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Abstract 

The possibility to detect Aspergillus versicolor growing on different building materials by a metal oxide sensor 
array is studied. Results show that an accurate classification rate of 89 ± 3% can be obtained combining an 
extended linear discriminant analysis plus a fuzzy k-NN classifier. The classification ability of the classifier is 
assessed within the dataset by cross validation and also in a second dataset collected 5 months later. There is a 
slight decrease in the classification performance for all the algorithms, being the most sensitive the most accurate 
one. 
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1. INTRODUCTION 

Excessive humidity and subsequent fungal development are one of the most frequent problems in buildings 
(Fig. 1). Moulds can provoke allergies, infections, toxic effects, and different symptoms characteristic for the 
"sick building syndrome". A relationship between the dampness and/or fungal contamination and those 
symptoms has been documented in many studies [1-8]. 

Traditionally, fungal contamination in a building has been described as quantity of viable fungi determined from 
air, settled dust, surface and building material samples. The most important advantage of the method is the 
possibility to identify moulds. On the other hand, only viable spores can be detected, and the results are obtained 
only after several days. Other, more rapid and more universal methods have been investigated recently. They 
include determination of levels of fungal components and products such as ergos-terol, (l-3)-beta-glucan, 
mycotoxins and microbial volatile organic compounds (MVOCs). MVOCs detection seems particularly 
interesting because the compounds can penetrate barriers not penetrable by spores, thus they can facilitate the 
detection of hidden moulds. 

Several laboratories in the world use gas chromatography-mass spectrometry to detect volatile compounds 
produced by moulds. Electronic nose technology seems very interesting because, in difference with gas 
chromatography, themethod is simpler, cheaper, and the results can be obtained in situ. 

1.1.  Microbial volatile organic compounds 

Moulds produce a wide range of volatile organic compounds. Alcohols, ketones, terpenes, esters and sulphur 
compounds are the prevailing ones [9-11]. The volatile production depends on the species, the substratum on 
which the fungi grow, and the environmental conditions [10-17]. 

Various VOCs are products of microbial activity, however no single VOC seems to be a reliable indicator of 
biocontamination in building materials [18]. Some of the volatile compounds are detected more often than others, 
and these compounds could eventually indicate fungal contamination in buildings. In fact, VOC analysis by 
GC/SM in buildings with a history of sick building syndrome symptoms and microbial growth revealed unusual 
levels of several MVOCs [19, 20]. 

Regarding the great diversity of microbial volatile production and its dependency on many factors, fungal 
detection cannot be based on the presence of a single substance but on the coexistence of several relevant 
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compounds. These compounds, most often reported in different studies, are alcohols, ketones, terpenes, furanes, 
and sulphur compounds (Table 1). 

1.2.  Electronic nose for fungal detection 

Up to now, the detection of microbial volatile organic compounds was carried out by sampling into carbon-based 
or TENAX adsorbents, and analysing by gas chromatography and mass spectrometry. This method, very specific 
and sensitive, requires however experience and special laboratory equipment, takes time and is relatively 
expensive. In the search for rapid and simple methods to detect microbial contamination electronic noses could 
be an alternative.  

Fig. 1: Moulds growing under the wallpaper. 

 

In fact, electronic noses seem to be particularly useful in cereal grains qualification, where the information on 
absence or presence of fungi and mycotoxins is required immediately. Several recent studies showed that sensor 
arrays and different techniques of statistical analysis should allow detecting and classifying selected fungal 
species growing on cereals [24, 31-34]. Electronic noses used in these studies were able to differentiate between 
mycotoxigenic and non-mycotoxigenic strains [33, 24], and to classify grains according to the degree of 
contamination [31, 24]. 

