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We discuss the role of dislocation assemblies such as grain boundaries in the dynamic response of a driven
vortex lattice. We simulate the depinning of a field-cooled vortex polycrystal and observe a general enhance-
ment of the critical current as well as a distinct crossover in the characteristic of this quantity as a function of
pinning density. The results agree with analytical predictions for grain-boundary depinning. The dynamics of
grain boundaries thus proves an essential mechanism underlying the flow response of defected vortex lattices
and the corresponding transport properties of the superconducting material. We emphasize the connection
between the topological rearrangements of the lattice and its threshold dynamics. Our theory encompasses a
variety of experimental observations in vortex matter as well as in colloidal crystals.
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The possibility of tuning mechanical properties of vortex
lattices in type II superconductors has made of vortex phys-
ics a versatile framework to study several central problems
of condensed-matter flow.1 One of the most intriguing ex-
perimental features of vortex dynamics in disordered
samples is the emergence of memory effects. Hysteresis of
the I-V curve is often encountered when driving defected
vortex lattices above and below their depinning threshold in
both low Tc superconductors, such as NbSe2 �Refs. 2–4� and
high-Tc anisotropic superconductors, such as B2Sr2
CaCu2O8.5 Numerical evidence of hysteretic behavior has
also been collected, by simulating driven vortex dynamics in
the presence of quenched disorder. The system was initially
“prepared” in a disordered state by letting it relax from a
high-temperature liquidlike phase, according to what is
known as a field-cooling protocol in experiments.6 Afterward
currents were ramped up and down and two distinct branches
could be found in the I-V characteristic. The emergence of
hysteresis indeed represents a shattering evidence of plastic
flow in driven lattices. The voltage recorded in experiments
is a direct measure of collective velocity of the vortex en-
semble, while the applied currents act on vortices as an ex-
ternal driving force through a Lorentz-type coupling.1 An I-V
measurement is thus an experimental visualization of the
force vs velocity relation in a driven overdamped medium.
The elastic theory of transport in such systems, the well-
known elastic depinning theory, does not account for history
dependence in force-velocity relations.7 Such beyond-elastic
features suggest the appearance of plastic phenomena and
their involvement in memory effects. The critical current of
the defected vortex array is thus a plastic threshold to vortex
motion, which is found to depend on the history of the
sample. Several experimental studies of the critical current Jc
of vortex lattices have been carried out through the past de-
cades. They include measurements of Jc as a function of both
the applied magnetic field H �Refs. 2 and 8� and the
temperature.9 In all systems, as a field-cooled �FC� vortex
assembly is driven by a dc or pulsed signal, it behaves as if
it was driven out of a metastable state through an annealing
process, so that the critical current of the annealed sample
proves lower than that of the initial field-cooled configura-
tion. Such a process is governed by a current-dependent an-
nealing time, which diverges as the critical current is ap-

proached from above.2 In fact it was shown that in the
presence of surface barriers at the edge of a sample, the
field-cooled and the annealed phases can even coexist, as a
result of the balance between bulk currents, which drive the
annealing process, and edge currents, which produce con-
tamination effects.10,11 It is now widely accepted that such a
nonannealed field-cooled state should correspond to a pecu-
liar topological rearrangement of the vortex array, namely, a
disordered phase. This is in agreement with the experimental
observation of glassy features such as power-law distributed
relaxation times.2 High-drive annealing is thus a process by
which the vortex assembly recovers its topological order.
The correspondence between topological disorder and higher
critical currents is ubiquitous in such systems, another ex-
ample being the phenomenology of the so-called peak effect.
In that case a critical-current jump accompanies a disorder-
ing transition at high temperature or field. In field-cooling
experiments, instead, one focuses on the metastable low-field
and low-temperature state originated after a rapid tempera-
ture quench.

