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We report on the existence and stability of multidimensional bound solitonic states in harmonically trapped
scalar Bose-Einstein condensates. Their equilibrium separation, as a measure of the strength of the soliton-
soliton or the solitonic vortex-vortex interaction, is provided for varying chemical potential μ. Static bound dark
solitons are shown to be dynamically stable in elongated condensates within a range of intermediate (repulsive)
interparticle-interaction strength. Beyond this range the snaking instability manifests during the time evolution of
the planar solitons and produces the decay into nonstationary vortex states. A subsequent dynamical recurrence
of solitons and vortices can be observed at low μ. At equilibrium, the bifurcations of bound dark solitons are
bound solitonic vortices. Among them, both two-open and two-ring vortex lines are demonstrated to exist with
both counter- and co-rotating steady velocity fields. The latter flow configurations evolve, for high chemical
potential, into a stationary three-dimensional (3D)-chain-shaped vortex and a three vortex-antivortex-vortex ring
sequence that arrest the otherwise increasing angular or linear momentum respectively. As a feature common to
the bifurcated families of vortex states, their excitation spectra present unstable modes with associated oscillatory
dynamics. In spite of this, the family of two-open counter-rotating vortices support dynamically stable 3D states.

DOI: 10.1103/PhysRevA.98.043612

I. INTRODUCTION

Solitary waves are localized, nondispersive excitations that
can transport energy and momentum in a medium. They usu-
ally show particle-like dynamics that features a characteristic
interaction with other solitary waves. Both the type of solitary
waves and their interactions are determined by the underlying
medium. Among the latter, superfluid systems made of ultra-
cold quantum gases stand up as excellent playgrounds for the
study of solitary waves. In particular, in bosonic systems with
repulsive interparticle interactions, Bose-Einstein condensates
(BECs) supporting dark solitons are readily generated in
current experiments. They have been explored by means of
various methods, for instance, by phase imprinting techniques
[1], by engineering the hyperfine states of the same atomic
species [2], or by producing the interference of two con-
densates [3]. The availability of plenty of experimental data
has made it possible, on the one hand, to confront the early
theoretical predictions that have arisen from one-dimensional
integrable systems [4,5], and, on the other hand, to go beyond
in order to explore multidimensional solitary waves [6–12].

Dark solitons are unstable structures in systems with di-
mensions higher than one [13–15]. But these instabilities can
be arrested by the presence of an external trapping. In this
case, there generally exists a range of parameters at low
interparticle interaction where the dynamical stability of mul-
tidimensional dark solitons can be ensured [16], and therefore
where they can be experimentally realized [3]. Inside the trap,
the transverse extension of a dark soliton (measured on the
surface of minimum density) increases with the interparticle
interaction. Beyond an interaction threshold the excitation of
long-wavelength modes on the soliton surface is energeti-
cally favorable, by means of which a planar soliton decays
into localized, long-life vortex lines with either open or ring

configurations [8–10,17]. Although this fact is a drawback for
the study of multidimensional dark solitons, it has provided
a useful mechanism for the generation of different solitary
waves [18,19]. In this way, vortex rings have been observed
after the decay of dark solitons in three-dimensional (3D)
systems with isotropic trapping [6]. In elongated systems
instead, due to the presence of perturbative noise, the unstable
planar solitons lead eventually to a single vortex line, a
solitonic vortex that provides a perturbative amount of angular
momentum [20].

To understand the interactions between solitary waves,
the realization of states containing multiple solitary waves
is required. To this end, states containing two solitons in
scalar BECs have been previously considered in one dimen-
sional [21,22] and quasi-one-dimensional [23] settings. In
these works it is assumed that the soliton decay has been
suppressed by selecting a tight enough transverse trapping
[14,16,19]. Under these conditions, it has been experimentally
demonstrated [3] that several solitons can survive moving and
colliding in elongated harmonic traps during long times (up to
seconds).

