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Abstract

Two-sided matching markets are the main object of study of Matching theory, a branch
of Game theory that involves discrete mathematics. A two-sided matching market is a
market whose agents belong to one of two distinct sets and such that its outcome is an
assignment of agents from one set to the other, and vice-versa.

In this work, we first give some basic definitions of Game theory, and turn then to
study two kinds of matching markets: one-to-one matching markets, in which an agent
from one set ends up matched to at most one agent on the other set, and many-to-one
matching markets, in which agents on one of the two sets might end up matched to several
agents on the other set. The former will be studied by means of the marriage problem
in Chapter 3, and the latter by means of the college admissions problem in Chapter 4.
To conclude, in Chapter 5 there is an outline of some alternative mechanisms used in
different contexts to solve problems that are similar to those already studied.
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Chapter 1

Introduction

The research that led to the analysis of two-sided matching markets has its roots in
the analysis of markets using the tools of linear programming and game theory. Markets
with indivisible goods are analysed firstly in the classical models of Gale (1960) [12] with
the model of n houses bought by n buyers, in Chapter V; later Gale and Shapley (1962)
[14] with the college admissions model and finally Shapley and Shubik (1972) [33] with
the study of the assignment game with quasilinear utility.

Different variants of these models have many applications in the theory of recruitment
systems, auction markets, labour markets and so on (see, e.g., Roth and Sotomayor (1990)
[29]; Crawford and Knoer (1981) [7]). Many interesting applications are presented in the
survey of Sönmez and Ünver (2014) [34] and the role of such models in modern economics
is explained in Roth (2002) [30].

The first appearance of two-sided matching markets was in 1962 with the paper of
David Gale and Lloyd Shapley [14], where they presented matching markets as mathe-
matical problems that could be solved using an algorithm they had designed.

The aim of this theory is to understand and set formal and mathematical foundations
to two-sided matching markets. In these markets, we assume that there are two sides
(firms and workers, jobs and workers, organ donors and recipients, etc.) and an exchange
is made without prices; let us start by defining more clearly what this all means. First of
all, the term two-sided refers to the fact that agents on these markets are clearly divided
into two disjoint sets, unlike agents on commodity markets, where the market price may
determine whether someone buys or sells, and so one can decide to change sides at any
time. Secondly, the term matching refers to the bilateral exchange that is produced in these
markets; this is also different from commodity markets, in which chains of exchanges can
be made and the good you end up buying may not be the one brought to the market by
the agent who sold it to you.

A clear example of two-sided matching markets are labour markets, in which workers
seek a job and employers need workers. In this case, one side of the market is made up of
workers and the other one of companies; and obviously, if a company employs John, then
John works for that company, but John cannot become a company and the company will
never become an employee.

Another important characteristic of these markets is that money is not always the
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2 Introduction

means of exchange. In fact, it is often considered unethical to use money in these markets,
or even illegal. For instance, it is clear that selling or buying organs is not the ideal Sunday
morning plan.

But, is this kind of market that common? Are they so different from commodity
markets that they cannot be interpreted in the same way? Well, the answers are fairly
straightforward: two-sided matching markets are very common and they are indeed dif-
ferent from commodity markets.

According to Gale (2001) [13], it all started with an article on The New Yorker mag-
azine on 10 September 1960, whose author had been investigating how the admissions
of undergraduate students office worked in Yale University, and what he found was ab-
solute chaos. That was when Gale, together with Shapley, started to study the problem
and wrote the paper we have mentioned above, creating a field of study which has not
ceased to expand until today. In this paper, they introduced the marriage problem, which
we will explain in Chapter 3, and the college admissions problem, which we will explain
in Chapter 4; they also described an algorithm to find a solution to these problems, the
Deferred Acceptance Algorithm (DAA). Years later, it was discovered that equivalent al-
gorithms had already been built independently several times. Thus, these problems had
already arisen before and had been tackled, sometimes successfully, despite the lack of
theoretical work supporting them.

Actually, it was not until 1984 that Alvin E. Roth found out that an equivalent algo-
rithm to the DAA had been in use since the 1950’s by the NIMP (National Intern Matching
Program) to assign senior medical students to the hospitals where they would undertake
their internships.1 The original algorithm proposed in the beginning of the century did
not have the desired properties, and the matching resulting from it had a number of prob-
lems, resulting in the market not working well; in 1945, the market eventually collapsed
(many students had their internship sealed almost two whole years before it began). They
tried to solve this problem in a series of ways, until 1952, when the algorithm implemented
was successful. In fact, even though students were permitted to find internships outside
the system, that year over 95% of them preferred to use the NIMP algorithm. This was so
until the 70’s, when women started to become a greater percentage of the students of uni-
versities, and many couples made up of two students looking for an internship together
saw that they could get a better position by finding their internships by themselves.2 In
this case, it has been shown that there might not exist any solution with the most desired
property, which is stability.3

However, this is only one of the many real-life examples of two-sided matching mar-
kets we could outline: there is a vast variety of examples, from college admissions to
kidney exchange or dating websites. That is why, in 2012, Alvin E. Roth and Lloyd S.
Shapley were awarded the Nobel Prize in Economic Sciences, "for the theory of stable
allocations and the practice of market design".4

