
 
Tutor/s 

Dr. Fèlix Urpí Tubella 
Departament de Química Inorgànica i 

Orgànica 

Dr. José Luis Abad Saiz 
CSIC-IQAC 

 

Treball Final de Grau 

Towards the synthesis of (2S,3S,E)-ceramide-1,3-phosphodiester; 
Phosphosphingolipid analogs as potential modulators of the 
enzymatic activity. 

Cap a la síntesi de la (2S,3S,E)-ceramida-1,3-fosfodièster; Anàlegs 
de fosfoesfingolípids com a potencials moduladors de l’activitat 
enzimàtica. 

Ariadna Muñoz Nebot 
June 2018 

 





 

 

 Aquesta obra esta subjecta a la llicència de: 
Reconeixement–NoComercial-SenseObraDerivada 

 
http://creativecommons.org/licenses/by-nc-nd/3.0/es/ 





 

 

 

 

 

 

 

A mamá, 

 

Agrair l’enorme dedicació, seguiment, esforç i interès a en Fèlix Urpí i en José Luís Abad, 

l’ajut de l’Eduard Izquierdo i l’Antonio Delgado, i l’incessant suport del meu germà Héctor, els 

meus avis Emilia i Victorino i el meu pare Javier. Moltíssimes gràcies. 

 

 





 

 

REPORT 





Towards the synthesis of  (2S,3S,E)-ceramide-1,3-phosphodiester; Phosphosphingolipid analogs as potential modulators of the… 
 1 

 

CONTENTS 

1. SUMMARY 3 

2. RESUM 5 

3. INTRODUCTION 7 

4. OBJECTIVES  10 

4.1. Retrosynthetic analysis 11 

5. RESULTS AND DISCUSSION 13 

5.1. Stereoselective addition of the organometallic reagent to the Garner’s aldehyde: 

Synthesis of tert-butyl (S)-4-[(S,E)-1-hydroxyhexadec-2-en-1-yl]-2,2-dimethyloxazolidine-3-

carboxylate (11) 13 

5.2. Synthesis of (2S,3S,E)-1,3-dihydroxyoctadec-4-en-2-ammonium chloride (12) 15 

5.3. Synthesis of (2S,3S)-ceramide (13) 16 

5.4. Synthesis of the phosphorylated ceramides 18 

5.4.1. Synthesis of 3 via phosphorus(III) 19 

5.4.1.1. Hydrogenphosphonate addition to the hydroxyl group: Synthesis of  

(2S,3S,E)-3-hydroxy-2-palmitamidooctadec-4-en-1-yl phosphonate (16): 19 

5.4.1.2. Cyclization with pivaloyl chloride: Synthesis of N-[(4S,5S)-2-hydroxy-2- 

oxido-4-((E)-pentadec-1-en-1-yl)-1,3,2-dioxaphosphinan-5-yl]palmitamide (3): 20 

5.4.2. Synthesis of 3 via phosphorus(V) 21 

5.4.2.1. Addition of dimethyl phosphate to the primary hydroxyl group of the ceramide: 

Synthesis of (2S,3S,E)-3-hydroxy-2-palmitamidooctadec-4-en-1-yl dimethyl phosphate 

(14) 21 

5.4.2.2. Deprotection of phosphate: Synthesis of (2S,3S,E)-3-hydroxy-2-

palmitamidooctadec-4-en-1-yl dihydrogen phosphate  (15) 22 

6. EXPERIMENTAL SECTION 23 

6.1. Materials and methods 23 

6.1.1. Reagents and solvents 23 



2 Muñoz Nebot, Ariadna 

 

6.1.2. Methods and instrumentation 23 

6.2. Synthesis of (2S,3S,E)-ceramide -1,3-phosphodiester 24 

6.2.1. Synthesis of tert-butyl (S)-4-[(S,E)-1-hydroxyhexadec-2-en-1-yl]-2,2-

dimethyloxazolidine-3-carboxylate (11) 24 

6.2.2. Synthesis of (2S,3S,E)-1,3-dihydroxyoctadec-4-en-2-ammonium chloride (12) 25 

6.2.3. Synthesis of N-[(2S,3S,E)-1,3-dihydroxyoctadec-4-en-2-yl]palmitamide (13) 25 

6.2.4. Towards the synthesis of N-[(4S,5S)-2-hydroxy-2-oxido-4-((E)-pentadec-1-en-1-

yl)-1,3,2-dioxaphosphinan-5-yl]palmitamide (3): 26 

6.2.4.1. Synthesis via phosphorus(III): 26 

6.2.4.1.1. Hydrogenphosphonate addition to the hydroxyl group: Synthesis of  

(2S,3S,E)-3-hydroxy-2-palmitamidooctadec-4-en-1-yl phosphonate (16) 26 

6.2.4.1.2. Cyclization of 15 with pivaloyl chloride: Towards the synthesis of  

N-[(4S,5S)-2-hydroxy-2-oxido-4-((E)-pentadec-1-en-1-yl)-1,3,2-dioxaphosphinan-5-

yl]palmitamide (3) 27 

6.2.4.2. Synthesis via phosphorus(V) 28 

6.2.4.2.1. Synthesis of (2S,3S,E)-3-hydroxy-2-palmitamidooctadec-4-en-1-yl  

dimethyl phosphate (14) 28 

6.2.4.2.2. Synthesis of (2S,3S,E)-3-hydroxy-2-palmitamidooctadec-4-en-1-yl  

dihydrogen phosphate (15) 28 

7. CONCLUSIONS  30 

8. REFERENCES 31 

9. ACRONYMS  33 

APPENDICES 35 

Characterization of compounds 37 

a) tert-butyl (S)-4-[(S,E)-1-hydroxyhexadec-2-en-1-yl]-2,2-dimethyloxazolidine-3-

carboxylate (10) 37 

b) (2S,3S,E)-1,3-dihydroxyoctadec-4-en-2-amonium chloride (11) 38 

c) (2S,3S)-Ceramide (12) 41 

d) (2S,3S,E)-3-hydroxy-2-palmitamidooctadec-4-en-1-yl phosphonate (15) 43 

e) Synthesis of (2S,3S,E)-3-hydroxy-2-palmitamidooctadec-4-en-1-yl dimethyl 

phosphate (13) 45 

f)  (2S,3S,E)-3-hydroxy-2-palmitamidooctadec-4-en-1-yl dihydrogen phosphate  (14) 47 