In scalar condensates, the force experienced by a dark
soliton due to the presence of another nearby soliton is re-
pulsive when the interatomic interactions are local [24–26].
As a consequence, in the absence of an external trap, there
is no static solution of two bound solitons. Still, analytical
solutions for two moving solitons have been found in one-
dimensional (1D) settings [27,28]. However, when a harmonic
confinement is acting, two static dark solitons conveniently
situated at symmetric positions around the center of the trap
can form a bound state. This equilibrium is due to the fact
that the buoyancy-like force experienced by the solitons in
the inhomogeneous density background (produced by the
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FIG. 1. Features of stationary two-bound-soliton states in har-
monically trapped 1D BECs. Top panel: Probability density |ψ |2/N
(lines) and phase arg(ψ ) (symbols) for two values of the chemical
potential μ. The inset shows the imaginary frequencies of unstable
excitation modes in the two-bound-soliton family. Bottom panel:
(Half) soliton separation q as a function of μ, measured relative to
the energy of the second excited linear eigenstate ε2 = 2.5 h̄ωz. The
analytical expression (3) (solid line) follows in very good approxi-
mation the numerical data from the solution of the Gross-Pitaevskii
equation (open symbols). The healing length ξ (dashed line) is shown
for comparison.

confinement) balances the repulsive interaction between them
[23]. Interestingly, it has been recently reported that in sys-
tems with two overlapped BECs the intersoliton forces can
show either repulsive or attractive character depending on the
sign of the interatomic interactions between condensates [29].

Bound two-soliton states in 1D trapped systems show
dynamical instabilities in a regime of interatomic interactions
that is adjacent to the noninteracting limit (see Fig. 1) [23].
However, if the interatomic interaction is high enough the
instability is suppressed and the bound solitons become sta-
ble against small perturbations. This situation is expected to
change in multidimensional systems, since the increasing in-
teraction leads to larger extensions in the spatial dimensions of
the soliton that eventually allow for the excitation of unstable
modes.

Intervortex interactions have comparatively received much
more attention, mainly in two-dimensional (2D) settings (see,
for instance, [30–35]). Contrary to the soliton case, vortex
interactions are long range due to the velocity field that
they create. In the referred 2D systems, and in the limit of

negligible vortex cores, it has been shown that vortices behave
as charged particles, with the circulation of their velocity
fields playing the role of charges (see, e.g., [35]). For this
reason, two vortices experience an attractive force when their
circulations are opposite and a repulsive force when they have
equal sense of circulation. Bound two-straight-vortex states
have been observed in 2D systems with isotropic trapping
[36,37]. Both co-rotating and counter-rotating pairs of vor-
tices have been realized. While the former state does not stay
static inside a circular trap, the counter-rotating pair (or vortex
dipole) can. The latter configuration has been reported to sup-
port dynamically stable states in traps with small anisotropic
aspect ratios [38,39], and the typical vortex separation has
been numerically computed for the pancake-shaped BEC [40].
A more complex dynamics is expected in 3D systems, where
vortex lines can bend in response to external forces [41–46].

In the present work we address the study of steady bound
states made of dark solitons or vortices in 2D and 3D elon-
gated condensates inside a harmonic trap. From now on we
will use the terms bound solitonic states or bound solitary
waves to denote such generic states. In particular, we look for
double nonlinear excitations along the weak axis of a system
with isotropic transverse trapping. The latter is a common
arrangement in current experiments, where moving solitary
waves can be tracked [8,9,11,45,46]. Our starting point is the
simplest excitation of the mentioned type that corresponds to
a two-soliton state symmetrically situated around the center of
the trap. As we will see, two vortex lines, with both straight
and ring configurations and both co- and counter-rotating
velocity fields, can be found as bifurcations for increasing
values of the interatomic interaction. As special cases at high
interaction, it is worth mentioning the 3D chain-shaped-vortex
or the three-vortex-ring configuration presented by the states
in the families of two co-rotating straight vortices and two
vortex rings, respectively. Regarding the stability properties,
we report on small windows of chemical potential where sta-
ble two-dark-soliton states can be found. Two-straight-parallel
counter-rotating 3D vortices inherit this stability close to the
bifurcation, and, beyond a region of oscillatory instabilities,
recover it at higher interaction.

