given by

2 58S
T, (x)=
“ X [—g(X)]1/2 ngv(x)

Ve x)  §s
=—r - _ > 1.9
V(x) 8V*(x) (1.9)

For the gauge-fixing term (1.5) one immediately finds, for
the trace of the corresponding stress tensor,
TH o(x)=—2(A", A¥) (1.10)
uG a A HTAR] .
which is a divergence. Be redefining the dilatation
current we could get rid of this term.

In the quantum theory the vacuum expectation value
of the renormalized stress tensor, { T u ) is given again
by (1.9) where S is substituted by W, the renormalized
effective action. Of course the unrenormalized effective
action is ultraviolet divergent, and requires regulariza-
tion. The work of Brown and Cassidy? and Duff® shows
that dimensional regularization is the most convenient
one. The regularized effective action carries then a pole
at n=4, n being the dimension. This infinity is removed
by a counterterm AW (n) the residue of which is Weyl in-
variant. It is thus necessarily a combination of

F=R,,,,R¥"°—2R, R*+IR?,

G ERWPG

(1.11)
R‘””"—4R#VR‘“'+R2 ,

where F is, in four dimensions, the Weyl tensor squared
and G gives, by the Gauss-Bonnet theorem, the Euler-
Poincaré characteristic, so that both lead to Weyl-

invariant functionals. A total divergence in n dimen-
sions, [IR, has of course been disposed of. Thus

2 ghv SW(n)
(__g)l/Z agyv

SAW (n)
agﬂv n=4 .

(Then

(1.12)

The first term of the right-hand side (RHS) is zero. The

trace anomaly comes from the second term, the subtrac-

tion.> Recalling that
1 1

AW(n)=
" (47)* n —4

[ d"x(—g)"*[aF(x)+BG(x)]

(1.13)

and using the formulas

2 v 8 Mt N2 — (4 _
(_g)mg“ Sg,wfd x(—g)/?F=—(n—4)(F—20R),
2 5 (1.14)
15% d"x(— )1/2G:__(n_4)G ,
(___g)l/Zg Sguvf 4

one finally finds the trace anomaly

_ 1
(T ) == 5 lalF—30R)+BG] . (1.15)
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Notice that there are strong restrictions on the a priori
general form

<T¢enu)=_ [a(F_%DR)"FBG"i"}’DR +5R2]

1672
(1.16)

as (1.15) implies y =6=0.
For scalar fields

=15 Bo= "o (1.17)
and for Majorana fermion fields
= Biprp="75 - (1.18)

For photons, after subtracting twice the spin-O ghost con-
tribution (which is not the spin-0 anomaly as the ghosts
do not couple to the curvature), the result is

(1.19)

=1 = — 31
=1 Bi= 1w -

This result is gauge independent. Indeed Brown and Cas-
sidy? have proven that for covariant gauges and within
dimensional regularization the effective action is gauge
independent. Thus a and 8 do not depend on the gauge
parameter a.

When other regularizations are used the anomaly is no
longer of the type (1.15) but of the more general form
(1.16) (with 6=0), and Endo has shown using path in-
tegrals and ¢ regularization that ¥ now has a Ina contri-
bution.* Indeed he found

— —2+1Ina

D (1.20)

The gauge-independent term in (1.20) comes from a
subtlety which happens in dimensional regularization
which is clearly explained in Ref. 2. It is due to a syner-
getic effect in which the following facts play a role: (i)
g“ﬂ=n in n dimensions; (ii) scalar fields, as they come
from index summations of vector fields are not confor-
mal, but have £=0; (iii) this implies a R? term in the
effective action which, from

2

v b 4 ( _ M\ 12p2—__
(_g)mg“ Sg,wfd x(—g)!?R?*=—120R , (1.21)

implies a new, gauge-independent, IR contribution. This
explains the first term on the RHS of (1.20). The second
term is the gauge-dependent contribution which appears
when one does not use dimensional regularization.