Towards the synthesis of  (2S,3S,E)-ceramide-1,3-phosphodiester; Phosphosphingolipid analogs as potential modulators of the… 
 3 

 

1. SUMMARY 

The study of new biologically active molecules for the understanding of the cellular 

functioning is essential for the advancement of modern medicine. This project is focused on the 

synthesis of the (2S,3S,E)-ceramide-1,3-phosphodiester, a synthetic molecule inspired by three 

molecules with a determinant role in the life cycle of animal cells: ceramide, ceramide-1-

phosphate and the corresponding cyclic phosphate. Slight changes into the structures of the 

mentioned molecules may change, and even invert their cellular role. Therefore, and 

considering that the biological function is very dependent on the structural changes, it has been 

decided to carry out the insertion of a cyclic phosphodiester into the ceramide backbone, as well 

as the change to a non-natural (2S,3S) configuration instead of the natural (2S,3R), while 

maintaining the E configuration of the double bond. 

Keywords: (2S,3S,E)-ceramide-1,3-phosphodiester, stereoselective synthesis, cellular role. 
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2. RESUM 

L’estudi de noves molècules biològicament actives per a la comprensió del funcionament 

cel·lular és imprescindible per a l’avenç de la medicina moderna. Aquest projecte està enfocat a 

la síntesi de la (2S,3S,E)-ceramida-1,3-fosfodiester, una molècula sintètica inspirada en tres 

molècules amb un rol determinant al cicle de vida cel·lular animal: la ceramida, la ceramida-1-

fosfat i el corresponent fosfat cíclic. Petits canvis a les estructures de les molècules 

esmentades poden canviar, i inclús invertir el rol cel·lular d’aquestes. Per això, i atès que la 

funció biològica és molt depenent dels canvis estructurals, s’ha decidit dur a terme la inserció 

d’un diéster fosfòric cíclic a la ceramida, així com el canvi a la configuració no natural (2S,3S) 

enlloc de la natural (2S,3R), tot mantenint la configuració E del doble enllaç.  

 

Paraules clau: (2S,3S,E)-ceramida-1,3-fosfodiester, síntesi estereoselectiva, rol cel·lular. 
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3. INTRODUCTION 

Naturally, our cells control their population by apoptosis, also called programmed cell death, 

which is a procedure that intervenes in 

the tissue homeostasis through which 

the cells inactivate and degrade their 

own structure and components until 

death.1 The integrity of plasma 

membrane is preserved until the end of 

the process, allowing the organelles 

packaging. These will be disintegrated 

into vesicles attached to the membrane, 

avoiding the release of toxic intracellular 

components to the outside. The cell 

fragments will be phagocytosed by 

macrophages or neighboring cells, thus 

the tissue damage will be avoided. 

Consequently, normal development 

remains under control and the 

elimination of unnecessary cells is 

carried out. Cellular apoptosis is strongly 

linked to diseases such as cancer, 

inasmuch as the malignant cells evade 

apoptotic mechanisms, thus causing an indiscriminate proliferation of the cells with the 

consequent formation of the tumor.1 For this reason, the study and use as biomarkers of both 

the molecules involved in the apoptosis and cell proliferation processes are of vital importance 

to advance in research and improvement of new therapies and prevention. Among these 

biomolecules it is included ceramides, which have an apoptotic role.2 The most common 

Figure 1: Natural and synthetic ceramides  



8 Muñoz Nebot, Ariadna 

 

ceramides are those that are formed by sphingosine amide-bonding to a fatty acid with usually 

16-24 carbons.1 These long fatty acids make ceramide have a hydrophobic character, since the 

hydrophilic region of the molecule (only formed by two hydroxyl groups) is minimal. However, it 

can change with the phosphate insertion in the molecule, making (2S,3S,E)-ceramide-1,3-

phosphodiester less polar than the natural phosphate. In addition to a structural function in the 

cell lipid bilayer, ceramides also play the role of second messengers in cellular division acting as 

a differentiation messenger, in permeation of membranes, senescence, cell signaling, and as 

insulin suppressant.3  But it is worth noting that ceramides have an extremely key role in 

apoptotic pathways: A very sensitive balance has been established between ceramide-1-

phosphate, ceramide, sphingosine, and sphingosine-1-phosphate within the cell, which are 

easily interconverted.1,2  

The intracellular balance of these four sphingolipids, usually referred as “sphingolipid rheostat”, 

will determine the survival of the cell, where ceramide and sphingosine increase cell apoptosis, 

and sphingosine-1-phosphate and ceramide-1-phosphate are involved in cell proliferation and 

survival.3 This balance occurs naturally in all mammal cells, but can be affected by ionizing 

radiation, ultraviolet C radiation, stress and others, causing the unbalance of the sphingolipid 

rheostat.1,2 Minor changes in the structure of these molecules, as for example the addition of a 

cyclic phosphate in its primary hydroxyl group, or changing the natural configuration (2S,3R) to 

the non-natural (2S,3S), can cause the molecule carry out a completely different role within the 

Scheme 1: Sphingolipid rheostat 
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cell.  Therefore, although the ceramides have a major apoptotic function, the role of (2S,3S,E)-

ceramide-1,3-phosphodiester within the cell (the synthetic target of this project) is difficult to 

predict. Even so, it would be interesting to know the biological behavior of this molecule, due to 

its structural similarity to molecules such as natural ceramides like (2S,3R)-ceramide-1-

phosphate and cyclic phosphodiester,4 both with a biologically active role.1,3 So, the new 

molecule could have an interesting therapeutic application; currently, ceramides are already 

used as inhibitors of cell proliferation in cancer therapies, for example, treatments as used as 

chemotherapy or radiotherapy increases cell's ceramide concentration. 

