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Abstract

The possibility to detedAspergillus versicologrowing on different building materials by a metaide sensor
array is studied. Results show that an accurassifilzation rate of 89 + 3% can be obtained conmgrén

extended linear discriminant analysis plus a fuz2yN classifier. The classification ability of théassifier is

assessed within the dataset by cross validatioratsudin a second dataset collected 5 months [&kere is a
slight decrease in the classification performamncefl the algorithms, being the most sensitivertiust accurate
one.
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1. INTRODUCTION

Excessive humidity and subsequent fungal developrasntone of the most frequent problems in buildings
(Fig. 1). Moulds can provoke allergies, infectiotsic effects, and different symptoms charactierigir the
"sick building syndrome". A relationship betweenre tlampness and/or fungal contamination and those
symptoms has been documented in many stlidies

Traditionally, fungal contamination in a buildingshbeen described as quantity of viable fungi ddtexchfrom
air, settled dust, surface and building materiahgas. The most important advantage of the methdties
possibility to identify moulds. On the other hand]y viable spores can be detected, and the resdtebtained
only after several days. Other, more rapid and numigersal methods have been investigated recentlgy
include determination of levels of fungal composeand products such as ergos-terol, (I-3)-betaagluc
mycotoxins and microbial volatile organic compoun@dVOCs). MVOCs detection seems particularly
interesting because the compounds can penetraterbanot penetrable by spores, thus they canititeilthe
detection of hidden moulds.

Several laboratories in the world use gas chromapity-mass spectrometry to detect volatile compsund
produced by moulds. Electronic nose technology seeeng interesting because, in difference with gas
chromatography, themethod is simpler, cheapertfa@desults can be obtained in situ.

1.1. Microbial volatile organic compounds

Moulds produce a wide range of volatile organic poomds. Alcohols, ketones, terpenes, esters amihsul
compounds are the prevailing or&$". The volatile production depends on the specias,substratum on
which the fungi grow, and the environmental cormaig™® "]

Various VOCs are products of microbial activity wever no single VOC seems to be a reliable indicato
biocontamination in building materidf§!. Some of the volatile compounds are detected mftem than others,
and these compounds could eventually indicate fuogatamination in buildings. In fact, VOC analysig
GC/SM in buildings with a history of sick buildirgyndrome symptoms and microbial growth revealedsuau
levels of several MVOCS® 2%,

Regarding the great diversity of microbial volatpeoduction and its dependency on many factorsgdlin
detection cannot be based on the presence of & sinpstance but on the coexistence of severalamte
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compounds. These compounds, most often reportdiffé@rent studies, are alcohols, ketones, terpeiueanes,

and sulphur compounds (Table 1).

1.2. Electronic nosefor fungal detection

Up to now, the detection of microbial volatile onfracompounds was carried out by sampling into @asibased
or TENAX adsorbents, and analysing by gas chromafdgr and mass spectrometry. This method, very specif
and sensitive, requires however experience andiadplaboratory equipment, takes time and is reédyiv
expensive. In the search for rapid and simple nu=thio detect microbial contamination electronicaesosould

be an alternative.

Fig. 1. Moulds growing under the wallpaper.

In fact, electronic noses seem to be particulasigful in cereal grains qualification, where theomfiation on
absence or presence of fungi and mycotoxins isiredjimmediately. Several recent studies showetsasor
arrays and different techniques of statistical ysial should allow detecting and classifying selgdiengal

| 31-34]

species growing on cered . Electronic noses used in these studies were abiffferentiate between
mycotoxigenic and non-mycotoxigenic straiffé 2%, and to classify grains according to the degree of

contaminatior® 24,

Table 1: Microbial volatile organic compounds frequently cefed in the literature

Chemical group Compound

Reference

Alcohols 2-Methyl-1-propanol

3-Methyl-1-butanol
2-Methyl-1-butanol
3-Octanol
I-Octen-3-ol
1-Hexanol
1-Pentanol
2-Methyl-isoborneol
Geosmin

Terpenes Limonene

Pinene
Sesquiterpenes
Ketones 3-Octanone

2-Heptanone
2-Pentanone
Furanes 3-Methylfuran

Sulphur compounds Dimethy! disulphide

[9-11, 16, 19, 21, 22, 26, 27, 30]
[9-11, 16, 18, 19, 22, 26-30]
[9, 10, 27]