We are not interested in regularization-dependent,
gauge-dependent terms which furthermore [see (1.21)]
can be taken away by adding a local counterterm to the
Lagrangian. The genuine anomaly is of the form (1.15)
and the aim of this work is the computation of a;,, and
Bs -

Before finishing this introduction let us recall here that
most studies of spin-2 fields have been performed in con-
nection with supergravity, as only then the well-known
inconsistency problems of spin-3 fields coupled to gravity



are overcome. Our point of view here is different and
more modest. We do not assume anything about the
gravity Lagrangian, in particular we do not assume it to
be of the Einstein-Hilbert type. Our gravitational field is
a background field without specified dynamics, and there
is no inconsistency problem. In fact our primary symme-
try will be Weyl invariant which, if assumed for the grav-
itational field too, would exclude the Einstein-Hilbert ac-
tion. In short, our approach is to consider the trace
anomaly issue in a setting unconstrained by supergravity,
as we think that the knowledge of the trace anomaly is of
interest independently of the status of supergravity. It is
true that if supergravity eventually turns out to be the
right avenue to quantum gravity, it has been shown by
Grisaru, Nielsen, Siegel, and Zanon and by Duff’ that the
total (anomalous plus nonanomalous) trace is of more
relevance, since it is independent of the field representa-
tion and it is part of the corresponding supertrace. But
even then our result will still be the anomalous contribu-
tion of the spin-3 vector-spinor field to the gravitational
energy-momentum trace, as we will explain in more detail
at the end of the next section.

II. REVIEW OF THE SPIN-% GRAVITATIONAL
TRACE-ANOMALY COMPUTATIONS

The first computation was done simultaneously by
several authors. Christensen and Duff obtained®!

(a+B)CD: _%7 BCD=0 ’

— 61
8CD— T340 *

2.1

— 233

YcD™ T o8>

This result is not of type (1.15). This is not surprising,
since their Lagrangian is not Weyl invariant. Indeed,
their starting Lagrangian density is the one obtained
from supergravity:

35/2(x)=%V(x)il-/}_p(x)(ygpf+7/py77—7/rvp

Y,V W(x), (2.2)
where ¥ =v,V# and where the covariant derivative acts
on the spin-3 field via both the standard affine and the
spinorial connection, as it has both a vector index and
spinor components. It is not invariant under a Weyl
transformation

PH(x)—> Q7 Hx)yPH(x)

U, (x) > Q7 2x)Y,(x) . 23
Indeed, one can check that
By LS (x)= %Q_l(x)V(x)[lzp(x)y)‘ﬂ,,,(x)llq(x)
—PP(x )y, (x)PMx)]
(2.4)

It is not invariant under gauge transformations of the
type
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P(x)—>9Y7(x)+eVTh(x) (2.5)
as it changes according to
8, L35 (x)=i€V(x) Rpa,(x)—R—;x—) po ]
X[PP(x)y“d(x)+P(x)yP(x)] . (2.6)

Gauge invariance only holds for Ricci-flat spaces R ,, =0.
Of course, quantization requires gauge fixing. They work
in the harmonic gauge y,¥*(x)=0. This leads to two
Majorana ghosts. These take away four of the eight de-
grees of freedom of a Majorana y* field. The remaining
two unphysical degrees of freedom enter their calculation
through consistency conditions. Their only gauge-
independent result is a + 3, the coefficient of the Riemann
tensor squared. By choosing the harmonic gauge, their
kinetic energy operator squared is of the Gilkey type;’
this simplifies computations quite a lot.

The gauge-independent part of their result has been ob-
tained simultaneously by other authors for the same La-
grangian density: Perry,® who fixes completely the un-
physical degrees of freedom working in the gauge
¥, =V, #=0; Critchley’ and Yoneya,'® who work in
the harmonic gauge and eliminate the remaining degrees
of freedom with the help of a third ghost, the so-called
Nielsen-Kallosh ghost.!!

More recently Fradkin and Tseytlin have again com-
puted all four coefficients,'? in the harmonic gauge and
with three ghosts. They find

(a+Blpr=—%, Bri=%

(2.7)

YFT W OFT= "3 -
Again the gauge-independent coefficient coincides with
all the other values; this is not so for the gauge-dependent
ones. Being gauge dependent, this does not seem of much
relevance, it only reflects the different treatment of the
unphysical degrees of freedom. What seems more impor-
tant to us is that neither (2.1) nor (2.7) is the anomaly.
They are not of type (1.15). They have not been comput-
ed for a classically Weyl-invariant Lagrangian.

Weyl invariance implies, in four dimensions, a La-
grangian density

LI (x)==V(x)PP(x)[ Vg, +(3+a)y, Ty,

i
2

=3y, V.. V) W(x) (2.8)
with a arbitrary. Furthermore (2.8) is invariant under
gauge transformations of the type

PT(x)—>yPT(x)+ ey Vi(x) (2.9)

if a=0. We thus have a conformal- and gauge-invariant
Lagrangian. Quantization of the spin-1 fields requires
fixing the gauge. This is done by taking a=£0, and it is
done in a conformal-invariant way. By starting from
(2.8) and regularizing dimensionally we make sure that
the genuine trace anomaly of type (1.15) will come out.
We will also prove that both a and [ are gauge indepen-
dent.
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The gauge fixing of (2.8) allows us to quantize the
theory, but does not subtract all the unphysical degrees of
freedom. We will take them out in the manner of Nielsen
and Kallosh, the only conformal-invariant procedure we
know.