The fact of finding the cyclic phosphates of ceramide5 in nature opens a way to study their 

biological activity, both natural and synthetic ceramides. (2S,3R,E)-Ceramide-1,3-

phosphodiester (9) was previously prepared by the research group. In this project a new 

synthetic approach will be designed to obtain the (2S,3S,E)-ceramide-1,3-phosphodiester (3). 

Finally, the resulting (2S,3S,E) ceramide phosphodiester will be tested in cell models and 

compared with the previously obtained (2S,3R,E) isomer.  

  

Figure 2: (2S,3S,E) and (2S,3R,E) ceramides-1,3-phosphodiester 
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4. OBJECTIVES 

The main objective of this project is to carry out the synthesis of the (2S,3S,E)-ceramide-

1,3-phosphodiester (3), starting from Garner's aldehyde6 (10) taking care of the (2S,3S) and E 

configurations of the different intermediates. These will be characterized by means of different 

spectroscopic techniques, like mono and bidimensional 1H NMR (COSY and HSQC), 13C NMR 

and 31P NMR. The synthetic approach can be divided into minor objectives, as follows: 

• The stereoselective C-C bond formation to create the alcohol with S configuration with an 

organometallic reagent. 

• N-Boc and N,O-isopropylidene deprotection. 

• N-acylation with palmitic acid. 

• Phosphorylation of the C1 (or C3) hydroxyl group. 

• (In the phosphorus(III) synthetic route, oxidization from hydrogenphosphonate to 

phosphonate). 

• Cyclization of the phosphonate to obtain the phosphodiester adduct. 

 

 

 

 

 

 

 

 

Scheme 2: Schematic synthetic approach 
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4.1. RETROSYNTHETIC ANALYSIS  

The proposed retrosynthetic analysis in order to obtain the (2S,3S,E)-ceramide-1,3-

phosphodiester (3) is represented in the Scheme 3. It was planned to use an organometallic 

reagent to carry out the addition of the carbon chain through the syn-selective addition to the 

aldehyde, obtaining the desired allylic alcohol with the S configuration. Once formed, it was 

supposed to do the simultaneous deprotection of the Boc and the N,O-isopropylidene acetal by 

an acidic medium, followed by the N-acylation with palmitic acid using HOBt and EDC, leading 

to the formation of (2S,3S,E)-ceramide (13). At this point, in order to reach the synthetic target 

3, it has been decided to test two possible synthetic routes. In the first approach, it has been 

decided to add an hydrogenphosphonate group to the C1 (or C3) alcohol of the ceramide 13 

affording the compound 16, finishing the synthetic route with the oxidation from 

hydrogenphosphonate to phosphonate and its subsequent cyclization with tert-butyl 

hydroperoxide. On the other hand, through the phosphorus(V) pathway, it has been decided to 

do the formation of a dimethyl phosphate on the C1 (or C3) hydroxyl group by the addition of 

dimethyl chlorophosphate, followed by its deprotection using TMSI. Finally, the cyclization of 15 

with N,N-dicyclohexylcarbodiimide (DCC) would afford the desired compound. 
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Scheme 3: Retrosynthetic analysis 
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5. RESULTS AND DISCUSSION 

5.1. STEREOSELECTIVE ADDITION OF THE ORGANOMETALLIC REAGENT TO THE 

GARNER’S ALDEHYDE: SYNTHESIS OF TERT-BUTYL (S)-4-[(S,E)-1-HYDROXYHEXADEC-

2-EN-1-YL]-2,2-DIMETHYLOXAZOLIDINE-3-CARBOXYLATE  (11) 

According with T. Murakami and K. Furusawa,8 the new stereocenter configuration can be 

decided according to scheme 4. The stereoisomer anti-(2S,3R) can be obtained by the reaction 

of the complexation adduct 19 with Garner’s aldehyde (10) through zinc bromide in THF, while 

the syn-(2S,3S) adduct 11 can be obtained by the reaction of Garner’s aldehyde with the 

transmetallation adduct 21, the product of the reaction by diethyl zinc with the complexation 

adduct 19. This complexation adduct is the result of the reaction of the Schwartz reagent7 (18) 

with 1-pentadecyne (17). In general, the hydrozirconation with the Schwartz reagent7 proceeds 

rapidly, and more importantly, the former reaction tolerates the presence of certain functional 

groups, such as alkyl ethers, silyl ethers, and t-butyl esters. Although addition of 

alkenylzirconocenes to aldehydes is sluggish, the reaction is accelerated either by adding a 

catalyst or by transmetallation with dialkylzinc to afford (E)-allylic alcohols in acceptable yields.8 

The reaction mechanism of the zinc bromide catalyzed addition of alkenylzirconocenes remains 

unclear, and the syn-selective addition of pentadecyne-Zn in CH2Cl2 can be explained by a 

chelated transition model of Garner's aldehyde (10) with zinc or by a coordinated delivery 

model.8  
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The addition of 1-pentadecyne to Schwartz reagent was run at rt. After 20 min, a change in 

the coloration of the transparent solution from colorless to yellowish and the TLC control were 

evidenced the formation of the alkenylzirconium reagent 19. Then, diethylzinc was added at -

30ºC in order to do the transmetallated adduct. Finally, Garner’s aldehyde was added to the 

reaction mixture and the reaction stirred for 1 h at rt. After an aqueous work-up, a white 

precipitate of zirconium salts was observed. Once filtered with celite, a yellow organic solution 

corresponding to the addition compound 11 was observed. After a chromatographic purification 

of the crude reaction mixture two diastereoisomers of 11 could be isolated in 78% yield in a 94:6 

ratio by NMR, in agreement with related literature precedents8.  

 

Scheme 4: Diastereodivergent synthesis of N-Boc sphingosine derivatives from 10 and alkenyl-zirconocenes 8 
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5.2. SYNTHESIS OF (2S,3S,E)-1,3-DIHYDROXYOCTADEC-4-EN-2-AMMONIUM 

CHLORIDE (12)  
 

The deprotection reaction was run by an acidic medium (HCl) for 48 h at room temperature. 