[10, 19, 23, 27]

[9, 10, 18, 19, 21, 22, 25-29]
[18, 16, 11]

[18, 22]

[9,19]

[16, 19, 21, 26, 27]

[9, 18, 25]

[9, 16, 25]

[27, 30]

[16, 18, 19, 22, 24, 26-28]
[11, 16, 19, 21, 30]

[11, 16, 30]

[9, 19, 27]

[21, 27]
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Schiffman et al'*® studied the ability of electronic noses to detaotilds inside buildings. An array of 15 metal
oxide sensors was capable of discriminating amdwegfangi with up to 96% accuracy. It was also abole
recognise selected five volatile organic compouhds$ are emitted by fungi (ethanol, 2-methyl-1-@opl, 3-
pentanone, 3-octanol and 3-octanone). The comnezaimse MOSES Il was successfully used to evaluate
perceived indoor air quality. In the experimenthwitiree mould species, it permitted to determittzea mould

is present, but it did not permit to differentiamong different species. An e-nose used by Persaatl *®
could discriminate between wood infectedS®srpula lacrimansnd uninfected samples.

1.3. Objectives of the study

The objective of this study is to test performanckan e-nose to detect the presence of moulds ggowon
different building materials. In the first stagee wre interested in only detection of mould presetc side
objective is to test the capabilities of fuzeN methods compared to conventiokRalN classifiers.

2. MATERIALSAND METHODS
2.1. Construction materials

Five materials typical for Belgian houses were usedupport to cultivate moulds: plasterboard,ig@arboard,
oriented strand board (OSB), wallpaper and gluairguthe first stage of the study, 11 combinatioshese
materials were analysed (Fig. 2):

* plasterboard (PB);

« particle board or chip board (CB);
« oriented strain board (OSB);
« wall paper (WP);

* PB + WP;

* CB + WP;

* OSB + WP;

* PB + glue;

* CB + glue;

* OSB + glue;

* WP + glue.

Fig. 2: Pictures of the growing substrates (from upper teflower right): wallpaper (WP), chipboard (CB), CB WP,
oriented strain board (OSB), OSB + WP, plasterbo@B), PB + WP.
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Fig. 3: Moulds growing in the culture media, pieces of subes: chipboard and wallpaper and the stick usetransfer the
moulds from the culture to the substrates.

Prior to contamination, material samples were Btagl during at least 24 h at elevated humidity. Samples
were not sterilised.

2.2. Preparation of moulds

Four fungal species commonly found in indoor enwvinents, Aspergillus versicolor, Penicillium
aurantiogriseum, Penicillium chrysogenwand Cladosporium sphaerospermumere separately incubated on
culture medium (Malt Extract Agar, MEA) during 1 vked\fter this period, moulds were inoculated on plas
of building materials (Fig. 3). However, in thispes we only report on the results frversicolor.

2.3. Cultivation and sampling equipment

Contaminated samples were incubated in air-tighggjars (volume 500ml). The jars were closed witloaer
in Teflon. Each jar contained two pieces of the samterial of dimensions 5cm x 6cm contaminated wiib
fungal species. Forty millilitres of demineralizediter was placed in the bottom of the jar. The dasnpere
placed on top of small glass vials to avoid direshtact with water (Fig. 4). The jars were keptr@m
temperature (20-25°C) in the darkness.

Fig. 4: Moulds growing in plasterboard stored in glass jarith a water bed and a Teflon lid.

2.4. Electronic nose

An electronic nose instrument was designed andtaated at Fondation Universitaire Luxembourgeolse.
consists of a sampling unit, a sensor array, asigreal processing system (Figs. 5 and 6). Clearailrgt a 1.5
bar is fed to a mass flow controller, a humidiffleubbling through demineralized water at room terapge), a
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jar with samples, and three valves to direct theflaiv. The sensor array is composed of 12 metati@xi
semiconductor sensors that were selected in oodatain different responses for volatile compoupasiuced
by moulds. Six of the sensors are manufactured dtetir, and six others by Figaro (see Fig. 5 ferdkact
references). They are fixed on separate electiards, and placed in two separate chambers plagearallel.
Each sensor chamber has a volume of 210 cm

2.5. Sampling procedure

With the system described above, the carrier gas wapour saturated synthetic air at room temperatiir
sample cycle included a passage of clean humiddiedreference air), followed by a passage offrmm the
samples. The air flow was constant, 200 ml/min; damgptime was 3 min (time of signal stabilisation).
Recovery time for the next measurement was 50 min.

