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Abstract: This work explores the detection of moulds growimglifferent building materials by using a metal
oxide sensor array. Four moulds species have lm®idered. Pattern classification provides detaatites on
the order of 80-85% for different species. Drifgdedes only slightly these values subsequent teginrths
later.
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1. Introduction

One of the most frequent problems in buildinghesfungal development caused by excessive humigitygal
contamination can produce infections, allergiesicteffects and other symptoms documented in maugies
and characteristic for the "sick building syndrorfie'8].

Traditionally, fungal contamination in a building$ibeen described as quantity of viable sporesrdieted

from air, settled dust, surface and building matesamples and results of measures are obtainedsafteral
days. New methods involves the detection of fusgahponents, mycotoxins and microbial volatile oigan
compounds (MVOCSs). This is interesting because @amgs can penetrate barriers not penetrable byspor
facilitating the detection of hidden moulds. Théedtion of these compounds was previously carrighy
sampling into carbon-based or TENAX adsorbents,aaradysing by gas chromatography-mass spectrometry.
However this method, very sensitive and speciéquires experience and special laboratory equiprtedes
time and is relatively expensive. The electronisentechnology, in difference with gas chromatogyah
simpler, cheaper, and the results can be obtamsidu.

Moulds produce a wide range of MVOCSs: alcoholsphkes, terpenes, esters and sulphur compounds [F-1é]
production depends on environmental conditionssffexies and the substrate on which the fungi ¢t@wi7].
However, no single VOC seems to be a reliable atdicof biocontamination [18]. For this reason fahg
detection cannot be based on a single substananlibe coexistence of several compounds.

The authors have already addressed the detect@siafjle mould species, namdélgpergillus versicolorin a
previous paper [19]. In that paper a table wittetailied list of VOCs produced by moulds can be tbutere

this work will be completed with more extensive sw@ments involving three additional mould species:

Penicillium aurantiogriseum, Penicillium chrysogenandCladosporium sphaerospermum.

Fungal detection using electronic noses has bemnqusly addressed. Schiffman et al. [20] studredability
of electronic noses to detect moulds inside bujdirAn array of 15 metal oxide sensors was capble
discriminating among the fungi and it was also dbleecognise selected five volatile organic comyatsu
emitted by fungi [21] studies showed that a conidiggbolymer sensor array was able to distinguighviilatile
patterns produced by three species of moulds ggpamthree types of paper, permitting the earlgct&n of
fungal contamination in library materials and avelsi [22] predicts the potential of electronic nofees
improving the possibility to detect individual fuslgspecies as well as the degree of mycotoxin caingion of
food and animal feeds [23]. Investigated the pad#silof detecting fungal volatile metabolites amslicators of
mycotoxins in cereal grain, using both an electemise and gas chromatography combined with mass
spectrometry (GC-MS). Other studies [24-27] shotted sensor arrays and different techniques otz
analysis allow detecting and classifying selectawjfil species growing on cereals. These technicprebe
used for quality classification of grain. An e-nased by Persaud et al. [28] could discriminatevbeh wood
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infected bySerpula lacrimanand uninfected samples. And [29] compared two maat nose systems
employing conducting polymer sensor arrays forgady detection and discrimination between badteria
species, fungal spores and trace amounts of piesicin this paper, the capability of a metal oxjde sensor
array to detect the presence of diverse mould spegbwing on a variety of building materials igantigated.
Section 2 presents the materials and methods ngbdiwork. Section 3 presents the methodology#&itern
analysis. Section 4 presents the obtained resultimally Section 5 draws some conclusions.

2. Materials and methods

An electronic nose instrument was designed andtaarisd at the Université de Liege. It consista sampling
unit, a sensor array, and a signal processingsy@tegs. 1 and 2). The gas sensor array contaimaetal oxide
sensors in two separate chambers placed in pata#ieh sensor chamber has a volume of 210 The sensors
were selected in order to obtain different respsriisevolatile compounds produced by moulds. Sitheim
were manufactured by Capteur; CAP01, CAP03, CARZ®07, CAP23, CAP25, and six from Figaro;
TGS2620, TGS2180, TGS825, TGS822, TGS2600, TGS2602.