We already know one result:

as By =15 . (2.10)

Indeed, in the harmonic gauge Lagrangians (2.2) and (2.8)
coincide and the genuine anomaly calculated from (2.8)
does not depend on the way we fix the gauge, as we shall
see. Therefore, all that remains is to compute another
combination. This is what we will do next.

Let us finish this section recalling that the spin-3
anomaly is of course unique, and that one can thus use, in
principle, any Lagrangian to compute it. However, La-
grangians which are not Weyl invariant have a
nonanomalous contribution to the trace, as shown by the
results (2.1) and (2.7). Here, by starting from a Weyl-
invariant Lagrangian, we will obtain directly the anoma-
ly, as no nonanomalous contribution arises. Once the
anomaly is obtained there is no use anymore for Lagrang-
ian (2.8): the Lagrangian (2.2) is likely to be more
relevant to physics. Notice furthermore that we are us-
ing in (2.8) the same vector-spinor representation used in
supergravity, Eq. (2.2), so that although even the
“gauge-independent” part of the anomaly, a+ 3, depends
on the specific field representation,® there is no problem
for us here in taking over (2.10). This is so because the
comments made after (2.10) prove that the coefficient of
a+f, and only this one, is the same for the trace corre-
sponding to the Lagrangian (2.2) (which is not Weyl in-
variant) as for the anomalous trace (which we are in-
terested in).

III. PRELIMINARY FORMULAS
Consider the first-order differential operator of (2.6):
HP =i[Vg2+(3+a)yPVy,—3(yPV, +y, V)] . (3.1)

The effective action, neglecting for the time being ghost
fields, is given by

e™= [Dyrexp |i [dix LY(x) | = (detH,)'?,  (3.2)

where operator notation has been used for (3.1) and
where the spin- fields have been taken to be Majorana
fields. The Green’s function

S (x,x")=—i{ T(Y"(x)P(x"))) 3.3)
satisfies the differential equation
HP ST (x,x")=—V Ux)8(x —x')gl(x) . (3.4)

The operator formalism is introduced via a Hilbert space
with norm

(x,7lx", M) =V " Ux)g " (x)8(x —x") . (3.5)
Then
Sh(x,x")={x,7|S,|x",A) (3.6)
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and (3.4) reads
H,S,=-1.
From (3.2) one readily obtains

W=étr1n( -S,;)

=%2 [ a% v Tr(x,plin(—S,)lx,u) , (3.8)
m

where Tr means the trace over spinor indices. Recall
furthermore that

—S=H '=i["dse " (3.9
0
so that, for a constant,
In(—S)=—InH = [ =% —itis (3.10
o s

Thus the whole H-dependent contribution to the effective
action is given by

i o ds —iHs
W=—tr —e a.
2 fo K

Let us now prove that W does not depend on a, following
steps similar to the ones first performed by Brown and
Cassidy.? Because of gauge invariance, it follows im-
mediately from (3.1) that

(3.11)

yYyH,=ayYyH,=ia(y¥y)*, (3.12)
so that
yYyH!=a"yVyH!=(ia)"(y¥y)" "' . (3.13)
A variation of W with respect to a gives
__.ba © —iH,s
8W—17trfo ds yYye
— .8a *© ay¥
_17“-{0 ds yVye®r¥rs
.80 ® d 1% 4%
=j— —e Vs 3.14
lZatrfo dsase , ( )

which is a constant and can thus be neglected. This
proof is formal and requires, in principle, both ultraviolet
(UV) and infrared (IR) regulators. We will use a mass as
the IR regulator. The anomaly of course does not de-
pend on the IR behavior of the theory and introducing a
mass allows one to work in momentum space. Thus we
will have

Hf(m)=Hf —mg?’ . (3.15)

We will furthermore bosonize our differential operator by
squaring it as it is usually done for fermions, and work
with

K?=H(m)H?(—m) . (3.16)
In flat space, one finds

K2(gh=n"")=n(—0—m*)+(5—4a’)y Oy,

+1(30,—2£3"9,—379,2}) (3.17)
with 2*¥=1[y%yP]. The corresponding momentum-
space Green’s function, which we will call G, satisfies

(k*—m?)G —(3 —4a®)k*yPy G ©

3
16

—1(2kPk ,— 1yPk ,— 1kPUkY )G 2=—nf . (3.18)
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This gives immediately

~ —1 4
CEm A [T g e
“—kz—lﬁ(ypkka-’rkpk‘}/a)
—4m

kY k>—(5—64a*)m?]
4(k*2—4m?)(16a%k*—m?)