2.6. Measurement sequence

The experiment has taken place for about 8 monthsin® this time two experiments have been performed
resulting in two datasets. The contents of botlasktt are summarized in Table 2. Note that becdusme
constraints the presence of glue was not consideréde second experiment. At the first datasetarcland
contaminated materials were intercalated as folloslsan materials were measured at the beginninthef
experiment before being inoculated. A second setezin materials were measured 1 month later. il g8t of
clean materials were measured 5 months l&teversicolorwas grown for 123 days. At the second dataket,
versicolorwas grown for 101 days. In this second datasenhaieaterials, were measured again at the beginning
of the experiment, a second set 1 month laterjrd et 1.5 months later, and a fourth set 2 molates. At
every measurement session, the presentation af#terials were randomised. In summary, the firsaskt
consisted of 98 clean materials, 94 contaminategnmads for a total of 192 samples. In the secoaichskt there
were 55 clean samples, 49 contaminated samplestédal of 104 samples.

Fig. 5: Schema of the instrument used in the study.

6 "Figaro" sensors : TGS2620,
TGS2180, TGS825, TGS822,
TGS2600, TGS2602

Synthetic air Eensor chambers

Flowmeter/ 4

controller /
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o& CAPO6, CAPO7, CAP23, CAP25
o

Bubbling Sample :
system material +
moulds

B
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Fig. 6: Picture of the actual experimental setup showingotligbler, the jar under analysis, the mass flow iler and the
sensor chambers.
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Table 2: Materials and number of samples contained in the ind second datasets

Material First dataset Second dataset
Oriented strain board (OSB) 21 14
OSB + wallpaper 19 16
OSB + glue 13 0
Plaster board (PB) 21 14
PB + wallpaper 19 16
PB + glue 13 0
Chipboard (CB) 21 14
CB + WP 19 15
CB + glue 12 0
WP + glue 15 0
WP +g 19 15

3. Fuzzy k-NN classifiers

The detection of moulds can be considered as aybatassification problem. However, first visual restion of
the patterns show that the signal level is very. Iblareover, due to the presence of different grgwanbstrates,
classes can be multimod#&:nearest neighbours' decision rule, introduced by ahd Hodges®” is often

implemented for this kind of applications. Its cartgtional simplicity, its well known asymptotic kehour

(bounded by twice the optimal Bayesian error), lHek of assumptions regarding the underlying prdtigb
distribution function for the classes and the goesllts obtained in small problems still make #higorithm

widely used.

However, a drawback of the votikgNN rule is that it implicitly assumes thenearest neighbours of the input
vector, to be contained in a relatively small regiso good resolution can be obtained in the estisnaf the
conditional densities for every class. For smalining datasets this is not usually the case, haddistance
between the data point and the neighbours can legaoite large outside the regions of maximum dgnéis a
first thought, it becomes questionable if all tleégghbours have to be given equal weight in thesiletidespite
the distances to the point being classified. Altffoiseveral weighteé-NN rules have been proposé&d,
numerical experiments have shown that the resulbisalways better than a simpdeNN 941, Moreover, the
asymptotic behaviour of the conventiokalN is better than the weighted counterpart. This mézetsfor large
datasets, the use of weighte®N versions brings no clear advantages. This seemt® ri the case for small
datasets, according to MacLeod et !, as those typical of electronic noses, where lafgmsets are the
exception not the rule.

On the other hand, in cases where not all the &tasan be assumed to be in the training set, ghigical of
field analysis conditions where the matrix can eaontnalytes not present in the training set. khsituations,
we consider wise to consider that a point far afway the training dataset most probably contains apalytes
and do not permit to assign a class label on tseslmd the information gathered in the training exments. A
hard option to implement such a concept is to dioe adistance rejectas introduced by Dubuisson and
Masson™*®.. This distance reject implies that any object taoaway is classified as unknown. This distance
reject can be learnt from the training set. Howgaethis point the wealth of techniques of outtietection can
be implemented as add-ons to the bka\tN rule, either weighted or not.