The rest of the paper is organized as follows. In Sec. II
we introduce the mean-field theoretical framework: the Gross-
Pitaevskii equation for the condensate wave function, and
the Bogoliubov equations for the linear excitations of the
stationary bound solitons. Section III describes 1D bound
solitons in harmonic traps. In Sec. III A we investigate the 2D
systems that provide the main features of multidimensional
bound solitonic states; we discuss the forces acting on the
solitary waves and show characteristic time evolutions of two-
bound-dark solitons. In Sec. IV we study the 3D bound dark
solitons and bound vortex lines in elongated condensates; we
elaborate on the excitation frequencies, soliton bifurcations,
and decay dynamics. To sum up, we present our conclusions
and perspectives for future work in Sec. V.

II. MEAN-FIELD MODEL

In the mean-field regime, the dynamics of a scalar Bose-
Einstein condensate (BEC) can be accurately described by the
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Gross-Pitaevskii (GP) equation for the wave function �(r, t ):

ih̄
∂

∂t
� =

(
− h̄2

2m
∇2 + Vtrap(r) + g|�|2

)
� , (1)

where g = 4πh̄2a/m is the interparticle interaction strength
characterized by the scattering length a and the particle
mass m. We consider a BEC confined by a cylindrically
symmetric harmonic trap; Vtrap = m[ω2

⊥(x2 + y2) + ω2
zz

2]/2
in 3D, and Vtrap = m( ω2

⊥y2 + ω2
zz

2)/2 in 2D, with as-
pect ratio λ = ω⊥/ωz. The stationary states of Eq. (1) are
�(r, t ) = exp(−iμt/h̄) ψ (r), where μ is the chemical po-
tential. The number of particles N is fixed by normalization∫

�∗(r, t )�(r, t ) dr = N .
The dynamical stability of the stationary states is

checked by introducing linear modes {u(r), v(r)} with en-
ergy μ ± h̄ω around the equilibrium state, i.e., �(r, t ) =
e−iμt/h̄[ψ + ∑

ω(u e−iωt + v∗eiωt )]. After substitution in the
GP equation (1), and keeping terms up to first order in the
modes, one obtains the Bogoliubov equations for the linear
excitations of the condensate

(HL + 2g|ψ |2)u + gψ2v = h̄ω u , (2a)

−g(ψ∗)2u − (HL + 2g|ψ |2)v = h̄ω v , (2b)

where HL = −h̄2∇2/2m + Vtrap − μ is the linear Hamilto-
nian. The existence of frequencies ω with nonvanishing imag-
inary parts indicates the presence of dynamical instabilities
that can produce the decay of the stationary state.

The stationary states have been numerically obtained by
using a Newton continuation method based on a pseudospec-
tral approach with an adapted basis of Fourier modes, along
the axial z coordinate, and Laguerre functions, in the trans-
verse sections. The same pseudospectral approach has been
used to solve the Bogoliubov equations from exact diagonal-
ization. For the time evolution we have used a third-order
Adams-Bashforth scheme. For the sake of comparison with
current experiments, in what follows we report on 2D and
3D condensates made of 87Rb atoms in the hyperfine state
|F = 1,mF = −1〉. The corresponding scattering length is
a = 5.32 × 10−9 m. The numerical results are obtained for
a transverse harmonic trap of frequency ω⊥ = 2π × 200 Hz
and different aspect ratios.

III. BOUND SOLITONIC STATES IN
LOW-DIMENSIONAL SYSTEMS

It is instructive to start with the analysis of pure
1D systems. In the noninteracting regime, the second
excited axial eigenmode of the 1D harmonic oscilla-
tor is the second Hermite polynomial H2 = [2(z/az)2 −
1] exp(−z2/2a2

z )/2
√

az

√
π , which has two axial nodes sym-

metrically situated around the trap center at distance q ≡
znode = az/

√
2, where az = √

h̄/mωz. The nonlinear con-
tinuation (for g > 0) of this state keeps the topology (the
same number of nodes) and builds the family of two-bound-
dark solitons in the harmonic trap. The equilibrium distance
between nodes is maximum at g = 0. Two representative
examples are depicted in the top panel of Fig. 1, containing
data, density (lines) and phase (symbols), obtained from the

numerical solution of the time-independent GP equation for
chemical potentials μ = 10 and 50 h̄ωz.