Table 1: Microbial volatile organic compounds frequently reported in the literature 

Chemical group Compound Reference 

2-Methyl-1-propanol [9-11, 16, 19, 21, 22, 26, 27, 30] 

3-Methyl-1-butanol [9-11, 16, 18, 19, 22, 26-30] 
2-Methyl-1-butanol [9, 10, 27] 
3-Octanol [10, 19, 23, 27] 
l-Octen-3-ol [9, 10, 18, 19, 21, 22, 25-29] 
1-Hexanol [18, 16, 11] 
1-Pentanol [18, 22] 
2-Methyl-isoborneol [9,19] 

Alcohols 

Geosmin [16, 19, 21, 26, 27] 
Limonene [9, 18, 25] Terpenes 

Pinene [9, 16, 25] 
Sesquiterpenes  [27, 30] 

3-Octanone [16, 18, 19, 22, 24, 26-28] 
2-Heptanone [11, 16, 19, 21, 30] 

Ketones 

2-Pentanone [11, 16, 30] 
Furanes 3-Methylfuran [9, 19, 27] 

Sulphur compounds Dimethyl disulphide [21, 27] 
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Schiffman et al. [35] studied the ability of electronic noses to detect moulds inside buildings. An array of 15 metal 
oxide sensors was capable of discriminating among the fungi with up to 96% accuracy. It was also able to 
recognise selected five volatile organic compounds that are emitted by fungi (ethanol, 2-methyl-1-propanol, 3-
pentanone, 3-octanol and 3-octanone). The commercial e-nose MOSES II was successfully used to evaluate 
perceived indoor air quality. In the experiment with three mould species, it permitted to determinate that a mould 
is present, but it did not permit to differentiate among different species. An e-nose used by Persaud et al. [36] 
could discriminate between wood infected by Serpula lacrimans and uninfected samples. 

1.3. Objectives of the study 

The objective of this study is to test performances of an e-nose to detect the presence of moulds growing on 
different building materials. In the first stage, we are interested in only detection of mould presence. A side 
objective is to test the capabilities of fuzzy k-NN methods compared to conventional k-NN classifiers. 

2. MATERIALS AND METHODS 

2.1. Construction materials 

Five materials typical for Belgian houses were used as support to cultivate moulds: plasterboard, particle board, 
oriented strand board (OSB), wallpaper and glue. During the first stage of the study, 11 combinations of these 
materials were analysed (Fig. 2): 

• plasterboard (PB); 
• particle board or chip board (CB);  
• oriented strain board (OSB); 
• wall paper (WP); 
• PB + WP; 
• CB + WP; 
• OSB + WP; 
• PB + glue; 
• CB + glue; 
• OSB + glue; 
• WP + glue. 

Fig. 2: Pictures of the growing substrates (from upper left to lower right): wallpaper (WP), chipboard (CB), CB + WP, 
oriented strain board (OSB), OSB + WP, plasterboard (PB), PB + WP. 
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Fig. 3: Moulds growing in the culture media, pieces of substrates: chipboard and wallpaper and the stick used to transfer the 
moulds from the culture to the substrates. 

 

Prior to contamination, material samples were stabilised during at least 24 h at elevated humidity. The samples 
were not sterilised. 

2.2.  Preparation of moulds 

Four fungal species commonly found in indoor environments, Aspergillus versicolor, Penicillium 
aurantiogriseum, Penicillium chrysogenum and Cladosporium sphaerospermum, were separately incubated on 
culture medium (Malt Extract Agar, MEA) during 1 week. After this period, moulds were inoculated on samples 
of building materials (Fig. 3). However, in this paper we only report on the results for A. versicolor. 

2.3.   Cultivation and sampling equipment 

Contaminated samples were incubated in air-tight glass jars (volume 500ml). The jars were closed with a cover 
in Teflon. Each jar contained two pieces of the same material of dimensions 5cm x 6cm contaminated with one 
fungal species. Forty millilitres of demineralized water was placed in the bottom of the jar. The samples were 
placed on top of small glass vials to avoid direct contact with water (Fig. 4). The jars were kept at room 
temperature (20-25°C) in the darkness.  

Fig. 4: Moulds growing in plasterboard stored in glass jars with a water bed and a Teflon lid. 

 

2.4.  Electronic nose 

An electronic nose instrument was designed and constructed at Fondation Universitaire Luxembourgeoise. It 
consists of a sampling unit, a sensor array, and a signal processing system (Figs. 5 and 6). Clean dry air at a 1.5 
bar is fed to a mass flow controller, a humidifier (bubbling through demineralized water at room temperature), a 
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jar with samples, and three valves to direct the air flow. The sensor array is composed of 12 metal oxide 
semiconductor sensors that were selected in order to obtain different responses for volatile compounds produced 
by moulds. Six of the sensors are manufactured by Capteur, and six others by Figaro (see Fig. 5 for the exact 
references). They are fixed on separate electronic cards, and placed in two separate chambers placed in parallel. 
Each sensor chamber has a volume of 210 cm3. 