Another problem encountered using BN classifier is the lack of information about thepigalness" of the
samples used to label the input space. It may dpgedrthat atypical vectors should be given lesghitén the
decision that those that are truly representativbeclasses. Due to the crisp character of thatimembership
given to make the classification, no informatioroathow the data is distributed in the input spagerovided
(apart from the samples themselves). For instantkers are given full membership to a particuldess.
Another difficulty found is that the algorithm, ana input vector is classified, does not give imfation about
the "strength" of membership to that class.

Fuzzy set theory provides a global framework tocpss information that is only partially addressgdother

methods, namely, the consideration of the distantése neighbours in the decision, the possibtlityeject the
classification of an incoming input pattern and tle@sideration of the "typicalness" of the trainotega for the
different classes. In this sense, Keller et alppeed in 1985 a fuzzy version of th&-NN rule: the so called
fuzzy k-NN algorithm.
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The fuzzy set theory is introduced both, in the dampsed to the classification and in the outpuemiclass.
Concerning the samples, they are no longer desthigea crisp label but with a fuzzy membership dedior

each class:
M

uy € (0.1, D uy <1, (1)
i=1
whereu; is the membership value of training vecjdo classi andM the number of classes. This membership
assignment is a fuzzy partition of the trainingadat. If the equality condition holds, the partitiwill be a
strong fuzzy partition.

How this membership is determined is not speciiiethe original algorithm and several proposalsenbeen
reported in the literature. For instance, Kim et*alipropose a membership assignment that is basée initial
class label but also on tHeneighbours of every training vector. Basicallylfhhe membership value is
provided by the initial knowledge about the cladsels, on the other half is provided by the locai®nment of

the sample. In another proposal, Denoeux comptiesiritial membership based on the Dempster-Shafer
theory!®. More recently Marcelloni*”), has proposed to assign the training vector meshiEs using the
supervised fuzzy c-means algorithm, originally msgd by Pedrycz and WaletzK§}. On the other hand, the
algorithm provides a membership degree for thetimaator. This allows the user to make the lastsiet
using this fuzzy information or to introduce threkts of confidence level. Following Keller's fuzkyNN 4

the proposed output assignment rule of sampbecluster is given by

S g (1/]x — x| P =)

KL lx = x| P =1y

ui(x) =

@)

where x are thek-nearest neighbours anglthe membership of training vectoto class. It can be observed that
this formula do not only takes into account the rership of the training data but also incorporaaseight
depending on the distance to the sample pattera.ekponenim takes usually the value of 2. In this case the
weight is inversely proportional to the distance.

Fig. 7: Data distribution in the first two components (expéal variance 85%): dots, clean samples; circlesuld polluted
samples. Dataset 1.
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Although better performance, compared with clakdNN, of this algorithm is claimed in the literature, som
priori difficulties can be encountered. A membepshinction for the training samples needs to béndef This
can introduce some difficulties for small samphlaring datasets, especially if the input space dsimmality is
high. When using clustering algorithms the optimainber of clusters has to be determined. This &sfilie use
of a figure of merit for cluster qualit®. In addition, if the membership values corresptme hard fuzzy
partition (e.g. using fuzzy c-means as clusterilggprethm), sometimes outlier samples are given ificant

membership to classes that originally they do g to. Under these circumstances the algoritbes dhot
become robust against outliers. Finally, the fuamyput makes necessary the introduction of a dleagon
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criterion, for instance:
h = arg max (uy), 3)
i

whereh is the given label and; the membership vector for sample
4. DATA PROCESSING AND RESULTS

For every sample under analysis the compohehthe pattern vector was formed as follows:

R — Ry

4
Rio C)]

X
whereR is the conductance of sendoin the array at the end of the sampling periodn{B), andR o the
conductance of sensbjust before sampling when exposed to the vapauragd carrier gas. It was observed
that this simple preprocessing removed to a grdanethe observed drift. In this way a 12-dimenaigpattern
vector was formed.

All the data processing algorithm development hesnbcarried out using the first dataset. The sedataset
has been reserved for evaluation.

Although k-NN classifiers can be applied directly, we introdue¢dhis point a dimensionality reduction step:
unsupervised principal component analysis (PCA)saanérvised linear discriminant analysis (LDA).

A first look to the data is the scores plot in tinst and second principal components (see FigTfis projection
explained 85% of the total variance. From this pletcan observe that the clusters greatly ovedamot seem

to be linearly separable and do not seem to besgausDespite this some degree of separation can be
appreciated between both classes.