YV o

(3.19)

1 ) 1
GH(x,x")=—iA*(x,x") ids———ex
(4r)" 72 fO (is)"/2e P

When x’'—x, Alx,x")—>[—g(x)]"'?, G(x,x')—0 and
the UV divergences appear as divergences around s =0 in
the proper-time integral of (3.20). Having dimensionally
regularized, one can take the x'— x limit getting

)] 172 1

Gl(x,x)=—i[ —g(
S S

© id
fo l)"s/zexp —im?s)F¥(x,x;is) .
(3.21)

Recall that F*(x,x;is) has the adiabatic (small-proper-
time) expansion

FE(x,x;is)= 2 L . (3.22)

The coefficient which leads to the anomaly is a, (“the
magical a, coefficient,” see Ref. 14 for its history). How
do we compute F¥(x,x;is)? This is done by introducing

GHx,x" ) =[—g(x)]"*G*(x,x")[—g(x")]""* (3.23)
and its Fourier transform
9(x,x)=(2m) " [d"k e “*YGU(K) , (3.24)

where y# are the normal coordinates of x, the origin be-
ing at x’, and k-y=k,n®Pyp, so that one works in a lo-
calized momentum space. $* is obtained from the corre-
sponding Green’s-function equation in momentum space
and one then readily obtains a,(x) using the above for-
mulas.

That the anomaly is basically a,(x) has been proven
very many times, so here we will only comment on what
“basically” means. First, Brown and Cassidy showed
that in dimensional regularization there is a further con-
tribution to the anomaly for the spin-1 case. This was
shortly reviewed at the end of Sec. I. However, this prob-

—im%+
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No gauge fixing can avoid having a pole at k?=4m?, be-
sides the canonical one at k>=m? This is due to our
differential operator K not being of the Gilkey type. This
is different from what happened to the photon field,
where for the Feynman gauge we recover a Gilkey-type
Laplace-Beltrami operator. We will choose a gauge for
which there are at least no other poles. Two such gauges
exist: |a|=1and |a|=1. We will use the first one.

Recall now the DeWitt-Schwinger proper-time repre-
sentation of the Green’s function:'*

olx,x")

2is FE(x,x';is) .

(3.20)

f

lem only affects the OJR term and we are not going to
compute this one. Furthermore, a,(x) is a priori gauge
dependent, while the anomaly is not. There is no con-
tradiction in this statement, if the gauge dependence is
carried by the OR term. Endo showed that this is so for
the spin-1 field,* and that the a dependence is of type Ina.
His steps can be repeated here with the same results.
Again, all this is irrelevant to our computation as we will
not compute the R term. It will nevertheless be a non-
trivial check of our computation to see the logarithmic
terms cancel out at the end.
Once a,(x) is known, the anomaly will be given by!

(T, )=— ay(x) . (3.25)

16m2

Here the minus sign corresponding to fermions is includ-
ed in the definition of a,(x).

IV. THE COMPUTATION

We will compute a,(x) for a specific gravitational
background, for which important simplifications occur.
The computation is still quite cumbersome, so that only
some intermediate steps will be given. (The whole com-
putation has been done twice, by hand and with an alge-
braic program.)

We have chosen a maximally symmetric space.’> It is
known that they are uniquely specified by a constant cur-
vature K. Then

R vkazK(gvAg o 8vo8 7\.) ’
Iz Iz n @.1)
R,,=—3Kg,,, R=—-12K.
We will use the following normal coordinates:
g,w(¥)=mn,,tKy,y (1+Ky?)+0(K?) . (4.2)

The following useful expressions can then be obtained:
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Fgg=Ky”(77pa+Kypyg) )
—g=1+KyX(1+Ky?),

K (4.3)
Vi=nf+ Syt 3Ky
K K
Fv=72§yy 1-+-—4—y2 , yPEV%}/B.