2.5.  Sampling procedure 

With the system described above, the carrier gas was vapour saturated synthetic air at room temperature. A 
sample cycle included a passage of clean humidified air (reference air), followed by a passage of air from the 
samples. The air flow was constant, 200 ml/min; sampling time was 3 min (time of signal stabilisation). 
Recovery time for the next measurement was 50 min. 

2.6.  Measurement sequence 

The experiment has taken place for about 8 months. During this time two experiments have been performed, 
resulting in two datasets. The contents of both datasets are summarized in Table 2. Note that because of time 
constraints the presence of glue was not considered in the second experiment. At the first dataset, clean and 
contaminated materials were intercalated as follows: clean materials were measured at the beginning of the 
experiment before being inoculated. A second set of clean materials were measured 1 month later. A third set of 
clean materials were measured 5 months later. A. versicolor was grown for 123 days. At the second dataset, A. 
versicolor was grown for 101 days. In this second dataset clean materials, were measured again at the beginning 
of the experiment, a second set 1 month later, a third set 1.5 months later, and a fourth set 2 months later. At 
every measurement session, the presentation of the materials were randomised. In summary, the first dataset 
consisted of 98 clean materials, 94 contaminated materials for a total of 192 samples. In the second dataset there 
were 55 clean samples, 49 contaminated samples for a total of 104 samples.  

Fig. 5: Schema of the instrument used in the study. 

  

Fig. 6: Picture of the actual experimental setup showing the bubbler, the jar under analysis, the mass flow controller and the 
sensor chambers. 
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Table 2: Materials and number of samples contained in the first and second datasets 

Material First dataset Second dataset 

Oriented strain board (OSB) 21 14 
OSB + wallpaper 19 16 
OSB + glue 13 0 
Plaster board (PB) 21 14 
PB + wallpaper 19 16 
PB + glue 13 0 
Chipboard (CB) 21 14 
CB + WP 19 15 
CB + glue 12 0 
WP + glue 15 0 
WP +g 19 15 

 

3. Fuzzy k-NN classifiers  

The detection of moulds can be considered as a binary classification problem. However, first visual inspection of 
the patterns show that the signal level is very low. Moreover, due to the presence of different growing substrates, 
classes can be multimodal. k-nearest neighbours' decision rule, introduced by Fix and Hodges [37] is often 
implemented for this kind of applications. Its computational simplicity, its well known asymptotic behaviour 
(bounded by twice the optimal Bayesian error), the lack of assumptions regarding the underlying probability 
distribution function for the classes and the good results obtained in small problems still make this algorithm 
widely used. 

However, a drawback of the voting k-NN rule is that it implicitly assumes the k-nearest neighbours of the input 
vector, to be contained in a relatively small region, so good resolution can be obtained in the estimates of the 
conditional densities for every class. For small training datasets this is not usually the case, and the distance 
between the data point and the neighbours can become quite large outside the regions of maximum density. As a 
first thought, it becomes questionable if all the neighbours have to be given equal weight in the decision despite 
the distances to the point being classified. Although several weighted k-NN rules have been proposed [38], 
numerical experiments have shown that the result is not always better than a simple k-NN [39-41]. Moreover, the 
asymptotic behaviour of the conventional k-NN is better than the weighted counterpart. This means that for large 
datasets, the use of weighted k-NN versions brings no clear advantages. This seems not to be the case for small 
datasets, according to MacLeod et al. [42], as those typical of electronic noses, where large datasets are the 
exception not the rule. 

On the other hand, in cases where not all the classes can be assumed to be in the training set, this is typical of 
field analysis conditions where the matrix can contain analytes not present in the training set. In such situations, 
we consider wise to consider that a point far away from the training dataset most probably contains new analytes 
and do not permit to assign a class label on the basis of the information gathered in the training experiments. A 
hard option to implement such a concept is to introduce a distance reject as introduced by Dubuisson and 
Masson [43]. This distance reject implies that any object too far away is classified as unknown. This distance 
reject can be learnt from the training set. However, at this point the wealth of techniques of outlier detection can 
be implemented as add-ons to the basic k-NN rule, either weighted or not. 