After a chromatographic purification, the deprotected adduct 12 was obtained in 72% yield.  

 

 

 

 

 

The N-Boc and N,O-isopropylidene deprotection of 12 was achieved by the generation of 

hydrochloric acid by the reaction of methanol with acetyl chloride, as indicated in the scheme 7. 

Scheme 7: Generation of HCl from MeOH and CH3COCl 

Scheme 5: Synthesis of 11   

Scheme 6: Deprotection of 11  
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5.3. SYNTHESIS OF (2S,3S)-CERAMIDE (13) 

The synthesis of ceramide 13 was carried out by N-acylation of 12 with palmitic acid in 

CH2Cl2 in presence of EDC (25) and HOBt (27) at room temperature, based on precedents of 

the RUBAM research group. This reaction may be conditioned by the high reactivity of the 

primary and secondary hydroxyl groups of the starting sphingosine or the resulting ceramide, 

which would complicate the reaction outcome. Both the primary and the secondary hydroxyl 

groups are not exempt from reacting, being able to give the formation of the corresponding 

palmitates. These esters could be saponified in basic medium, but this would suppose an 

additional reaction step and the probable loss in overall yield. In contrast, ceramide ester 

formation in the presence of EDC/HOBt has shown to be marginal (see the mechanism in 

Scheme 9).  

 

On the work up, the organic phase was washed three times with water. These water 

washings are required to remove the HOBt (27), the N-dimethylaminopropil N-ethyl urea 

(derived from EDC) (29) and other possible water-soluble impurities. It is advisable to not 

adding an excess of palmitic acid, due to the objective is to bonding it with the amine to forming 

amide, but an excess can make bond palmitic acid to the hydroxyl groups, forming an (COCOR) 

groups. Part of ceramide 13 eluted the column together with different esters of 13. Those esters 

were saponified with K2CO3 in MeOH at rt for 3 h. Next, the methanol was removed in vacuo, 

and the amide 13 resulting from the saponification reaction was purified. After purification, the 

ceramide 13 was obtained in 45% yield.  

 

 

Scheme 8: N-Acylation of 12 
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On the scheme 9, it can be observed the reaction mechanism of the EDC and the HOBt for 

the formation of the HOBt-palmitic acid intermediate adduct.  

 

On the scheme 10, it is described the mechanism by which the palmitic acid adds to the 

sphingosine to form the ceramide, as well as the initial HOBt recovery. 

 

 

 

 

 

 

 

 

 

  

Scheme 9: Mechanism of the formation of the intermediate HOBt-palmitic acid 

Scheme 10: Formation of (2S,3S,E)-ceramide (13)  
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5.4. SYNTHESIS OF THE PHOSPHORYLATED CERAMIDES9 

Three kinds of phosphorus reagents are the most frequently used in the synthesis of 

phosphate esters: tetracoordinated phosphates with an oxidation state +5, tricoordinated 

phosphites (or phosphoramidites) with oxidation state +3, and tetracoordinated 

hydrogenphosphonates with an oxidation state +3. Phosphates have tetrahedral geometry and 

their chemistry is dominated by the presence of a very stable phosphoryl group (P=O). The 

phosphorus atom in tetracoordinated phosphates with an oxidation state +5, it is an electrophilic 

centre and it is subject to reactions with hard nucleophiles. On the contrary, phosphites and 

phosphoramidites have a trigonal pyramidal geometry with a lone electron pair located on the 

phosphorus atom. In general, phosphorus(III) derivatives can be easily converted into 

phosphorus(V) derivatives using different oxidizing reagents (e.g. iodine/water, elemental 

sulphur, elemental selenium, etc).9 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3: Phosphorus(III) and phosphorus(V) oxidation states  
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5.4.1. Synthesis of 3 via phosphorus(III) 

In order to reach the synthetic target 3 by the phosphorus(III) synthetic pathway it has been 

decided to add an hydrogenphosphonate group to the C1 alcohol of the ceramide 13 affording 

to the ammonium phosphonate 16, finishing the synthetic route with the oxidation with tert-butyl 

hydroperoxide from hydrogenphosphonate to phosphonate and its subsequent cyclization. 

 

5.4.1.1. Hydrogenphosphonate addition to the hydroxyl group: Synthesis of (2S,3S,E)-3-

hydroxy-2-palmitamidooctadec-4-en-1-yl phosphonate (16) 

 

For the addition of the hydrogen phosphonate, it is necessary to add a large excess of 

phosphorus trichloride to ensure its addition into the molecule. The tris(imidazol-1-yl)phosphine 

formed by the reaction of PCl3 with imidazole can be bonded to both primary or secondary 

hydroxyl groups, always being bonded only to one of them. Whether it is in the primary hydroxyl 

or in the secondary hydroxyl group is irrelevant, given the nature of the next reaction step: the 

cyclization. The method used to prevent the phosphorus bonding in both hydroxyl groups has 

been the addition of imidazole, which replaced the three chloride bonds by three imidazole 

bonds, causing steric effect for the unreacted hydroxyl group. When water was added at the end 

of the reaction, the imidazole groups were substituted forming the hydrogenphosphonate. The 

Scheme 11: Phosphorus(III) synthetic pathway 
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reaction was run at 0 ºC due to the truculence and the high reactivity of the phosphorus 

trichloride and left to react during 1.25 h warming gradually until room temperature. After 

purification, the phosphonate 16 was isolated in 80% yield. The 1H NMR and the 31P NMR 

showed that the hydrogenphosphonate was only added in the C1 carbon. 

 

 

5.4.1.2. Cyclization with pivaloyl chloride: Synthesis of N-[(4S,5S)-2-hydroxy-2-oxido-4-((E)-

pentadec-1-en-1-yl)-1,3,2-dioxaphosphinan-5-yl]palmitamide (3) 

 

The reaction of 16 with pivaloyl chloride and pyridine formed a phosphorous carboxylic 

anhydride, which could receive the attack of the alcohol to form the hydrogen phosphonate. In 

this way, the tert-butyl hydroperoxide could cyclize the phosphonate forming the diester bond, 

thus affording the synthetic target 3. After the addition of tert-butyl hydroperoxide, the reaction 

mixture was dried with MgSO4 and washed 3 times with a triethylamine:water solution to extract 

the pyridinium chloride salts. The reaction adduct was situated in the organic phase, instead of 

the aqueous. The synthesis procedure did not afford the desired compound 3. Traces of an 

unknown compound were isolated. This compound presented two peaks in 31P NMR at 4.86 

and 3.43 ppm, instead of one peak around zero that we expected.  