Four different materials typical of Belgian housese used as substrates for mould growing: plassed)
particleboard (or chipboard), oriented strain baand wallpaper. Some combinations of them were also
analysed; plasterboard with wallpaper and glugjgeboard with wallpaper and glue and orientedistboard
with wallpaper and glue. The four fungal speciesenseparately incubated on culture medium, Maltdext
Agar, for 1 week. After this period, moulds werednlated into the building materials. Contaminagathples
were incubated in airtight glass jars (500 ml) etbsvith a Teflon cover. Each jar contained two pgeof the
same material of dimensions 5 cm x 6 cm contamihaith one fungal species and 40 ml of deminerdlise
water in its bottom, for keeping the high degre@widity that moulds need to grow. The samplesvpdaced
on top of small glass vials to avoid direct contaith water. The jars were kept at room temperaitutae
darkness during the whole duration of the experimen

For each fungal species, two sequential experimeats carried out, resulting in two datasets cosipgi the
growth of the moulds during 4 months. Clean andammated materials (corresponding to differencim
were randomly presented to the gas sensor arraygdinis time. Contaminated samples were preseantedder
according to the species of moulds, in this wastdisets oA. versicolorfollowed byP. chrysogenumvere
firstly measured, and then seconds sets of bottiepa the same order. After that first sets of

C. sphaerospermuifollowed byP. aurantiogriseunwere presented to the electronic nose and finaltpisds
sets of the two species were measured in the sedre. dhe contents of all datasets are summariz@elble 1.

The electronic nose has the following operatioeanldry air is fed to a mass flow controller, thea
humidifier and then to a jar with samples to sweepvolatiles accumulated in the headspace. Tveethray
valves commute clean air or the jar headspaceectgdk sensors chambers (see Fig. 1). A sampleiogtleled
a passage of clean humidified air (reference falflpwed by a passage of air from the samples duBimin
(time of signal stabilisation) at 200 ml/min of ctant air flow.

Fig. 1: Schema of the instrument used in the study.
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Fig. 2: Picture of the actual experimental setup showirgglihbbler, the jar under analysis, the mass flow
controller and the sensor chambers.

3. Signal and data processing

The sensor signals were preprocessed by takingtizeof the resistance at the end of the samgdavipd (3
min) and the baseline resistance, just before sagplhen exposed to the vapour saturated carrgrlgahis
way every measurement was constructed with 12 sesgmals, assembling a 12 dimensional vector. évew
two sensors (CAP23 and TGS2180) were removed beadweficient behavior observed by visual inspercti
of the sensor patterns, therefore the formed pattector has 10 dimensions.

Table 1: Number of clean and contaminated samples for eabktsate material and specie of mould in the two
datasets

Materials Samples Type of mould
A. versicolor P. chrysogenum C. sphaerospermul P. aurantiogriseum

First Second First Second First Second First Second

set set set set set set set set
Oriented strain Clean 27 16 21 22 15 20 15 26
board Contaminate( 27 16 11 18 16 16 12 12
Plasterboard Clean 27 16 21 22 18 22 15 27
Contaminate(27 16 11 18 16 17 15 11
Particleboar d Clean 27 15 21 21 16 19 14 27
Contaminate(25 16 11 18 17 17 15 12
Wallpaper Clean 17 8 14 11 7 10 8 13
Contaminate(17 8 7 8 9 7 7 7
Total Clean 98 55 77 76 56 71 52 93
Contaminate(96 56 40 62 58 57 49 42

As already mentioned, two datasets were colleaiethfs study for each species. First dataset wad for all
the data processing algorithm development, andebend one for a posterior evaluation (includireg th
evaluation of drift), since it was collected 4 munafter the first one.

For validation of the classifier results on firsttalset the following strategy has been followeds Thataset (for
each mould species or all together) has been dhidévo equally sized random partitions. One pat been
used for classifier design and optimization while second half is used for classifier testing. Phécess is
repeated ten times and the average classificaditens retained. Also the standard deviation otcthssification
rate is estimated.
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Later, the robustness of the electronic nose fanlchdetection was tested by including a wide varadtmoulds
and building materials. Classification of each sp@ef mould is considered, as well as the capgtilita
classifier to generalize to unknown mould speanes present in the training set). Finally also ¢hessification
of samples with an unknown substrate was explored.

Our primary objective was the binary classificatafrmoulds and no-moulds disregarding the particulagal
species and the substrate material. For this parpddahalanobis classifier was applied on the rata.drhe
obtained results are on the same order than thesa®n in the previous paper [19]. Although theesam
classifiers as in [19] were considered; namely k-fidzy-kNN with different initial membership funehs on
dimensional reduced space and on raw data (a refi€wzzy k-NN can be found in our previous padéq]
we found that the application of complex classffien our small database did not provide any adgentae
obtained classification rates were not in geneedtie than the ones obtained using the Mahalarutdsifier.