In order to determine the optimal dimensionality RCA projection, crossvalidation was used. Datdsefas
subjected to 10 times random subsampling a subifletan60-50% split. The maximum explained variante i
cross-validation turned out to be in five dimensiowhere a 98% of the total variance was explained.

Fig. 8: LDA projection in validation: some separation haseh obtained but a great overlap still remains.
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Regarding the use of LDA for binary classificatiosimple difficulty arises. For aclass problem the maximum
LDA dimension isc —1. Then for a binary problem, the maximum LDA dirsiem is restricted to one. For
visualization purposes, we have used a two-dimeasiplot where the LDA factor is in the x-axis, \ehthe
residuals are in thg-axis. In Fig. 8, LDA separation in validation isserved. Although there is still a great deal
of overlap, some separation is consistent.

A possibility to increase the number of possibleelisions in an LDA analysis is to introduce addgio
divisions in the original classes. Here in thisecase further divided every class (moulds, no-msuid four
classes using the growing substrate as additiabal.| In this way, we generated a synthetic probigtin eight
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classes. It is clear that in this case, we willdhavmaximum of seven dimensions. The distributiothée first
two factors can be observed in Fig. 9. Again sospmamation can be observed but overlap remains. iflbé f
discriminative power will be assessed when impleimgrthe classifiers.

Regarding the implementation of the classifiersilevk-NN is straightforward, the implementation of fuzzy
NN requires some decisions regarding how to comghaefuzzy partition of the training set. As intume:d
before several options have been proposed in titratiire. Several options have been explored byatitieors
including the proposal of Kim et al.. Finally bessults were obtained with a simplified version véheach
class (or pseudo-class) was modelled by a sphagmadsian. In the case each class, consist ofpeeudo-
classes (for the sake of augmenting the LDA dinm)sithe final fuzzy set and its membership functis
computed using the fuzzy AND operator for combinihg four fuzzy sets corresponding to the growing
materials. Among the different options for the fyZd\ND operator, here we have chosen the maximum:

(ra U pp)(x)=max(pa (x), up(x)). )

Fig. 9: Data distribution in validation in the first two fawrs for the synthetic problem with eight classesi symbols are
polluted samples, blue symbols are clean samples.rferpretation of the references to color ingHigure legend, the
reader is referred to the web version of this aeticl
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Before commenting the final classification resudfsthe k-NN and fuzzyk-NN several points need further
details. First point is the final classificationleuFor this study the proposal of Eq. (3) was usid have to
remark that in this way, all the points are clasdifeither as moulds or no-moulds and no ambigaossver is
permitted. The advantages of an ambiguous answerdidseen addressed in this work. However, thistpe
requires probably the evaluation of the risk ort @ssociated to false positive and false negatives.

Second point to remark is the selection of thenopitik. This again was selected by crossvalidatiotiimi
dataset 1. The optimal result was 3. It was noted that the dependencé @ras in general weaker for fuzky
NN classifiers. Probably this is due to the weight®gidepends on the distance. Too far away traipamgts do
not contribute too much to the classifier output.

Let us first evaluate both classifiers working eitbe the raw input space or in a projection topbwer optimal
five dimensions or just to two dimensions. Rescdts be examined in Table 3. First thing to noteremearkable
classification rates about 80% for both algorithiMs.significant difference is observed between emtionalk-

NN and the Fuzzy version. The best results are obtaitexh working directly on the input space or in the
projection to five dimensions. Classification ra@grades significantly if the classifier considersy the first
two principal components. At this point our inteation is that for this data distribution, nor timethod to
compute the training set fuzzy partition or thesprece of weights do not bring advantages in terhfinal
classification rates. While the second point hasaaly been raised in some studies in the literatweecan also
guestion the method chosen to model each class giggal inspection of the bidimensional PCA plit&s not
show gaussian classes.
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Table 3: Estimation of the classification rate and its vam& using 10 times random subsampling in dataset 1

Method Raw PCA 2dim PCA 5dim
k-NN (k= 3) 81+2 70+3 79+4
Fuzzyk-NN (k= 3) 79+1 68 +3 78+2

Effect of the dimensionality reduction by PCA.