In a system with repulsive interatomic interactions, dark
solitons experience also repulsive forces between themselves.
In the absence of external traps, it has been shown that this
force decays exponentially with the soliton separation 2q

as Fint ∝ exp (−4q/ξ ) [23,24], where ξ = h̄/
√

mg n is the
healing length, and prevents the existence of bound states. In
harmonically trapped 1D systems, however, two equal dark
solitons symmetrically situated at a distance z = q from the
trap center find an equilibrium configuration. From a particle-
like approach for the soliton dynamics [47,48], the soliton sep-
aration is determined at equilibrium by the balance between
the intersoliton force Fint (z) = −16Nsh̄

2 exp (−4z/ξ )/mξ 3

and the buoyancy-like force Fb(z) = Nsmω2
zz due to the in-

homogeneous density background induced by the trap, where
ξ is evaluated at maximum density, and Ns (<0) is the number
of particles depleted by the soliton. The equilibrium leads to a
transcendental equation for q̃ = q/ξ

q̃ e4q̃ =
(

4μ

h̄ωz

)2

, (3)

which, as can be seen in the bottom panel of Fig. 1, provides a
very good estimate of the soliton separation as obtained from
the numerical solution of the 1D GP equation. As the chemical
potential (hence the interatomic interaction) increases, the
healing length decreases and so does the soliton separation
in absolute (harmonic oscillator, az) units. In healing length
units, however, the intersoliton distance q increases with the
chemical potential, which reflects a lower underlying force of
soliton-soliton interaction.

A. 2D bound solitonic states

The family of 1D two-bound-dark solitons contains dy-
namically unstable states for low values of the chemical
potential (see the inset in the top panel of Fig. 1), where
out of phase excitation modes break the static configuration
[23]. In multidimensional systems new instabilities appear.
The equilibrium states are unstable against the bending of
the dark soliton stripe (in 2D) or the dark soliton plane (in
3D) when their extensions are long enough to support long
wavelength (above a few healing lengths) transverse modes
[16]. However, dynamically stable bound solitons can still
be found in multidimensional settings, just in between the
end of the out-of-phase 1D instability and the beginning
of the snaking instability. As an example, the top panel of
Fig. 2 shows a robust 2D state with μ = 2.2 h̄ω⊥ in a trap
with aspect ratio λ = 10. After seeding a perturbative small
amount of white noise on the stationary state, the equilibrium
configuration is preserved for a long time evolution.

This situation changes for higher chemical potentials (or
equivalently for higher interatomic interactions), where the
snaking instability can operate. To illustrate this process, we
have prepared an initial 2D state with μ = 3 h̄ω⊥ having two
dark solitons at their equilibrium distance. As can be seen in
the bottom panel of Fig. 2 (again after adding a small white
noise on the initial state) the real-time evolution shows the
soliton decay into counter-rotating vortices [inset (b) in Fig. 2]
that oscillate around their center of mass. During the motion
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FIG. 2. Time evolution of bound dark solitons across the z di-
rection in 2D trapped systems with aspect ratio λ = 10. Sections
of the density profile at y = 0 are represented versus time. Top
panel: robust state against perturbations in a BEC with μ = 2.2 h̄ω⊥.
Bottom panel: soliton-vortex decay in a BEC with μ = 3 h̄ω⊥. The
three insets represent snapshots of the density profile on the z-y
plane at three different stages of the evolution: (a) initial two-soliton
state, (b) decay into two solitonic vortices, and (c) recurrence of dark
solitons.

along the weak trap z axis, the vortices transit through regions
of lower local chemical potential where there is not enough
energy to support vortex structures. As a result, close to the
turning points, the vortices smoothly transform back into dark
solitons [Fig. 2, inset (c)]. The opposite behavior, soliton to
vortex conversion, occurs in proximity to the trap center. This
phenomenon of dynamic interconversion between stationary
states [38,49] is another instance of a nonlinear recurrence in
the GP equation that reflects the dynamical instability of the
involved stationary states [50]. However, at higher chemical
potential, away from this oscillatory instability, robust states
made of counter-rotating vortices can be found again [38].