As for the nature of the field-cooled phase, Delaunay tri-
angulation patterns suggest that the topological order of the
vortex lattice is broken by edge dislocations, which tend to
arrange themselves into linear arrays such as grain bound-
aries �GBs�. The vortex array is thus frozen in a polycrystal-
line state. Vortex polycrystals have been observed, after field
cooling, in various superconducting materials such as
NbMo,12,13 NbSe2,14–17 BSSCO,18 and YBCO.19

In this paper, we address the problem of plastic depinning
of such systems. We simulate driven vortex polycrystals and
demonstrate that for weak pinning forces, the threshold be-
havior observed in field-cooled samples agrees with our ana-
lytical predictions based on mechanisms of grain-boundary
depinning. We are able to establish a tight connection be-
tween the topology of the vortex polycrystal and its electro-
dynamical response. This correspondence was first suggested
in early numerical studies.20,21 Our aim is to determine how
the current response of these systems is affected by tuning
crucial parameters such as the defect density Np and the
magnetic field �proportional to the number of vortices Nv�,
and to emphasize how the topology of the vortex ensemble
reflects these changes. Transport properties in our simula-
tions are quantified by looking at the critical current Jc of the
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vortex array and the vortex velocity field at depinning.
Simulations are performed for a two-dimensional �2D� su-

perconducting cross section of linear size L=36� �Ref. 22�
with periodic boundary conditions. Here � is the London
penetration depth and all lengths are expressed in units of �.
In particular, we choose a value of �=0.2� for the coherence
length �Ginzburg-Landau parameter �=5, as found, e.g., in
low-Tc superconducting alloys�. The dynamics of each vor-
tex i at position ri is described by Langevin equations of
motion of the form

�dri/dt = �
j

fvv�ri − r j� + �
j

fvp�ri − r j
p� + fL�ri� , �1�

where � is an effective viscosity for vortex flow. The first
term on the right-hand side of such equations captures the
physics of vortex mutual interactions via the long-range
force,

fvv�r� = AK1� �r�
�
�r̂ , �2�

where A=�0
2 / �8�2�3�, �0 is the quantized flux carried by

the vortices, and K1 is a first-order modified Bessel
function.23 The second contribution introduces the attraction
exerted by each of the Np point defects on vortices. Point
defects are randomly located at positions ri

p �i=1, . . . ,Np�
within the simulation box and reproduce the effect of oxygen
vacancies or other impurities in the material. They exert pin-
ning forces according to a Gaussian potential of the form

V�r − rp� = V0 exp�− � r − rp

�
�2� , �3�

whose amplitude and standard deviation are V0 and �, re-
spectively. If an external current J�r� is eventually applied to
the sample, it generates a Lorentz-type force acting on the
vortices,

fL�r� =
�0

c
J�r� � ẑ , �4�

where c is the speed of light. The coupled equations of mo-
tion 	Eq. �1�
 are numerically solved with an adaptive step-
size fifth-order Runge-Kutta algorithm, imposing periodic
boundary conditions in both directions.

Field-cooled configurations are obtained by letting a ran-
dom vortex array relax in the impure environment and in the
absence of external forces. The system relaxes into a vortex
polycrystal, in agreement with experimental evidence.

We expect the number of defects Np to affect the relax-
ation process. As a matter of fact, defects are responsible for
the polycrystalline order observed after relaxation. Vortex
mutual interactions try to restore lattice order; however, de-
fects hinder this process. While varying the number of pin-
ning centers Np, we observed that all relaxed systems exhibit
grain structure. Typical grain sizes are found to decrease rap-
idly while increasing Np for low impurity densities. For
higher impurity densities, instead, the decrease in grain size
becomes slower upon increasing Np. At very high Np, grain
structures become extremely complex and any further de-
crease in grain size becomes hard to detect. Figures 1�a� and

1�b� display typical vortex array topologies in both regimes
of low and high impurity density.

We found that this behavior shows a natural correspon-
dence with critical currents. Starting from the above relaxed
configurations, we determine critical currents, as reported in
Fig. 1�c�. As expected, we see critical currents increase with
increasing defect densities. At the same time, we observe that
where we previously spotted a qualitative change in the grain
size decrease, a crossover from a linear to a slower increase
in critical currents appears. Similar behavior is obtained for
different vortex densities. Indeed, Fig. 2 shows the same
critical-current traits for simulations with different numbers
of vortices in the system Nv=1020, 2016, and 3120.