 

Scheme 13: First assessment of the cyclization reaction of 16  

Scheme 12: Synthesis of phosphonate 16  
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5.4.2. Synthesis of 3 via phosphorus(V)  

In order to reach the synthetic target 3 by the phosphorus(V) synthetic pathway it has been 

decided to do the formation of a dimethyl phosphate on the C1 hydroxyl group by the addition of 

dimethyl chlorophosphate, followed by its deprotection using TMSI. Finally, the cyclization of 15 

with N,N-dicyclohexylcarbodiimide (DCC) would afford the desired compound 3. 

 

 

 

5.4.2.1. Addition of dimethyl phosphate to the primary hydroxyl group of the ceramide: 

Synthesis of (2S,3S,E)-3-hydroxy-2-palmitamidooctadec-4-en-1-yl dimethyl phosphate (14) 

 

The reaction of diol 13 with dimethyl chlorophosphate in the presence of N-methylimidazole 

was run in CH2Cl2 at 0 ºC. After the reaction mixture was stirred for 10 min, it was observed a 

change of the yellowish reaction mixture from opaque to transparent. The TLC control did not 

show the presence of starting material 13. It was necessary to quenching the reaction the 

sooner the better, due to it was observed that impurities were formed over time. After the 

solution was quenched by water, the solution took whitish coloring. After purification the 

phosphate 14 was isolated in 61% yield. The 1H NMR showed that the dimethylphosphate was 

only added in the C1 carbon. 

 

Scheme 14: Phosphorus(V) synthetic pathway 
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5.4.2.2. Deprotection of phosphate: Synthesis of (2S,3S,E)-3-hydroxy-2-

palmitamidooctadec-4-en-1-yl dihydrogen phosphate (15) 

 

The phosphate 14 was treated with TMSI in acetonitrile at 0°C. As the reaction progressed, 

it was observed a change in the coloration from yellow to orange, due to the presence of iodine 

in the reaction mixture. The iodine could produce the loss of the E-configuration of the double 

bond. To solve it, it was decided to add sodium thiosulfate to reduce the iodine to iodide. This 

reduction made the solution whitish, evidencing the complete elimination of iodine in the 

solution. Finally, it was added HCl 0.1 M to remove the SiMe3 group of the phosphonate 

changing it by a hydrogen group, forming SiMe3Cl and the phosphonate group. Unfortunately, 

the desired phosphate 15 was only isolated with a very low yield (10%). 

 

 

  

Scheme 15: Formation of the dimethyl phosphate on the C1 hydroxyl group of 13 

Scheme 16: Deprotection of the dimethylphosphate 14 
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6. EXPERIMENTAL SECTION 

6.1. MATERIALS AND METHODS 

6.1.1. Reagents and solvents: 

Unless otherwise specified, reactions were conducted in oven-dried glassware under inert 

atmosphere of argon with anhydrous solvents, in a round bottomed flask. All the solvents were 

anhydride and used without purification. All commercial reagents were obtained from registered 

suppliers and used without further purification.   

6.1.2: Methods and instrumentation: 

Analytical thin-layer chromatography (TLC): This method was used to control the reactions and 

to verify their progress. Thin layers were carried out on DC-Kieselgel ALUGRAM SIL G/UV254 

brand. A solution of phosphomolybdic acid hydrate with ethanol was used as stained. The 

eluent used is specified in each case.  

Column Chromatography: This method was used to purify the different substances obtained in 

each reaction. The stationary phase used was silica gel compacted with hexane. The mobile 

phase is specified in each case, a mixture of a polar and non-polar (or less polar) solvent. The 

column were carried out under low pressure (flash conditions) and performed on 230-400 mesh 

Sigma Aldrich silica gel.  

Nuclear magnetic resonance: 1H NMR, 13C NMR, COSY and HSQC spectra data were collected 

with a Varian 400 spectrometer for the identification of each purified compound. The reference 

compound is specified in each case (ppm). The coupling constant (J) is always in Hz. The 

chemical shifts (δ) are reported in ppm and referenced to internal TMS (δ 0.00 ppm for 1H NMR) or 

CDCl3 (δ 77.00 for 13C NMR). Data are reported as follows: s = singlet, d = doublet, t = triplet, q= 

quartet, m = multiplet, br = broad (and their corresponding combinations). 
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Infrared spectroscopy (IR): This method was used for the characterization of some compounds 

formed during the synthesis. The instrument used is a FTIR Avatar 360 spectrophotometer. 

Only the most relevant peaks (cm-1) are described in the experimental section.  

Specific optical rotation: This method was used for the characterization of some of the pure 

compounds that were not an enantiomer mixture and presented optical rotation. The specific 

rotation ([α]D) were determined at 25 °C on PERKIN ELMER polarimeter 341 polarimeter. They 

are measured on CHCl3 or a 50:50 CHCl3:MeOH solution, and the wavelength used was the D 

line of sodium (589 nm). 