In elongated condensates, it has been shown that static
states made of solitonic vortex lines bifurcate from a single
dark soliton excitation [19]. A priori, one could expect a
similar scenario to happen by starting with two dark solitons,
but this is only the case if the dark solitons are far away from
each other. Otherwise, the interaction between the emerging
solitary waves plays a decisive role in selecting the possible
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FIG. 3. Bound solitary waves in elongated 2D BECs. Left pan-
els: half axial separation between solitary waves of different type
(top) and between dark solitons in different dimensional settings
(bottom) as a function of the chemical potential (measured relative
to the energy of the second excited noninteracting eigenstate along
the weak-trap z axis ε2 = d × 2.5 h̄ωz, where d is the number of
dimensions). Right panel: density in the z-y plane of the 2D bound
solitary waves (see text) marked by open symbols in the top left
panel. The ± signs indicate the vortex polarity.

stationary states in the trap. Due to the different nature of
vortex-vortex interaction, the distance of equilibrium between
two bound vortices is generally different from the distance
between two bound dark solitons (which is at the origin of
the oscillations observed in the lower panel of Fig. 2). In
addition, the dimensionality of the system itself, modulating
the underlying density profiles, makes also this distance to
change even for the same type of solitary waves.

The effect of both factors, type of solitary wave and di-
mensionality, on the solitary-wave separation in 2D systems
is shown across the panels of Fig. 3. First of all, three new
static bound-vortex states are shown to bifurcate for increas-
ing chemical potential. As depicted in the right panel, they
correspond to two counter-rotating vortices (or vortex dipole,
VD), two co-rotating vortices (2V), and a double vortex dipole
(2VD). The axial separations between the corresponding topo-
logical defects (plotted in the top left panel of Fig. 3) measure
the associated force of interaction.

Similar to 1D solitons, co-rotating vortices present repul-
sive interactions in homogeneous-density backgrounds. The
difference resides in the range of the interaction, which is long
range for vortices (Coulomb type in 2D [35]). However, in
elongated settings the solitonic character of the vortices makes
their features localized [20] and the interaction turns essen-
tially local [45]. As shown in Fig. 3, the separation distance
decreases with the increasing chemical potential (initially)
faster along the co-rotating (2V) family than along the dark
soliton family. Therefore the vortex-vortex interaction, for a
given chemical potential in this regime, is weaker than the
soliton-soliton interaction. For a higher chemical potential, a
striking difference arises in the former family, which reaches
a minimum vortex separation. This is due to the entry of
a pair of new co-rotating vortices with opposite circulation
to the original vortices. As can be seen in the profile 2V(a)

043612-4



BOUND STATES OF DARK SOLITONS AND VORTICES IN … PHYSICAL REVIEW A 98, 043612 (2018)

of the right panel of Fig. 3, the entry is symmetric on the
perpendicular bisector of the line joining the original vortices.
As a consequence the angular momentum, which kept increas-
ing with decreasing vortex separation, reaches a maximum
value near the minimum separation. Note that the angular
momentum is not a conserved quantity along each family
of stationary solitonic states. Only at the bifurcation point,
where two solitonic families merge, are all the dynamical
properties common. Beyond this point, the states belonging to
a particular family generally change their properties for vary-
ing chemical potential (which is the nonlinear continuation
parameter).

The scenario is quite different for two bound counter-
rotating vortices (or vortex dipole, VD). In this case, the
vortex-antivortex pair produces zero angular momentum, and
presents attractive interactions on homogenous density back-
grounds. Again, the finite size of both the system (due to
the trap) and the vortex cores induces an effective repulsive
interaction that allows a bound configuration. Contrary to
the states considered before, the vortex-antivortex separation
increases with the chemical potential (see Fig. 3), denoting
higher interaction forces. Interestingly, this behavior contrasts
with the roughly constant (but slightly decreasing) vortex
separation found in pancake geometries [40].

The effect of dimensionality on the bound-state configura-
tion (hence on the inter-solitary-wave interaction) is illustrated
for bound dark solitons (DSs) in the bottom left panel of
Fig. 3. It can be seen that for a given chemical potential the
intersoliton distance increases with the number of dimensions.
The cause is the inhomogeneous density profile along the
transverse directions, which has larger healing lengths at
lower local chemical potential and contributes with higher
buoyancy forces to the overall interaction. More importantly,
as we show below, dimensionality has striking consequences
in 3D configurations due to the bending of vortex lines.