In order to understand this correspondence, we have to
focus on how grain structure might affect depinning of the
vortex assembly. Compared to a perfect lattice, a polycrystal
is a system with a much larger number of degrees of free-
dom, coming from the countless ways dislocations and grain
boundaries can cooperatively move and rearrange. As a con-
sequence, a vortex polycrystal will find it easier to adjust to
disorder than a perfect lattice or even than a less defected

(a) (b)

(c)

FIG. 1. �Color online� �a� Grain structure of the relaxed state for
low pinning densities �Np=1032� and �b� for high pinning densities
�Np=8256�. Dislocations are identified as pairs of seven- and five-
coordinated vortices �filled circles, blue and red, respectively� �c�
Critical current of the field-cooled vortex array as a function of the
number of quenched impurities, as obtained for a vortex polycrystal
�triangles� and a vortex single crystal �diamonds�, for Nv=3120
vortices. Numerical results are compared to the theoretical predic-
tions for individual GB pinning �dotted line� and collective GB
pinning �solid line� �see text for both cases�. The straight line join-
ing vortex-crystal points �dash-dotted� is drawn as a guide to the
eyes �Ref. 24�.
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polycrystal. A better adjustment to disorder means in general
a higher depinning threshold and eventually a higher critical
current. Then it is no coincidence that critical currents in-
crease rapidly �linearly� in the region where grain sizes de-
crease and slow down where no further grain size decrease
can be discerned.

At this point, one might wonder what the behavior of a
perfect crystal would be under the same conditions. A perfect
crystal relaxes in the presence of weak disorder into the well-
known Bragg glass phase, which retains triangular lattice
ordering over accessible length scales.25 Such an experimen-
tal protocol is known as zero-field cooling �ZFC�. We simu-
lated ZFC lattices and measured critical currents as we did
for their FC polycrystalline counterparts. Results for the case
of Nv=3120 are also shown in Fig. 1�c� for comparison. Two
main observations can be made: �i� as discussed above and
confirmed by experiments,2–4,8 critical currents are higher for
a vortex polycrystal; and �ii� no crossover behavior is ob-
served for a vortex crystal as the number of pinning points
Np is increased. The latter observation represents a crucial
result of our work. The dynamic response of a vortex poly-
crystal proves radically different from that of a dislocation-
free lattice. The presence of dislocation assemblies such as
grain boundaries seems to affect the depinning of the vortex
array in dramatic fashion.

We found that close to depinning the dynamics are highly
heterogeneous �see Fig. 3�. Several swirls appear and disap-
pear intermittently in the vortex velocity field and produce
significant transversal excursions. By superimposing vortex
velocity fields and the corresponding topological arrange-
ments �Fig. 4� and monitoring the time evolution of the sys-
tem, we can conclude that vortex motion is activated exclu-
sively around depinned grain boundaries and complicated
velocity patterns emerge in response to GB and dislocation
motion. Such regions show higher mobility and large trans-
versal deviations. On the contrary, dislocation-free regions
remain dynamically frozen, unless forces well above the de-

pinning threshold are applied. Heterogeneity and coexistence
of pinned and moving regions are indeed observed experi-
mentally in vortex matter26 as well as in colloidal
polycrystals.27

Such observations corroborate the idea that grain bound-
aries and possibly dislocation assemblies in general are cru-
cial in the depinning transition of vortex polycrystals. As a
consequence, we propose that the threshold mechanisms of a
driven vortex polycrystal should be governed by grain-
boundary depinning. In three recent publications of ours we
proposed a theory of GB depinning.6,28,29 A central quantity
in a depinning theory is indeed the critical force. Our system
is effectively a quasi-two-dimensional lattice, where transla-
tional invariance is assumed along the direction of the field,
as in thin superconducting films. Hence the critical force is
defined per unit length and reads b�c, �c being the critical
stress that produces GB depinning.

FIG. 2. Rescaled critical current as a function of the number of
defects for three different vortex densities. The cases of Nv=1020,
2016, and 3120 vortices are depicted. Numerical data collapse
where an individual GB-pinning description holds, while they de-
viate as soon as collective GB-pinning mechanisms take over. The
dotted line is drawn as a guide to the eyes.

FIG. 3. Velocity fields at incipient depinning for a FC polycrys-
tal �left� and a ZFC perfect lattice �right�. Plastic depinning and
dislocation dynamics are signaled by the emergence of heterogene-
ity and convective vortex rearrangements. In a perfect vortex lat-
tice, instead, elastic depinning is accompanied by widespread
avalanches.