For this reason only the Mahalanobis results grerted in this paper.
4. Results

A PCA loadings plot on first two principal componeFig. 3), for the ensemble of all moulds, shawe group
of five Figaro sensors and one Capteur sensoretethhand side and two groups of two Capteur@snsn the
right. PCA loadings plots for every specie of mautde almost the same. Signals provided by theMHigaro
sensors (series TGS) are very similar and antietated to Capteur sensors signals on the firstimah
component (except for CAP01). CAPO1 signal is edéing because it varies inversely with the reSEafteur
sensors on PC1 and with all Figaro sensors on EEBP03 and CAP25 are not very significant for PO, test
of sensors gives information to both first two pipal components. This loading plot also shows Higaro
sensors are more correlated among them than Ceggirsors, at least for this application.

Fig. 3: PCA projection, loadings plot for all moulds togethSamples from first set of all moulds. PC1 a@2P
explains 82.27% and 10.88% of variance respectividhg points corresponds to the five Figaro senaoibthe
plus symbol represent the Capteur sensors.

PCA loadings
0.6 ' ' -
0.4 -
o 02F -
O
o
5§ 0 . ——
o + * TGS2620
2 « TGS8SS5
T 02 . TGS822
o . 1GS2600
« TGS2602
0.4 F capol |
I CAPO3
CAPCB
0.6 GAPO7 |1
+ CAP25
1 1 1
04  -02 0 0.2 0.4 0.6 08
loadings on PC1

A PCA projection, a scores plot in the first anda® principal components, seems to indicate tiatlasses
(contaminated/clean) are no linearly separable;gaarssian and multi-modal (Fig. 4). Multi-modaligarly
arises from the presence of different substratemads. In fact, visual exploration of the resudlows that the
influence of the substrate is much larger tharinfieence of the presence of moulds. Fig. 5 shdws t
distribution of the four substrates on the same P@jection than Fig. 4. The distribution of madésiseems to
be more separable than the contaminated and diesses in Fig. 4. Wallpaper and particleboard axedn
between them but separated from oriented strairdberad plasterboard. Due to the important backgtoun
variability the detection of moulds becomes a diffi problem.

In Fig. 6 the distribution of species of mouldstba PCA projection is observed, the four types otilds are
completely mixed so we can think that the clasaifans rates of each specie will be similar. Tlais be seen in
Table 2, where the obtained classification rategfery type of mould are shown. All results arelomsame
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order, with small differences. From these resultscan also think that the detection of a specimaild not
present in the training set is possible.

To study the stability of the classifier a secorgeziment for each specie of mould was performethénsame
conditions as the first one resulting in a secoatskt. This experiment started 4 months aftefitsteone and
was carried out during more than 3 months. The Nalwdis classifiers built with firsts datasets wased to
classify the samples from the second datasetse Pabhows the obtained classification rates foryetygpe of
mould and all moulds together. These results simogvery case a decrease in the classificatiomaHilat can
be attributed to the sensors drift. Sensors agaitige change in the average room temperature e€#mebmain
reasons of the small changes in the sensors respdfig. 7 shows a PCA projection on the model nfiahe
first dataset on two first principal components, foth datasets and for all moulds. For every tyjpmould the
structure of the second dataset is similar to tieefoom first experiment, but a slight drift candieserved (Fig.
8).

Fig. 4: PCA projection. Samples from first set of all maulEC1 and PC2 explains 82.27% and 10.88% of
variance respectively.
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Fig. 5: Same PCA projection as in Fig. 4. Samples from $ies of all mould. Each color represents different
substrate; plasterboard, particleboard, orientecthst board, wallpaper.
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Fig. 6: Same PCA projection as in Fig. 4 regarding the fdiffterent species of moulds on first dataset efev
mould.
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Table 2: Classification rates for every specie of mould afianoulds together, on first and second datasets

Type of mould First set (%) Second set (%)
All moulds together 84 + 1 81
P. chrysogenum 803 76
A. versicolor 84 +2 77
C. sphaerospermun 80 + 7 55
P. aurantiogriseum 83 +5 65

In ‘first set' Mahalanobis model was built withfrafi the first dataset and validated with the othalf of first dataset, this was repeated 10
times making random subsampling. In 'second setrtbdel was constructed with the completed firsaskt and validated with the second
dataset.