IV. 3D BOUND SOLITONIC STATES

It is convenient to start the search for families of bound
solitary waves by considering the static state made of two
bound dark solitons. In the noninteracting 3D case such a
state is given by �2(x, y, z, t ) = exp(−ε2t/h̄) exp[−(x2 +
y2)/2a2

⊥]/
√

2πa2
⊥H2(z/az), with energy ε2 = h̄(ω⊥ + ωz/2),

where the axial part corresponds to the second Hermite func-
tion H2(z/az) of the 1D system. The continuation of this
solution in the nonlinear regime gives the family of 3D bound
solitons. Figure 4 shows the frequencies of unstable modes in
their excitation spectrum, obtained from the numerical solu-
tion of the Bogoliubov equations (2). The modes are grouped
by the azimuthal polarity l, a positive integer that indicates
the number of nodal diameters on the transverse section. As
can be seen, the 3D bound solitons inherit the 1D (l = 0)
out-of-phase instability [23], but it is strongly suppressed at
high aspect ratios λ 	 1. More relevant for the bifurcation of
new solitonic states, there are transverse excitations leading to
the so-called snaking instability that bends the soliton plane
[14,16]. This instability appears beyond a chemical potential
threshold (or equivalently an interatomic interaction thresh-
old) that marks the excitation of the lowest energy transverse
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FIG. 4. Unstable frequencies of 3D two-bound-dark-soliton
states classified by the azimuthal polarity l (see text) of the corre-
sponding excitation mode. Solid lines correspond to pure imaginary
ω frequencies, whereas dashed lines correspond to complex frequen-
cies. The instabilities appear by pairs for a given l according to the
axial (z) parity of the modes. For larger aspect ratio λ the stability
window increases. The labels at the top panel indicate the nonlinear
bifurcations described in the text.

mode at the soliton planes. Such mode has l = 1 and presents
a single transverse nodal line at each soliton plane [19]. It can
be viewed as the linear superposition (with equal weight) of
a transverse vortex and an antivortex with angular momentum
Lz = h̄ and Lz = −h̄ respectively. The subsequent growth of
this unstable mode produces a solitonic vortex [20] on the
corresponding soliton planes. For this reason, the threshold
for the excitation of the lowest transverse mode coincides
with the bifurcation of a nonlinear wave made of solitonic
vortices. The threshold increases with the condensate aspect
ratio, tending to the limit case of no axial trapping, where it
takes the value μ ≈ 2.65 h̄ω⊥ [19,51].

In between the two mentioned instabilities, for an interme-
diate range of the chemical potential, our results demonstrate
that there exist dynamically stable states made of two bound
dark solitons. The stability window enlarges with the trap
aspect ratio due to the shift of the snaking instability threshold
toward higher μ and the suppression of the 1D-out-of-phase
instability. Therefore, the states made of two static bound dark
solitons are susceptible to observation in current experiments.

Once the snaking instability starts to operate in a state
with high enough chemical potential, the solitons decay into
vortex lines. The vortices are generated from the excitation
of the unstable transverse modes available at that value of μ,
as depicted in Fig. 4. Apparently, this is the same scenario
found for single dark solitons [19]. However, the interaction
between the emerging solitary waves introduces additional
features that lead to a different outcome. First, not all the
unstable frequencies of a bound-two-soliton state are pure
imaginary, which causes the decay into nonstatic, oscillatory
states [52]. Some of the unstable modes with l = 0 (dashed
lines) depicted in Fig. 4 belong to this set. Second, for given l
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FIG. 5. Bifurcation of the first 3D bound solitary waves in an
elongated harmonic trap with aspect ratio λ = 5. The chemical
potential μ (in energy units of the transverse trap h̄ω⊥) is represented
against the interaction parameter χ . The bifurcation points (open
symbols) coincide with the corresponding emergence of a linear
excitation mode (see Fig. 4), with equal azimuthal polarity l and pure
imaginary frequency ω, on the soliton planes.

the instabilities appear in pairs, corresponding to the even and
odd axial parity of the associated modes, with the even-parity
modes emerging at lower chemical potential than the odd
ones (that present an axial node). The prototypical example
is the instability with l = 1, which gives rise to bifurcations
of a solitonic vortex in each soliton plane (see Fig. 5). In an
isolated dark soliton all the transverse directions with the two
possible circulations of the solitonic vortex are degenerate.
In two bound solitons the orientations of the two emerging
vortices are parallel, and the axial parity breaks the degen-
eracy between the counter-rotating configuration (VD, with
even parity and lower energy) and the co-rotating one (2V,
odd parity). As can be seen in Fig. 4, the energy differences
induced by the axial parity are reduced for larger aspect ratios.