 

6.2. SYNTHESIS OF (2S,3S,E)-CERAMIDE -1,3-PHOSPHODIESTER 

6.2.1. Synthesis of tert-butyl (S)-4-[(S,E)-1-hydroxyhexadec-2-en-1-yl]-2,2-

dimethyloxazolidine-3-carboxylate (11) 

To an ice-cooled stirred suspension of Cp2Zr(H)Cl (1.08 g, 3.75 mmol) in CH2Cl2 (8 mL) 

under argon was added neat 1-pentadecyne (1.02 mL, 3.77 mmol). After stirring at room 

temperature for 20 min, the reaction mixture was cooled to -30ºC and next treated with a 1.0 M 

solution of Et2Zn in hexanes (4.40 mL, 4.40 mmol), followed by aldehyde 10 (873 mg, 3.81 

mmol) in anhydrous CH2Cl2 (2 mL).6,11 The resulting mixture was allowed to warm gradually and 

stirred at rt for 1h. Then, the zirconium salts were precipitated with the addition of 5 mL of 

deionized water and removed by washing with CH2Cl2 in the aqueous phase, filtering with a 

Celite®.8,12 The solution was dried with MgSO4 and filtered. The solvent was removed in vacuo 

and the crude oil was analyzed by 1H NMR to obtain a 15:1 ratio of both two diastereomers of 

11. It was purified by flash column chromatography on silica gel (hexanes/ethyl acetate from 

95:5 to 80:20) to afford 1.39 g (78% yield) of the tert-butyl (S)-4-[(S,E)-1-hydroxyhexadec-2-en-

1-yl]-2,2-dimethyloxazolidine-3-carboxylate (11). 
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White solid; Rf: 0.40 (Hexanes:Ethyl acetate 8:2); 1H 

NMR (400 MHz, CDCl3) δ 5.74 (dt, HOCHCH=CH, J = 

14.2, 6.6 Hz, 1H), 5.41 (m, HOCHCH=CH, 1H), 4.14 

(m, HOCHCH, 1H), 3.98-3.80 (m, CH3COCH2, 2H), 

2.04 (q, CH=CHCH2, J = 6.6 Hz, 2H), 1.58 (s, CH3C(CH3)N, 3H), 1.50 (s, (CH3)3COC(O), 9H), 1.49 (s, 

CH3C(CH3)N, 3H), 1.25 (brs, CH2CH2CH2, 22H), 0.88 (t, CH2CH3, J = 6.6 Hz, 3H). 

 

 

6.2.2. Synthesis of (2S,3S,E)-1,3-dihydroxyoctadec-4-en-2-ammonium chloride (12) 

To a 881 mg (2.07 mmol) of pure 11 in 100 mL of MeOH was added neat acetyl chloride 

(971 μL, 10 mmol) at room temperature. The reaction mixture was stirred for 72 hours. The 

solution was dried with MgSO4 and filtered. The solvent was removed in vacuo and the solid 

was purified by flash column chromatography on silica gel (dichloromethane/methanol from 99:1 

to 88:12) to afford 498 mg (72% yield) of (2S,3S,E)-1,3-dihydroxyoctadec-4-en-2-amonium 

chloride (12).  

White solid; Rf: 0.1 (CH2Cl2:MeOH, 9:1); mp: 68-

70 ºC; [α]D: -10.76 (c 0.97, MeOH); IR: 3295, 

2954, 2917, 2847, 1461, 1461, 970, 724 cm-1. 1H 

NMR (400 MHz, CDCl3) δ 5.83 (dt, HOCHCH=CH, 

J = 15.7, 7.0 Hz, 1H), 5.44 (dd, HOCHCH=CH, J = 15.7, 7.0 Hz, 1H), 4.30 (t, HOCH, J = 7.0 Hz, 1H), 3.87 

(d, HOCH2, J = 11.4 Hz, 2H), 3.45 (m, H3NCH, 1H), 2.02 (q, CHCH2CH2, J = 7.0 Hz, 2H), 1.26 (brs, 

CH2CH2CH2, 22H), 0.88 (t, CH2CH3, J = 7.0 Hz, 3H). 13C NMR (100.6 MHz, CDCl3) δ 137.38, 127.19, 

70.52, 59.34, 58.31, 32.64, 32.10, 29.94, 29.87, 29.77, 29.70, 29.56, 29.26, 22.86, 14.27.  

 

6.2.3. Synthesis of N-[(2S,3S,E)-1,3-dihydroxyoctadec-4-en-2-yl]palmitamide (13) 

EDC (0.39 mL, 2.19 mmol) was added portion wise to a mixture of 405 mg of palmitic acid 

(1.58 mmol) and HOBt (295 mg, 2.19 mmol) in 32 mL of CH2Cl2 under argon atmosphere. After 

stirring for 5 min at room temperature, this solution was added dropwise over a CH2Cl2 solution 

(32 mL) of the sphingoid 12 (1.50 mmol) containing NEt3 (0.45 mL, 3.23 mmol) under argon 

atmosphere. TLC control showed the evolution of the reaction and, after 20 minutes, the 
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solution was washed with 3x10 mL of water, dried with MgSO4 and filtered.13 The solvent was 

removed in vacuo and the solid was purified by flash column chromatography on silica gel 

(dichloromethane/methanol from 99:1 to 97:3). The esters formed during the reaction were 

saponified with a solution of K2CO3 (200 mg) in MeOH (40 mL). After 3 hours, the solvent was 

removed in vacuo and the solid was purified by flash column chromatography on silica gel 

(dichloromethane/methanol from 99:1 to 97:3), to afford 351 mg (45% yield) of the 

corresponding amide 13. 

 

Pink solid; Rf: 0.5 (CH2Cl2:MeOH, 95:5); mp: 97-

100ºC; [α]D : -14.8 (c 0.3, 50:50 MeOH:CHCl3); IR: 

3272, 2955, 2915, 2849, 1645, 1469, 1086, 1049, 

964, 719 cm-1;  1H NMR (400 MHz, CDCl3) δ 6.11 

(d, HNCO, J = 7.0 Hz, 1H), 5.75 (dt, HOCHCH=CH, J = 14.9, 7.0 Hz, 1H), 5.47 (dd, HOCHCH=CH J = 

14.9, 7.0 Hz, 1H), 4.39 (dd, HOCH, J = 3.5, 7.0 Hz, 1H), 3.92 (m, H3NCH, 1H), 3.82 (m, HOCH2, 2H), 2.22 

(t, HNCOCH2, J = 7.0 Hz, 2H), 2.03 (q, CH=CHCH2, J = 7.0 Hz, 2H), 1.63 (q, HNC(O)CH2CH2, J = 7.0 Hz, 

2H), 1.25 (m, CH2CH2CH2, 46H), 0.88 (t, CH2CH3, J = 7.0 Hz, 6H).   