Another problem encountered using the k-NN classifier is the lack of information about the "typicalness" of the 
samples used to label the input space. It may be argued that atypical vectors should be given less weight in the 
decision that those that are truly representative of the classes. Due to the crisp character of the input membership 
given to make the classification, no information about how the data is distributed in the input space is provided 
(apart from the samples themselves). For instance outliers are given full membership to a particular class. 
Another difficulty found is that the algorithm, once a input vector is classified, does not give information about 
the "strength" of membership to that class. 

Fuzzy set theory provides a global framework to process information that is only partially addressed by other 
methods, namely, the consideration of the distances of the neighbours in the decision, the possibility to reject the 
classification of an incoming input pattern and the consideration of the "typicalness" of the training data for the 
different classes. In this sense, Keller et al. proposed in 1985 [44] a fuzzy version of the k-NN rule: the so called 
fuzzy k-NN algorithm. 
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The fuzzy set theory is introduced both, in the samples used to the classification and in the output given class. 
Concerning the samples, they are no longer described by a crisp label but with a fuzzy membership degree for 
each class: 

 
where uij is the membership value of training vector j to class i and M the number of classes. This membership 
assignment is a fuzzy partition of the training dataset. If the equality condition holds, the partition will be a 
strong fuzzy partition. 

How this membership is determined is not specified in the original algorithm and several proposals have been 
reported in the literature. For instance, Kim et al. [45] propose a membership assignment that is based in the initial 
class label but also on the k-neighbours of every training vector. Basically, half the membership value is 
provided by the initial knowledge about the class labels, on the other half is provided by the local environment of 
the sample. In another proposal, Denoeux computes the initial membership based on the Dempster-Shafer 
theory [46]. More recently Marcelloni [47], has proposed to assign the training vector memberships using the 
supervised fuzzy c-means algorithm, originally proposed by Pedrycz and Waletzky [48]. On the other hand, the 
algorithm provides a membership degree for the input vector. This allows the user to make the last decision 
using this fuzzy information or to introduce thresholds of confidence level. Following Keller's fuzzy k-NN [44] 
the proposed output assignment rule of sample x to cluster i is given by 

 

where xj are the k-nearest neighbours and uij  the membership of training vector j to class i. It can be observed that 
this formula do not only takes into account the membership of the training data but also incorporates a weight 
depending on the distance to the sample pattern. The exponent m takes usually the value of 2. In this case the 
weight is inversely proportional to the distance. 

Fig. 7: Data distribution in the first two components (explained variance 85%): dots, clean samples; circles, mould polluted 
samples. Dataset 1. 

  

Although better performance, compared with classic k-NN, of this algorithm is claimed in the literature, some a 
priori difficulties can be encountered. A membership function for the training samples needs to be defined. This 
can introduce some difficulties for small sample training datasets, especially if the input space dimensionality is 
high. When using clustering algorithms the optimal number of clusters has to be determined. This implies the use 
of a figure of merit for cluster quality [49]. In addition, if the membership values correspond to a hard fuzzy 
partition (e.g. using fuzzy c-means as clustering algorithm), sometimes outlier samples are given significant 
membership to classes that originally they do not belong to. Under these circumstances the algorithm does not 
become robust against outliers. Finally, the fuzzy output makes necessary the introduction of a classification 
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criterion, for instance: 

 
where h is the given label and uij the membership vector for sample j. 

4. DATA PROCESSING AND RESULTS 

For every sample under analysis the component l of the pattern vector was formed as follows: 

 

where Rl is the conductance of sensor l in the array at the end of the sampling period (3 min), and Rl,0 the 
conductance of sensor l just before sampling when exposed to the vapour saturated carrier gas. It was observed 
that this simple preprocessing removed to a great extent the observed drift. In this way a 12-dimensional pattern 
vector was formed. 

All the data processing algorithm development has been carried out using the first dataset. The second dataset 
has been reserved for evaluation. 

Although k-NN classifiers can be applied directly, we introduced at this point a dimensionality reduction step: 
unsupervised principal component analysis (PCA) and supervised linear discriminant analysis (LDA). 