They are valid up to order K? included. Recall that the
covariant derivative acts on ¥ according to

V=00, +T W+T{ " . (4.4)
In this space

OR=F=0, (4.5)
so that

p=22 4.6)

G

with

G=24K*. 4.7)
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Our starting equation is

KPGT(x,x')=— 4.8)

v
vV—g
In momentum space, and expanding in K, one can write

GHKk)=GH0)+KGH1)+K2GH2) ,

4.9)

& aik =R 20)+KR A )+KK22) .
Obviously

K20)8X0)=—1n5, 4.10)

which is precisely Eq. (3.18). Notice that K £(0) does not
have derivatives. Also

D=8 XOK (1) }0) 4.11)
and
Tr8 %(2)=Tr9X0)K £(2)9 }(0)
+Tr8 20K §(1)F (1) . (4.12)

An intermediate result is

GU)=nl(—2P*—4P*—8P*+9PQ — 2 Q) +yly (—L1P?+1P3+2P*—3PQ +2Q%— Q3 — 128 0*)

+4k ko (— 4P+ 3P*—4P?Q —TPQ*+ X Q3 — 12 Q%) +y Mk (4P’ — LP*+2P?Q +5PQ*— £ 0’ + 122 0%

+kMy (1P} —3P*+4P?Q +7PQ?— B Q3+ 180%)

where

1 1

P= s =
k2—m? Q k2—am?

(4.13)

(4.14)

and powers of m ? are understood so as to have the right dimensions. Furthermore,

Tr& 20K £(2)§4(0)=—48P*—42P*—54P°—54PS— 3 pQ2 + €8 03 —2240Q*+13 824Q° +55 296Q°

and

(4.15)

Tr 2(0)K §(1)4(1)= 8822 P34 343 p44 109 pS4 777P6+ 768P7 — 852 p2Q — 12334 p2 4 13040 3

+ W8 04+ 024 05+ 56 320054262 144Q7 ,

2

(4.16)

where the K £(1) derivatives act to the left, as a k integration is performed anyhow afterwards. Putting (4.15) and (4.16)

together one gets

Tr92)=58P>+ 10 m 2P+ 83 m *P5+723m P+ 768m *P7 — 432 p2Q — 11408 po2 4 18512 ()3

61696

+ 26 m 2044 —?—m4Q5+111 616m°Q°+262 144m3Q7 .

Notice that the coefficient of PQ? is exactly 4 times the

one of P2Q, which does not happen for (4.15) and (4.16).

This is the reason for the cancellation of a In4 term which

appears after the k integration is performed. As OR =0

in our space-time, no logarithms are expected to appear.
From (3.21)-(3.24) we finally have

K*[a% Tr§2(2):a27r2f0wdse‘i’"zs, (4.18)

(4.17)
I
where a, =Tra},(0). Thus
a2=iK:2"2 [a*% Trg22) . (4.19)
This leads, after performing the k integration, to
a,=1%K?, (4.20)



There are now the following factors to be taken into ac-
count: a factor 1 because we have squared the
differential operator and a factor — 1 because we are deal-
ing with fermions. Finally, three Majorana ghosts have
to be subtracted: from (1.18) and (4.6) this gives

a(23/2>:(_%+3><%)1(2=——;_(1)1(2. 4.21)
Thus, from (4.6),

Bsn=—5 » “.22)
and, from (2.10),

A== . (4.23)

V. CONCLUSIONS

We have computed the spin-3 gravitational trace
anomaly. It is independent of the gauge parameter and
the result is

—__ 9 p— ) |
A3n~™ " 30 Byn= "% - (5.1)

There is no doubt that anomaly cancellation, in spite of
some remarkable divergent views,'® plays an utmost role
in modern quantum field and string theory. The constan-
cy in sign of the spin-0, -1, and -1 a and S values
(1.17)=(1.19) did not allow for cancellation. Indeed, ar-
guments based on positivity of the two-graviton Green’s
function were put forward which made anomaly cancella-
tion unlikely.!” They do not seem to apply to spin-3
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fields, and they in fact did not bother any of the authors
of the previous spin-3 anomaly computations. Our result
opens this possibility again. Nothing can be concluded,
however, until the genuine spin-2 anomaly is computed.
Again, this does not seem to have been done, up to now.
Let us mention finally that we are not claiming that
spin-3 particles should be described by the Lagrangian
(2.8), but that this is the Lagrangian which allows an
unambiguous computation of the trace anomaly; spin-3
particles might be more adequately described by other
Lagrangians, which then, however, lead to nonanomalous
contributions to the trace of the stress tensor. Another
issue, which we have not addressed here, is whether
spin-2 particles should be described by fields in a repre-
sentation different from the vector-spinor one used here.
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