 

6.2.4. Towards the synthesis of N-[(4S,5S)-2-hydroxy-2-oxido-4-((E)-pentadec-1-en-1-yl)-
1,3,2-dioxaphosphinan-5-yl]palmitamide (3) 

6.2.4.1. Synthesis via phosphorus (III)  

6.2.4.1.1. Hydrogenphosphonate addition to the hydroxyl group: synthesis of (2S,3S,E)-3-
hydroxy-2-palmitamidooctadec-4-en-1-yl phosphonate 14,15 (16) 

Imidazole (0.067 g, 0.98 mmol) was dissolved in 4 mL of CH2Cl2 and the solution was kept 

on an ice-water bath (0-5ºC). Phosphorus trichloride (28 μL, 0.32 mmol) was added under 

vigorous stirring, followed by 156 μL (1.12 mmol) of triethylamine. The mixture was stirred for 15 

min and then a solution of ceramide 13 (50 mg, 0.093 mmol) in 4.5 mL of CH2Cl2 was added. 

After the addition was completed, the cooling bath was removed, and the mixture was kept at 

room temperature with continuous stirring for 1h. The reaction mixture was quenched by 2 mL 

of a 0.4 M solution of triethylamine in water at pH 7.5 (using a hydrogencarbonate buffer), 

forming the triethylammonium hydrogenphosphate salt 16. The aqueous salt was washed with 3 
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x 20 mL of CH2Cl2.14 The solvent was removed in vacuo and the solid was purified by flash 

column chromatography on silica gel (dichloromethane/methanol from 95:5 to 85:15) to afford 

73 mg (80% yield) of the phosphonate 16.   

 

White solid. Rf: 0.1 (CH2Cl2:MeOH, 85:15);  

1H NMR: (400 MHz, CD3OH) δ 6.77 (d, 

HP(O)ORO-, J = 633.0 Hz, 1H), 5.78 (m, HN, 

1H), 5.72 (m, HOCHCH=CH, 1H), 5.47 (m, 

HOCHCH=CH, 1H), 4.33 (m, HOCH, 1H), 

4.07 (m, CH(O)NHCH, 1H), 3.97 (m, OPOCH2, 2H), 3.53 (m, OPOCH2, 2H), 3.22 (q, NCH2CH3 (NEt3), J = 

7.3 Hz, 6H), 2.23 (m, HNC(O)CH2, 2H), 2.05 (m, CH=CHCH2, 2H), 1.63 (m, HNC(O)CH2CH2, 2H), 1.35-

1.32 (t, NCH2CH3 (NEt3), 9H), 1.30 (brs, CH2CH2CH2, 46H), 0.91 (t, CH2CH3, J = 7.0 Hz, 6H); 31P RMN: 

(122 MHz, CD3OH) δ 2.20 ppm. 

 
6.2.4.1.2. Cyclization of 16 with pivaloyl chloride: Towards the synthesis of N-[(4S,5S)-2-
hydroxy-2-oxido-4-((E)-pentadec-1-en-1-yl)-1,3,2-dioxaphosphinan-5-yl]palmitamide (3)14,15 

 

To 50 mg of 16 in 3 mL of dry acetonitrile was added at rt 1 mL (12.4 mmol) of dry, freshly 

distilled pyridine under argon atmosphere. Next, 0.39 µL (0.32 mmol) of pivaloyl chloride were 

added dropwise. The solution was stirred by 1 min and 3 mL of dry acetonitrile were added with 

a 5.2 M solution of tert-butyl hydroperoxide in CH2Cl2 to cycle the compound. The reaction 

mixture was dried with MgSO4 and washed 3 times with a triethylamine:water solution 0.7 M. 

The solvent was removed in vacuo and the organic phase was purified by flash column 

chromatography on silica gel (dichloromethane/methanol from 95:5 to 87:13). Traces (8 mg) of 

an unknown compound were isolated 

Rf: 0.1 (85:15 CH2Cl2:MeOH); 31P RMN: (122 MHz, CD3OH) δ 4.86, 3.43 ppm. 
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6.2.4.2. Synthesis via phosphorus(V) 
 

6.2.4.2.1: Synthesis of (2S,3S,E)-3-hydroxy-2-palmitamidooctadec-4-en-1-yl dimethyl 

phosphate (14) 

 

Amide 13 (143 mg, 0.27 mmol) in CH2Cl2 (6 mL) was cooled to 0-5ºC and N-

methylimidazole (180 μL, 2.25 mmol), and then dimethyl chlorophosphate (115 μL, 1.07 mmol) 

were added at same temperature. After the reaction mixture was stirred at rt for 10 min, the 

reaction mixture was quenched by 10 mL of water.15,16 The organic layer was removed in vacuo 

and the solid was purified by flash column chromatography on silica gel 

(dichloromethane/methanol from 95:5 to 20:70) to afford 83 mg (61% yield) of the phosphate 14.  

 

White wax. Rf: 0.50 (CH2Cl2:MeOH, 95:5);  

1H NMR (400 MHz, CDCl3) δ 6.12 (d, 

CONH, J = 7.0 Hz, 1H), 5.75 (dt, 

HOCHCH=CH, J = 15.0, 7.0 Hz, 1H), 5.42 

(dd, HOCHCH=CH, J = 15.0, 7.0 Hz, 1H), 4.37 (m, HOCHCH, 1H), 4.12 – 4.07 (m, OP(O)OCH2, 

OP(O)OCH2CH, 3H), 3.78 (d, CH3OP(CH3), J = 7.7 Hz, 3H), 3.76 (d, CH3OP(CH3), J = 7.7 Hz, 3H), 2.17 (t, 

HNC(O)CH2, J = 7.0 Hz, 2H), 2.01 (q, CH=CHCH2, J = 7.0 Hz, 2H), 1.59 (m, HNCOCH2CH2, 2H), 1.25 

(brs, CH2CH2CH2, 46H), 0.87 (t, CH2CH3, J = 7.0 Hz, 6H); 13C NMR (100.6 MHz, CDCl3) δ 133.93, 128.52, 

77.48, 76.84, 70.00, 65.98, 54.76, 36.86, 32.47, 32.06, 29.84, 29.30, 25.90, 14.25. 