A first look to the data is the scores plot in the first and second principal components (see Fig. 7). This projection 
explained 85% of the total variance. From this plot we can observe that the clusters greatly overlap, do not seem 
to be linearly separable and do not seem to be gaussian. Despite this some degree of separation can be 
appreciated between both classes. 

In order to determine the optimal dimensionality for PCA projection, crossvalidation was used. Dataset 1 was 
subjected to 10 times random subsampling a subset with a 50-50% split. The maximum explained variance in 
cross-validation turned out to be in five dimensions, where a 98% of the total variance was explained. 

Fig. 8: LDA projection in validation: some separation has been obtained but a great overlap still remains. 

 

Regarding the use of LDA for binary classification a simple difficulty arises. For a c class problem the maximum 
LDA dimension is c — 1. Then for a binary problem, the maximum LDA dimension is restricted to one. For 
visualization purposes, we have used a two-dimensional plot where the LDA factor is in the x-axis, while the 
residuals are in the y-axis. In Fig. 8, LDA separation in validation is observed. Although there is still a great deal 
of overlap, some separation is consistent. 

A possibility to increase the number of possible dimensions in an LDA analysis is to introduce additional 
divisions in the original classes. Here in this case, we further divided every class (moulds, no-moulds) in four 
classes using the growing substrate as additional label. In this way, we generated a synthetic problem with eight 
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classes. It is clear that in this case, we will have a maximum of seven dimensions. The distribution in the first 
two factors can be observed in Fig. 9. Again some separation can be observed but overlap remains. The final 
discriminative power will be assessed when implementing the classifiers. 

Regarding the implementation of the classifiers, while k-NN is straightforward, the implementation of fuzzy k-
NN requires some decisions regarding how to compute the fuzzy partition of the training set. As introduced 
before several options have been proposed in the literature. Several options have been explored by the authors 
including the proposal of Kim et al.. Finally best results were obtained with a simplified version where each 
class (or pseudo-class) was modelled by a spherical gaussian. In the case each class, consist of four pseudo-
classes (for the sake of augmenting the LDA dimension), the final fuzzy set and its membership function is 
computed using the fuzzy AND operator for combining the four fuzzy sets corresponding to the growing 
materials. Among the different options for the fuzzy AND operator, here we have chosen the maximum: 

 

Fig. 9: Data distribution in validation in the first two factors for the synthetic problem with eight classes: red symbols are 
polluted samples, blue symbols are clean samples. For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article. 

 

Before commenting the final classification results of the k-NN and fuzzy k-NN several points need further 
details. First point is the final classification rule. For this study the proposal of Eq. (3) was used. We have to 
remark that in this way, all the points are classified either as moulds or no-moulds and no ambiguous answer is 
permitted. The advantages of an ambiguous answer has not been addressed in this work. However, this question 
requires probably the evaluation of the risk or cost associated to false positive and false negatives. 

Second point to remark is the selection of the optimal k. This again was selected by crossvalidation within 
dataset 1. The optimal result was k = 3. It was noted that the dependence on k was in general weaker for fuzzy k-
NN classifiers. Probably this is due to the weights given depends on the distance. Too far away training points do 
not contribute too much to the classifier output. 

Let us first evaluate both classifiers working either on the raw input space or in a projection to the power optimal 
five dimensions or just to two dimensions. Results can be examined in Table 3. First thing to note are remarkable 
classification rates about 80% for both algorithms. No significant difference is observed between conventional k-
NN and the Fuzzy version. The best results are obtained when working directly on the input space or in the 
projection to five dimensions. Classification rate degrades significantly if the classifier considers only the first 
two principal components. At this point our interpretation is that for this data distribution, nor the method to 
compute the training set fuzzy partition or the presence of weights do not bring advantages in terms of final 
classification rates. While the second point has already been raised in some studies in the literature, we can also 
question the method chosen to model each class since visual inspection of the bidimensional PCA plots does not 
show gaussian classes. 
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Table 3: Estimation of the classification rate and its variance using 10 times random subsampling in dataset 1 

Method Raw PCA 2 dim PCA 5 dim 

k-NN (k = 3) 81 ± 2 70 ± 3 79 ± 4 
Fuzzy k-NN (k = 3) 79 ± 1 68 ± 3 78 ± 2 

Effect of the dimensionality reduction by PCA. 