FIG. 4. �Color online� Velocity fields at incipient depinning for
a FC polycrystal. The grain structure is highlighted. Vortex motion
is nucleated exclusively around depinning grain boundaries.
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For high defect concentrations, the vortex lattice is collec-
tively deformed by the superposition of strain fields pro-
duced by defects. The straining of the vortex lattice results in
a collective stress field acting on vortex lattice dislocations
and grain boundaries as an effective pinning field. We refer
to this regime as collective GB pinning. In our two-
dimensional system, the critical stress �c can be calculated as
follows: deforming a GB segment of length L of an amount
u is associated with an energy cost �per unit length�,

E = K
b2

D2u2 − K
ab

D
u� L

Ra
�1/5

+
b

D
�Lu , �5�

where K is the shear modulus of the vortex polycrystal, a is
the vortex lattice constant, D is the average dislocation spac-
ing within the GB, and b is the modulus of the dislocation
Burgers vector. Here Ra is defined as the collective pinning
length of a quasi-two-dimensional vortex lattice.20 The first
term in Eq. �5� quantifies the elastic deformation energy due
to the small displacement u. It accounts for the properties of
nonlocal elasticity of deforming grain boundaries in two di-
mensions and its derivation was first obtained in Ref. 6. The
second term is the energy gain associated with the same de-
formation and due to the presence of pinning points. It is
derived here for two dimensions, following the same method
described in Refs. 6 and 29 for a three-dimensional system.
Finally, the third term in Eq. �5� is the work done by an
external stress � in displacing the boundary segment over a
distance u. As described in Ref. 29 for the three-dimensional
case, minimizing the first two terms with u�a�b one ob-
tains the GB-pinning length Lp= �b /D�5Ra. The critical stress
�c is then derived as the stress required to depin a segment of
length Lp and reads

b�c
coll = K

D4

b2

1

Ra
. �6�

As mentioned above, Ra is the collective pinning length of a
2D vortex lattice, and its expression is given by

Ra =
c66

f0�npnv�1/2 , �7�

where f0 is the typical pinning strength acting on the lattice,
np is the defect density, strictly proportional to Np, nv is the
vortex density, while c66 is the shear modulus of the vortex
lattice. Under such conditions of high pinning density, we
already pointed out that the vortex lattice is highly defected
and one has to assume that in principle K�c66.

For low defect concentrations, instead, pinning is not me-
diated by the lattice and grain-boundary dislocations are in-
dividually pinned by impurities. Hence the individual GB
depinning stress �c for a two-dimensional system reads

b�c
ind =

1

K�
�D

b
�2

f0
2np, �8�

as derived in Ref. 29, where the two-dimensional model
proved effective in describing systems with columnar disor-
der. K� is the shear modulus of the vortex polycrystal for low
pinning concentrations. Under such conditions, the vortex
lattice is split in very large grains and one can assume that, to

a first approximation, K��c66. Replacing the correct expres-
sion for Ra and focusing on the dependence on Np, Nv, and f0
we can conclude that for the critical current of a vortex poly-
crystal, the following relations hold:

Jc 	 � f0
2�Np/Nv� individual GB pinning,

f0�Np/Nv�1/2K�Nv�/Nv collective GB pinning,

�9�

respectively, for low and high defect concentrations. In Eq.
�9� we have exploited the identity

B = �0nv, �10�

and the relation

c66 �
�0B

�8���2 , �11�

which holds within the range of vortex densities explored
here.1 Furthermore, the dependence of the vortex lattice con-
stant a on the magnetic induction has been taken into
account,1 as in

a = � 2
�3

�1/2��0

B
�1/2

, �12�

so that both b and D are proportional to 1 /�nv. It is also
implicit in Eq. �9� that the critical current Jc is proportional
to the 2D critical force b�c. We can now compare our theo-
retical predictions of grain-boundary pinning to our numeri-
cal results for FC driven vortex polycrystals. Figure 1 shows
how, for low defect concentrations, critical currents grow
linearly with Np, while for higher pinning densities, a square-
root growth of the critical current Jc describes the response
of the system appropriately within the provided error bars. In
order to assess the agreement of the square-root law quanti-
tatively, we performed a nonlinear fit of the data in the col-
lective pinning region with an iterative regression algorithm.
Results are shown in Fig. 5, where evidence of sublinear
growth is provided and an exponent very close to 1/2 is
found. The agreement with the theory is thus remarkable.

A further argument in favor of the GB-pinning picture is
provided by the connection between critical currents and
grain sizes. GB-pinning theory predicts that the typical grain
size Rg in a relaxed configuration should follow the relation
Rg	1 /�c.