 
 

6.2.4.2.2. Synthesis of (2S,3S,E)-3-hydroxy-2-palmitamidooctadec-4-en-1-yl dihydrogen 
phosphate15,16 (15)  
 

A solution of phosphate 14 (80 mg, 0.125 mmol) in acetonitrile (4.3 mL) was cooled to 0-

5ºC. Iodotrimethylsilane (170 μL, 1.20 mmol) was added to the reaction mixture and stirred at 

room temperature for 2 h.16 Next, 1 mL of saturated sodium thiosulfate solution was added. The 

reaction mixture was stirred for 72 h and treated with 0.1 M aqueous HCl solution until 

neutralization (pH paper). The solvent was removed in vacuo and phosphate 15 was purified by 

flash column chromatography on silica gel (dichloromethane/methanol from 95:5 to 80:15). Only 

traces of compound 15 (8 mg, 10% yield) were isolated.  
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White solid. Rf: 0.1 (CH2Cl2:MeOH, 85:15); 1H 

NMR: (400 MHz, CD3Cl) δ 6.03 – 5.89 (m, CONH, 

1H), 5.89 – 5.69 (m, HOCHCH=CH, 1H), 5.52 – 

5.38 (m, HOCHCH=CH, 1H), 4.32 – 4.25 (m, 

HOCHCH=CH, 1H), 4.19 – 4.02 (m, 

HOP(O)OCH2, 2H), 3.98 – 3.89 (m, HOP(O)OCH2CH, 1H), 3.70 (d, HOP(O)(OH)OCH2,  J = 11.0 Hz, 1H), 

3.61 (d, HOP(O)(OH)OCH2, J =11.0 Hz, 1H), 2.40 (td, NHC(O)CH2, J = 7.0, 2.6 Hz, 2H), 2.23 (m, 

NHC(O)CH2, 2H), 2.11 (q, CH=CHCH2, J = 7.0 Hz, 2H), 2.04 (q, CH=CHCH2, J = 7.0 Hz, 2H), 1.61 (m, 

NHC(O)CH2CH2, 2H), 1.29 (brs, CH2CH2CH2, 46H), 0.90 (t, CH2CH3, J = 7.0 Hz, 6H). 
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7. CONCLUSIONS 

A synthetic approach to the (2S,3S,E)-ceramide-1,3-phosphodiester (3) have been 

developed. However, the yields obtained for the synthetic diastereomer 3 of the natural 

(2S,3R,E)-ceramide-1,3-phosphodiester (9) did not meet the foreseen expectations. Therefore, 

further studies regarding the cyclization reaction to a cyclic phosphate must be reviewed. 

 

• The S configuration of the alcohol and the E configuration of the double bond on Garner’s 

aldehyde (10) was achieved by a syn-selective addition of 1-pentadecyne by a described 

method, allowing a quantitative yield (78%) of tert-butyl (S)-4-[(S,E)-1-hydroxyhexadec-2-en-1-

yl]-2,2-dimethyloxazolidine-3-carboxylate (11). 

• The N-Boc and the N,O-isopropylidene deprotection of the adduct 11 was obtained in 72% 

yield, allowing the subsequent N-acylation of the sphingosine 12 with palmitic acid. The 

(2S,3S,E)-ceramide (13) was obtained in 45% yield. 

• Ceramide 13 was the starting point to test both two phosphorus(III) and phosphorus(V) 

phosphorylation pathways.  

• On the first step of phosphorus(III) synthetic pathway it was obtained the 

hydrogenphosphonate 16 in 80% yield. Unfortunately, the next synthetic step (which would 

allow the desired compound 3) was affected by the oxidation and cyclization of the molecule, 

not providing the desired outcome. 

• The first step of phosphorus(V) synthetic pathway obtained the C1 dimethylphosphate 

adduct 14, in 61% yield. Unfortunately, the deprotection of the phosphonate methyl groups 

regarded a very low yield (10%), thus becoming a non-productive reaction step and preventing 

the continuity on this route. 
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9. ACRONYMS 

B 

Boc: tert-butyloxycarbonyl  

br: Broad 

C 

13C NMR: carbon nuclear magnetic resonance 

COSY: 1H Correlated spectroscopy 

D 

d: doublet 

dt: double triplet 

E 

EDC: 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide  

H 

1H NMR: proton nuclear magnetic resonance  

HOBt: 1-hydroxybenzotriazole 

HSQC: Heteronuclear single quantum coherence spectrometry 

M 

m: multiplet 

M: molar 

Mp: melting point 

MeOH: methanol 

Me: methyl 
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N 

NEt3: triethylamine 

P 

31P NMR: phosphor nuclear magnetic resonance 

P(III): Phosphorus(III) 

P(V): Phosphorus(V) 

R 

rt: room temperature 

Rf: Retardation factor 

S 

s: singlet 

T 

t: triplet 

THF: Tetrahydrofuran 

TMSI: trimethylsilyliodide 
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CHARACTERIZATION OF MOLECULES 
a) tert-butyl (S)-4-((S,E)-1-hydroxyhexadec-2-en-1-yl)-2,2-dimethyloxazolidine-3-

carboxylate (11) 
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b) (2S,3S,E)-1,3-dihydroxyoctadec-4-en-2-aminium chloride (12) 
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c)  N-((2S,3S,E)-1,3-dihydroxyoctadec-4-en-2-yl)palmitamide (13) 
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d)  (2S,3S,E)-3-hydroxy-2-palmitamidooctadec-4-en-1-yl phosphonate (16): 
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e) (2S,3S,E)-3-hydroxy-2-palmitamidooctadec-4-en-1-yl dimethyl phosphate (14) 
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f) (2S,3S,E)-3-hydroxy-2-palmitamidooctadec-4-en-1-yl dihydrogen phosphate (15): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

 