Table 3: Classification of a specie of mould not considdrethe training samples

Train samples (three species of moulds) Validation samples C.R. (%)

A. versicolor + C. sphaerospermum + P. aurantiogtimm  P. chrysogenum 78
C. sphaerospermum + P. aurantiogriseum + P. chrgsagr A. versicolor 86
P. aurantiogriseum + A. versicolor+P. chrysogenum C. sphaerospermu 76
A. versicolor + C. sphaerospermum + P. chrysogenum P. aurantiogriseum 73

One point to remark is that the most important ase appears in moulld sphaerospermunwhich is the
specie that presents the highest standard deviatitre classification of its first set. This moydcesents a
classification rate of only 55%, which means tiid tlassifier is unable to differentiate mouldsl afean
materials under drift condition€.. sphaerospermuin especially sensible to sensors drift, thereéi
depends on data.

The classifier ability to detect an unknown spexdfienould is shown in Table 3. This table showsdh&ined
results for classification of firsts datasets oégvmould. The detection of a type of mould notspré in the
training set is possible, but it depends on theispaf mould being classified. The algorithm iseatdl detecA.
versicolora 13% better thaR. aurantiogriseumthis is not a very big difference but it is desleatfor having
the best classifications results, to consider asyndiferent species of moulds as possible in thggh of the
classifier.
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Fig. 7: PCA projection from first set of all moulds. Poiatg samples from second set of all moulds, cirates
samples from first set of all mould. PC1 and PQars 82.27% and 10.88% of variance respectively.
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Table 4: Classification of moulds growing on substratescmisidered in the training samples

Train samples (three species of material) Validation samples C.R. (%)
osb +cb + pb Wallpaper (wp) 67
osb +cb +wp Plasterboard (pb) 69
osb +wp + pb Chipboard (cb) 86
wp + cb + pb Oriented strain board (osb 78

The larger influence of the substrate materialthendetection of moulds can be seen in Table 4 fHifile
shows the classification of samples from first sststaining building materials not present in ttaring set.
Classification rate of wallpaper samples is 67%nehs the one for chipboard is a 19% bigger. THfsrdince
between the best and the worst classified sampleigiger in the case of detection of substrate niadgehan in
the case of detection of different species of mauiltherefore, to design a good classifier is mongortant to
have a training set that contains many growing tsates than many types of moulds.

Table 5 shows how the substrate materials influtéineeletection of moulds. A big difference betwéen
classification rates of samples containing onlylpager (74%) and only chipboard (89%) can be apatext,
while differences in classification rate for theieas types of fungi are very small (4%). Drift@laffects the
classification results obtained 4 months after ddpg on the building material.

Although we expect that the classification ratesidtde improved in case of considering only onecipef

mould and one type of substrate, due to the ladanfples in our small database this cannot be detraded.
Having only a few samples in each case causesgshlith the ‘course of dimensionality'.

Table5: Classification of moulds according to growing suatds

Type of material First set (%) Second set (%)
Wallpaper 74+6 72
Plasterboard 834 71
Chipboard 893 82
Oriented strain board 85+4 72

Samples from all species of moulds.
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Fig. 8: Effect of sensors drift on a PCA projection of tlve datasets on first set PCA model for every speti
mould, (a) A. versicolor PCI 81.16%, PC2 11.98%iamace explained, (b) C. sphaerospermum PC1 86.19%,
PC2 8.66%. (c) P. aurantiogriseum PC1 86.11%, P@2%. (d) P. chrysogenum PC1 81.61%, PC2 11.51%.
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5. Conclusions

In this work an electronic nose has been able tectiéour species of moulds growing on severaldaug
materials with a Mahalanobis classifier, obtainamgaccuracy between 80 and 85%. The use of other mo
complexes classifiers gave no much better requitssibly this is due to the small size of our dassh

The system is able to detect unknown species ofdneith accuracy between 73% and 86%, dependindp@n
specie of mould. It can also detect contaminatetp$es of unknown building materials, depending @lsdhe
type of material. The obtained minimum accuracy @& for wallpaper samples and the maximum was 86%
for chipboard. This accuracy is worse than thefon¢he detection of unknown moulds because, as iseEig.

5, the influence of the substrate materials is @idglgan the influence of the different species ofifds.

The stability of the designed classifier was testéti an experiment made in the same conditiongtbubnths
later, in which a second set of data was collectbé. observed drift effect on the sensors dependbespecie
of mould that is being classified; versicolorhasa classification rate of 77% whif@. sphaerospermuimas
55%. However the obtained result for the set meal®a fall moulds was 81%, so, in general, the serdits
causes a small degradation without any furtheritgadion of the system.

However, due to the modest values of classificatate we consider that such a system could onlysked for
screening purposes followed for a more detailedyaizausing alternative analytical techniques.
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