To conclude, this work is mainly focused on the study two of the most famous two-
sided matching markets, conceiving them as problems to solve: the marriage problem

1This case and its history are extensively explained in [24].
2We will not tackle this problem in our work, but it is studied in [19].
3We will introduce this concept in Chapter 3.
4See [21].
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and the college admissions problem. In Chapter 2, we will outline some basic concepts
of Game theory that will be used in the following chapters. In Chapter 3, we will study
the marriage problem, explaining the formal model and some results, and introducing the
DAA as an algorithm to find a possible solution for this model. In Chapter 4, we will
study the college admissions problem; we will first outline the model, and as it is (kind
of) a generalisation of the marriage problem, some of the results that are not proved in
Chapter 3 are proved in Chapter 4, while some more observations and results are added.
In Chapter 5 we will give a quick rundown on some of the different algorithms that are
worldwide used to find solutions to this kind of problems, each with a brief explanation
on its uses and hypothesis.
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Chapter 2

Game theory: the essentials

In this brief chapter, we introduce the central concepts of game theory. These concepts
will be needed to understand the strategic aspects of matching markets, and are essential
to grasp the meaning of situations where agents act without supervision in a known
setting. The main issue is the concept of Nash equilibrium.

Plainly speaking, a game is a situation governed by rules and with a well-defined
outcome, characterised by strategic interdependence (Gardner, 1996) [16].

Definition 2.1. The normal form of a game G is formed by three elements:

(i) a finite set of players I = {1, . . . , n},

(ii) ∀i ∈ I , a set of strategies Si, and

(iii) ∀i ∈ I , a payoff function ui : S → R, where S = S1 × . . .× Sn, also called utility
function.

Thus, G is defined by the triple (I , S, u), and the ultimate objective of every i ∈ I is to
maximize her utility ui, which depends on the election made not only by herself but by
all players.

We call every element s = (s1, . . . , sn) ∈ S a strategy profile. Payoff functions are a
way of ordering players’ preferences over different outcomes of the game. Clearly, if
ui(s) < ui(s′), player i will prefer the strategy profile s′ over s. Here is where strategic
interdependence is fundamental.

Given a player i ∈ I and a strategy profile s ∈ S, we denote by s−i the strategy profile
of all players except player i, that is, s−i ∈ ∏j∈I\{i} Sj =: S−i. Therefore, s = (s−i, si), and
we are able to assert that, when playing the game G = (I , S, u), the objective of player
i ∈ I is to maximize her gains given the strategy profile of all other players, that is to find,
given s∗−i,

arg max
si∈Si

ui(s∗−i, si).

This is generally a set, called best response of i to s∗−i, and it is denoted by BRi(s∗−i).

5



6 Game theory: the essentials

Definition 2.2. Let G be the game (I , S, u). Given the strategies si, s′i ∈ Si of a player i ∈ I ,
strategy s′i is strictly dominated by strategy si if ui(s−i, si) > ui(s−i, s′i), ∀s−i ∈ S−i. In this
case, si is a dominant strategy. If no such si exists, the strategy s′i is called an undominated
strategy.

Definition 2.3. Let G = (I , S, u) be a game. Given two strategies of player i ∈ I , si, s′i ∈ Si,
strategy s′i is weakly dominated by strategy si if ui(s−i, si) ≥ ui(s−i, s′i), ∀s−i ∈ S−i.

The structure of a game G is often considered to be of common knowledge. This means
that every i ∈ I knows S and u, and that every other player knows that she knows that,
and so on ad infinitum. That is, not only i knows Sj and uj, ∀j ∈ I , but she also knows
that j knows Si and ui, and vice-versa. If this is so, G has complete information.

Plus, we assume players to be rational, meaning they will not choose dominated strate-
gies, and that this is also common knowledge, so they know others won’t either (and know
everybody knows this, etc.).

The following concept regarding strategies will be used in further chapters too.

Definition 2.4. Let G be the game (I , S, u) and let s, s′ ∈ S be two strategy profiles.
Strategy s Pareto-dominates s′ if

∀i ∈ I , ui(s) ≥ ui(s′), and ∃j ∈ I such that uj(s) > uj(s′).

Moreover, s is Pareto-optimal (or Pareto-efficient) if it is not dominated by any other strategy
s′ ∈ S\{s}.

Observe that whilst definitions 2.2 and 2.3 refer to the strategies of a single player, def-
inition 2.4 refers to strategy profiles as a whole, and thus they define completely different
concepts.

Let us see an example of dominance and Pareto-dominance. This example is quite
common in our daily lives, although probably not in the context it is here presented.

Example 2.5. (The prisoners’ dilemma) There are two suspects of having committed both
a murder and a robbery, who are put into separate cells. The police have solid proof of
the robbery, but not of the murder. They both have a chance to confess to murdering. If
one does and the other does not, the one who has confessed incriminates the other, and
the result is that the one who has confessed does not go to jail, whilst the one who has
not goes to jail for 15 years; if the two of them confess, both go to jail for 10 years; finally,
if neither of them confesses they only go to jail for 1 year.