Table 4: Estimation of the classification rate and its variance by 10 times random subsampling in dataset 1 

Method LDA (2 classes) (%) LDA (8 p-classes) (%) 

k-NN (k = 3) 74 ± 14 82 ± 4 
Fuzzy k-NN (k = 3, 8 prototypes) 71 ± 8 89 ± 3 

Effect of the dimensionality reduction by LDA. 

The second option explored in this work has been the evaluation of the classifiers on an LDA projection. Results 
can be observed in Table 4. First point that clearly appears is that the performance of both classifiers degrades 
clearly when we project the data in a single dimension. However, a clear difference appears when we project the 
data in an LDA subspace of five dimensions (optimal value computed using crossvalidation). While the 
performance of the conventional k-NN recovers the values found before in Table 3, or even slightly better 
82 ± 4, the performance of fuzzy k-NN summits to 89 ± 3. Due to the computed variance values, this 
improvement seems to be significant. An important difference to explain this difference is the modelling of every 
class by the union of four fuzzy sets corresponding to the different growing substrates. It can be argued that the 
lack of gaussianity observed in the PCA plots originates from the presence of different growing materials. 
Although probably the pseudo-classes are not perfect spherical gaussians, a better improvement of the 
description of the input data seems to be accomplished. Other attempts to increase the complexity of this 
behaviour, for instance using two gaussians per pseudo-class failed to provide good results. This can be 
understood in the terms of the complexity control taking into account the reduced set of data available. 

Finally, it is important to asses the stability of the classifier for future classification of unknown samples. For this 
purpose we have reserved a the second dataset: an experiment performed in the same conditions as the first one. 
This second experiment started 5 months after the first experiment and was carried out during more than 
3 months. 

In order to evaluate this stability we have plotted the second dataset in first and second principal axis extracted 
from the first dataset (Fig. 10). Basically the structure of the data is pretty similar, however an slight drift can be 
observed. The reason of this drift can be attributed to sensor ageing or just changes of the average room 
temperature. 

Fig. 10: Projection of dataset 2 (new data) on the principal axis of dataset 1 (old data). 
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Table 5: Stability of the classifier 

 PCA (5 dim) LDA (S classes) 

79 ± 4 82 ± 4 k-NN 
75 ± 4 74 ± 3 
78 ± 2 89 ± 3 Fuzzy k-NN 

73 ± 3 78 ±3 
On white background results for the dataset 1. On grey background results for dataset 2. 

The classifiers designed with the first dataset have been applied to this second dataset. The results are compared 
in Table 5. It can be observed how the classification ability decreases in all algorithms. This remark is noticeable 
although not drastic taking into account that no recalibration was performed. The most important decrease, 
however, appears in the most accurate classifier in the first dataset. It seems to be clear, that the fuzzy partition 
of the input space obtained from the first dataset is no longer representative in the second dataset, being possibly 
this the origin of the decrease in classification ability. This result could be expected, and from our point of view 
do not contradicts the results obtained in the first dataset. It just shows that accurate modelling of the training 
data distribution suffers under drift conditions. It seems then, that in order to keep high classification results, 
additional recalibration or drift counteraction is needed. 

5. CONCLUSION 

In the presented laboratory conditions the presence of A. versicolor can be detected with a high level of 
accuracy: 89 ± 3%, using a fuzzy k-NN classifier, despite the use of a high variety of growing substrates. The 
best conventional k-NN classifier gave slightly worse results with a 82 ± 4%. The highest accuracy was obtained 
by projecting the patterns using LDA with eight pseudo-classes, obtained as the result of the binary presence of 
moulds in four different kinds of substrates. The classifier used was a fuzzy k-NN classifier, that used a fuzzy 
input partition obtained modelling each class with a spherical gaussian membership function. The final binary 
fuzzy partition of the training dataset was obtained by the fuzzy AND of the fuzzy sets of the individual 
substrates for each class. 

The obtained classifiers were quite stable when its performance was measured in a second dataset measured 5 
months later. However, it was observed that even if the LDA + fuzzy k-NN classifier still gave the best results in 
this verification set (78 ± 3% C.R.), it was the classifier that showed a higher decrease in the classification rate. 
This is possibly due to the more accurate modelling of the input fuzzy partition that was not stable under the 
drift. 
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