Table 4: Estimation of the classification rate and its varig by 10 times random subsampling in dataset 1

Method LDA (2 classes) (%) L DA (8 p-classes) (%)
k-NN (k= 3) 74+14 82+4
Fuzzyk-NN (k = 3, 8 prototypes) 71+8 89+3

Effect of the dimensionality reduction by LDA.

The second option explored in this work has beeretiaduation of the classifiers on an LDA projecti®esults
can be observed in Table 4. First point that cleappears is that the performance of both classifiegrades
clearly when we project the data in a single dinr@nsHowever, a clear difference appears when \egepr the
data in an LDA subspace of five dimensions (optimalue computed using crossvalidation). While the
performance of the conventionkiNN recovers the values found before in Table 3, \@neslightly better
82 + 4, the performance of fuzzg-NN summits to 89 +3. Due to the computed varianedues, this
improvement seems to be significant. An importafiecence to explain this difference is the mode]liof every
class by the union of four fuzzy sets correspondinthe different growing substrates. It can beuadgthat the
lack of gaussianity observed in the PCA plots odggs from the presence of different growing maleri
Although probably the pseudo-classes are not pedpberical gaussians, a better improvement of the
description of the input data seems to be accohmadis Other attempts to increase the complexityhaf t
behaviour, for instance using two gaussians peudiselass failed to provide good results. This can b
understood in the terms of the complexity contaéirig into account the reduced set of data availabl

Finally, it is important to asses the stabilitytioé classifier for future classification of unknosamples. For this
purpose we have reserved a the second datasetparineent performed in the same conditions asitsedne.
This second experiment started 5 months after ttst éixperiment and was carried out during more than
3 months.

In order to evaluate this stability we have plottked second dataset in first and second principial extracted
from the first dataset (Fig. 10). Basically theusture of the data is pretty similar, however aghsldrift can be
observed. The reason of this drift can be attribut® sensor ageing or just changes of the average r
temperature.

Fig. 10: Projection of dataset 2 (new data) on the princigek of dataset 1 (old data).

Autoescaled data

+ Mo moulds Old data ¥
O Moulds Old data >
O No moulds New data *
% Moulds New data 1




Published in: Sensors & Actuators B: Chemical (20086l. 106, pp. 52-60
Status: Postprint (Author’s version)

Table5: Stability of the classifier

PCA (5dim) L DA (S classes)
k-NN 794 82+4
75+4 74+3
Fuzzyk-NN 78+2 89+3
73+3 78 £3

On white background results for the dataset 1. @y gackground results for dataset 2.

The classifiers designed with the first dataset Hmen applied to this second dataset. The reseltscampared
in Table 5. It can be observed how the classificasibility decreases in all algorithms. This remarkaticeable
although not drastic taking into account that necalibration was performed. The most important desgea
however, appears in the most accurate classifidrarfirst dataset. It seems to be clear, thafubey partition
of the input space obtained from the first dat&sab longer representative in the second dathsétg possibly
this the origin of the decrease in classificatibility. This result could be expected, and from paint of view
do not contradicts the results obtained in the fietaset. It just shows that accurate modellingheftraining
data distribution suffers under drift conditionsskems then, that in order to keep high classificaresults,
additional recalibration or drift counteractiomiseded.

5. CONCLUSION

In the presented laboratory conditions the preseasicA. versicolorcan be detected with a high level of
accuracy: 89 * 3%, using a fuzkyNN classifier, despite the use of a high variety afwgng substrates. The
best convention&-NN classifier gave slightly worse results with a 82%. The highest accuracy was obtained
by projecting the patterns using LDA with eight pdeuclasses, obtained as the result of the binaggnrce of
moulds in four different kinds of substrates. Thasslfier used was a fuzkyNN classifier, that used a fuzzy
input partition obtained modelling each class véatlspherical gaussian membership function. The fivary
fuzzy partition of the training dataset was obtdir®y the fuzzy AND of the fuzzy sets of the indivad
substrates for each class.

The obtained classifiers were quite stable whepeétformance was measured in a second dataset regdsur
months later. However, it was observed that evéimeifLDA + fuzzyk-NN classifier still gave the best results in
this verification set (78 + 3% C.R.), it was thasdifier that showed a higher decrease in theifitad®n rate.
This is possibly due to the more accurate modeliihthe input fuzzy partition that was not stabledenthe
drift.
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