Figure 5 shows the bifurcations of the first bound solitary
waves from bound two solitons in a system with λ = 5. The
chemical potential of the solitonic states is shown versus
interaction, which is parametrized by χ = Na/a⊥

√
λ. The

bifurcations coincide with the emergence of unstable modes
of the same azimuthal polarity l that possess pure imagi-
nary frequencies (as shown in Fig. 4), whereas the complex
frequencies lead to oscillatory dynamics. Apart from the
bound open-vortex families (VD and 2V), Fig. 5 includes the
bifurcation of bound counter-rotating vortex rings in a dipole
configuration (VRD), where for each element of vortex line in
one of the rings there is another element in the parallel ring
which is its mirror image.

Representative examples of bound solitary waves are
shown in Figs. 6 and 7, obtained from the numerical so-
lution of the 3D GP equation with interaction parameters
χ = 8.94 and 44.7, respectively. The top panels represent
the density isocontours (colored by phase) of the BEC at
5% of its maximum density, and the bottom panels de-
pict the (nondimensional) axial density profiles an1(z) =
a

∫
dx dy |ψ (x, y, z)|2, after integration along the transverse

coordinates. Similar features to those discussed for 2D sys-
tems can be observed in the two-straight-vortex states of
Fig. 6, and in the two-vortex rings shown in Fig. 7, where the

FIG. 6. Density isocontours (at 5% of the maximum density and
colored by phase) of bound solitary waves in a harmonic trap with
aspect ration λ = 5. From top to bottom: two dark solitons (DS),
two co-rotating vortices (2V), and two counter-rotating vortices (or
vortex dipole VD). The three states are stationary solutions of the full
GP equation for fixed interaction parameter χ = 8.94. The bottom
panel depicts the nondimensional axial density a n1(z) (see text) of
these states.

intervortex separation is clearly larger for the vortex dipole
configurations (VD and VRD).

Further comments about the configurations of the states
containing co-rotating vortices are in order. These states
evolve, for increasing chemical potential, into complex 3D
structures. Two examples are shown in Fig. 8 for the families
of co-rotating open vortices (2V) and co-rotating vortex rings
(2VR). As it was the case in 2D systems, these solitonic
families present a minimum of the intervortex distance when
measured on the axial density profile. However, the 3D states
evolve with the chemical potential by increasing the bending
of the initially straight vortex lines, in such a way that at
the center of the condensate (thus at higher density) the
intervortex separation is greater than close to the condensate
surface (at lower density). Eventually, near the chemical po-
tential value where the axial intervortex distance reaches the
minimum, the end points of the two co-rotating vortices merge
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FIG. 7. Same as Fig. 6, but for bound-vortex-ring states. The
upper pictures (from left to right) show a semitransparent perspective
view, and the lower pictures (from top to bottom) show a side view
of co-rotating vortex rings (2VR) and counter-rotating vortex rings
(VRD), respectively, both at interaction χ = 44.7. The bottom panel,
showing the axial densities a n1(z), includes the dark-soliton and
co-rotating-vortex profiles (at equal interaction) for comparison.

with two new perpendicular vortices (one at each end point of
the initial vortices). This 3D configuration [visible in the per-
spective view (2V) of Fig. 8] reduces the otherwise increasing
angular momentum for increasing interatomic interaction.
From this point on, the axial density profile (represented with
a solid red line in the bottom panel of Fig. 7) cannot capture
the features of the 3D structure, and a single thick-density
notch opens in the middle of the condensate.