28,29 If GB depinning truly is the mechanism that
drives the threshold dynamics of a vortex polycrystal, one
should be able to observe that connection. Indeed, we men-
tioned above that in the individual GB-pinning region, where
critical currents increase linearly upon increasing the defect
density, grain sizes are found to decrease rapidly. On the
other hand, in the collective pinning region, where both
theory and simulations suggest that critical currents exhibit a
square-root growth, the decrease in grain sizes slows down.
A quantitative estimate of grain sizes in simulations would
further corroborate this picture, although this might be a
challenging task in the collective pinning regime, due to the
discrete nature of the system and the limited grain sizes in-
volved. In order to address these issues, we are currently
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working on the analysis of diffraction patterns and real-space
deformation fields and our findings will be the subject of a
future publication.

At this point, we should note that in our simulations grain
boundaries develop spontaneously during the relaxation pro-
cess. The fact that the global behavior matches the one ana-
lytically predicted for a GB-pinning dominated system al-
lows us to conclude that GB pinning is the relevant
mechanism that drives vortex polycrystal depinning and pro-
duces critical-current anomalies, such those observed in ex-
periments. The first equation in Eq. �9� also allows a predic-
tion of the dependence of Jc on the magnetic field H	Nv, for
the case of low pinning density. Our theory suggests Jc
	1 /Nv. Indeed, Fig. 2 shows that our numerical results ap-
pear in good agreement with that prediction. Experimental
curves of Jc vs H for FC samples qualitatively confirm that
behavior, for relatively low fields, far enough from the peak-
effect region.2,8 However, to our knowledge, no quantitative
data are available at present. This would represent an inter-
esting experimental test of our prediction, together with a
study of the Jc vs H relation in the collective pinning regime.
This would unveil the physics hidden behind the K�Nv� func-
tion in Eq. �9� and ultimately allow a deeper understanding
of how a complex GB network statistically affects mechani-
cal properties of a vortex lattice.

In the light of the above observations, we can infer that
plastic flow in vortex polycrystals is dominated by the glid-

ing motion of dislocation assemblies such as grain bound-
aries, in analogy with nanocrystalline materials. A typical
fingerprint that corroborates our view is the experimental
observation of broadband noise spectra in dc-driven vortex
arrays.30 Such a feature, also known as 1 / f noise, is a natural
consequence of the collective dynamics of dislocation
assemblies,31 as opposed to the washboard-frequency peaks,
which commonly encompass the periodicity of a dislocation-
free lattice. Indeed, by means of Delaunay triangulations we
observe that in our simulations, right above depinning, dis-
locations are created and annihilated at the same rate. At
higher drives, in agreement with experiments, healing takes
place in the form of a recrystallization process. After healing,
by lowering the applied current the hysteresis cycle is
recovered.6 Current annealing is more effective for higher
vortex densities, i.e., stiffer vortex arrays, hence the steady
flow of a dense polycrystalline vortex array along the driving
direction eventually resembles the flow response of a perfect
vortex crystal. On the contrary, less dense or softer arrays
remain topologically defected for all the time span of the
numerical simulations.

In conclusion we performed a numerical study of plastic
depinning in field-cooled vortex lattices. We observed the
emergence of dislocation assemblies such as grain bound-
aries and investigated their role in vortex dynamics. Critical
currents are found to follow the laws that we predicted ana-
lytically for grain-boundary depinning processes. Grain-
boundary depinning thus proves the relevant mechanism ac-
counting for the response of such systems. Our theory of GB
depinning is able to explain several experimental observa-
tions such as the spatial heterogeneity of the system at the
threshold, the high-drive annealing of the FC state, the emer-
gence of memory effects, and the appearance of broadband
voltage noise. We established a tight connection between the
topology of the vortex polycrystal and its response to exter-
nally applied currents and explored the dependence of criti-
cal currents and velocities on the density of impurities. Re-
cent experiments on colloidal polycrystals have partially
studied this dependence and provided results that agree with
the predictions of our model.27 We would like to propose a
more systematic analysis in the same direction.
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FIG. 5. Iterative nonlinear regression curve for the expected
values of the critical current Jc as a function of the number of
pinning points Np. Logarithmic scales are used in both axes. Here J0

is a fitting parameter. We found Jc−J0	Np
0.59. This result confirms

the prediction of sublinear growth. Moreover, the agreement with
the expected square-root behavior �see text� is significant and the
small deviation is possibly due to the limited number of points and
the restricted range of available values.
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