In a similar way, the family of two co-rotating vortex
rings incorporate new vortex lines (a vortex ring larger and

FIG. 8. Same as Fig. 7, but for states of co-rotating vortex lines at
higher interaction. The open-vortex configuration (2V) corresponds
to μ = 4 h̄ω⊥ (or χ = 44.7, same as the states in Fig. 7) and the
vortex rings (2VR) to μ = 11.4 h̄ω⊥ (or χ = 156.5).

with opposite circulation) at the trap center. In this case,
the new configuration reduces the axial linear momentum
generated by the approaching off-center rings. The result-
ing vortex pattern [visible in the perspective view (2VR) of
Fig. 8] shows a three vortex-antivortex-vortex sequence of
rings.

A relevant difference with respect to the case of single
solitary waves concerns the stability and dynamics of vortex
states. We have only found stable states in the family of
counter-rotating straight vortices (VD). Stability is expected
just after the bifurcation, inheriting this property from the
parent bound-soliton states [39]. However, the bound-vortex
states also inherit an oscillatory instability at higher chemical
potential. As a result, for instance, at λ = 5, a state with
μ = 2.45 h̄ω⊥ is stable, while a state with μ = 3.25 h̄ω⊥
is not. After this instability region, stability is recovered at
even higher chemical potential. The VD state with μ = 4 h̄ω⊥
shown in Fig. 6 is a stable example. In general, the typical
decay of bound states shows a complex vortex dynamics
of rebounds or reconnections [9,46]. We show an example
of bound-vortex decay in Fig. 9, where selected snapshots
during the real-time evolution illustrate the process. The initial
stationary state corresponds to the two-co-rotating-vortex con-
figuration shown in Fig. 6, upon which a perturbative white
noise has been added. As can be seen, small variations in
the vortex positions are manifested at t ≈ 20 ms. This initial
departure from equilibrium leads eventually to the breakdown
of the stationary flow created by the vortices, which show
strong bending (visible in the inner views at the bottom
of Fig. 9). As a result, the particle density distribution be-
comes strongly distorted and the two solitonic vortices move
apart.
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FIG. 9. Real-time evolution of the two-co-rotating-vortex state
depicted in Fig. 6, after the addition of perturbative white noise. The
side views (top row) and the inner axial views (bottom row) of the
density isocontours (at 5% of maximum density) are shown, from
left to right, at times t = 19, 21.5, 23.5, and 26 ms.

V. CONCLUSIONS

In this work, we have analyzed static configurations of
bound states made of solitary waves in harmonically trapped
BECs. Motivated by a common setting in current experiments,
we have focused on elongated, multidimensional condensates
with realistic parameters. Therein solitonic states bifurcating
from two bound dark solitons have been considered in 2D
and 3D settings. We report on states containing either two

co-rotating or two counter-rotating vortex lines having both
a straight and a ring configuration. Among the families of
solitonic states, only bound dark solitons and bound vortex
dipoles have been found to support dynamically stable states,
thus feasible to experimental realization. In the unstable
regime of two bound dark solitons, the emergence of unstable
modes with pure imaginary excitation frequencies marks the
bifurcation of the static vortex states. Contrary to the case of a
single dark soliton, we have also found (genuine 3D) unstable
modes with nonvanishing real frequencies that give rise to
oscillatory dynamics.

The analyzed states shed light on the nature of the soliton-
soliton and (solitonic) vortex-vortex interactions. Contrary to
the untrapped systems, the inhomogeneous density profile
induces repulsive intervortex interactions irrespective of the
vortex circulations. In all cases, the associated repulsive forces
balance the buoyancy forces dragging the solitons and vortices
toward the trap center. In the range of chemical potential an-
alyzed, counter-rotating vortices show equilibrium distances
that increase with the interatomic interaction. For co-rotating
vortices this quantity shows a nonmonotonic behavior that
reflects a change in the vortex configuration: a 3D vortex chain
is shaped in the family of open vortex lines in order to arrest
the increasing angular momentum, whereas a new counter-
rotating vortex ring is introduced at the trap center in the
family of vortex rings to reduce the axial linear momentum.

Natural extensions of the present work are envisaged. The
evolution of the bound vortex families at higher chemical
potential or the search for additional analytical expressions for
the equilibrium distances of solitons and vortices are issues
that deserve further exploration.
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