We have the game G = (I , S, u), with: I = {1, 2}, S1 = S2 = {C, NC}, where C
stands for "confess" and NC for "not confess", and S = S1 × S2, u1 : S → R, such that
u1(C, C) = −10, u1(C, NC) = 0, u1(NC, C) = −15, u1(NC, NC) = −1, and u2 : S → R,
such that u2(C, C) = −10, u2(C, NC) = −15, u2(NC, C) = 0, u2(NC, NC) = −1.

The following table is the best way to see all these payoffs clearly; for each strategy
profile, it gives us the utility of player 1 in the first place, and then the utility of player 2:

1
2

C NC

C −10;−10 0;−15
NC −15; 0 −1;−1
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Considering only the strategies of a single player, it is clear that the best she can do,
regardless of whether the other suspect has confessed or not, is to choose strategy C. That
means that NC is dominated by C, as any rational player would never choose NC over
C. However, the payoff for both players if they choose their dominant strategy C is −10,
which is obviously worse than the payoff they would get if they both choose NC, −1.
Thus, the strategy profile (NC, NC) Pareto-dominates the strategy profile (C, C).

Therefore, we have seen that Pareto-dominance and dominance might be conflicting
concepts. This implies that neither of them can be an acceptable solution to the game.
The following definition is deemed the most important of the many solution concepts that
there exist, and it is based on the fact that players of the game (I , S, u) behave rationally;
this concept of solution yields a strategy profile s∗ = (s∗1 , . . . , s∗n) ∈ S such that no player
i ∈ I is able to improve her situation by choosing another strategy si ∈ Si, with si 6= s∗i .
In this case, s∗i is called i’s best response, as it is the best strategy she can choose given the
strategies of everyone else, s∗−i.

Definition 2.6. Let G = (I , S, u) be a game. A Nash equilibrium of G is a strategy profile
s∗ = (s∗1 , . . . , s∗n) ∈ S such that, ∀i ∈ I and ∀si ∈ Si,

ui(s∗) ≥ ui(s∗−i, si)

This concept was first introduced by John Nash (1950) [20], and it is a key concept of
game theory. Notice that the existence of a Nash equilibrium is not guaranteed. Neverthe-
less, Nash (1950) [20] showed that under certain conditions, at least one Nash equilibrium
does exist. It is not a constructive result.

Observe that in Example 2.5, the strategy profile (C, C) is a Nash equilibrium.
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Chapter 3

The marriage problem

In this chapter, we study the marriage problem. This problem falls into the category of
two-sided matching markets. As we have said before, a two-sided matching market is one
in which agents are clearly divided into two disjoint sets, in such a way that no agent can
decide to change sides and become part of the other set; the final outcome of the market
is an assignment between the two sets. In particular, the marriage problem is a case of
one-to-one matching, because every agent ends up matched to at most one agent of the
other set.

The reason why it is called the marriage problem is because of the natural parallelism:
there is a group of women and a group of men, and the aim is for them to marry (het-
erosexually and monogamously). This problem was first introduced by Gale and Shapley
(1962) [14], and has since been widely studied. It is the first step towards understand-
ing more complex cases, such as the college admissions problem, in which agents on one
side of the market might be assigned many agents on the other side. We will study such
markets in the next chapter.

3.1 The model

Formally, there are two finite and disjoint sets: W = {w1, . . . , wn} is the set of women
and M = {m1, . . . , mp} is the set of men. Each woman w has preferences over M ∪ {w}
and each man m has preferences over W ∪ {m}; this means that any agent may prefer to
stay single than to be matched to some (or even any) of the agents on the other side. These
preferences are represented by ordered lists; for example, if the preferences of woman w
are P(w) = m2, m7, then w prefers m2 to any other man, her second choice is m7, and
she prefers to remain single rather than to be matched to any of the other available men.
Implicitly, we have defined for every woman w ∈W, a total order >w in the set M ∪ {w},
so that m >w m′ means w prefers m to m′. Analogously, >m is a total order in the set
W ∪ {m}, ∀m ∈ M. The set of all these total orders is >:= (>x)x∈M∪W . We will call >x
indistinctly agent x’s preference relation or order relation.

We will stick to the case in which preferences are strict, so no individual is indiffer-
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10 The marriage problem

ent when faced with two choices.1 We do so because our main purpose is the college
admissions problem, in which both students and colleges are to submit a strict list of
preferences; another reason to do this is that if we relax this assumption and consider
non-strict order relations, some of the results do not hold. Moreover, from now on, we
will consider all agents to be rational, meaning their preferences are complete (any two
options can be compared) and transitive. We will also say that man m is acceptable to
woman w if m >w w; analogously, w is acceptable to man m if w >m m.

We denote a preference profile by P = P(m1) × . . . × P(mp) × P(w1) × . . . × P(wn),
where P(x) is the preference list submitted by x ∈ M ∪W. For now, we will assume that
every x ∈ M ∪W submits a preference list with accordance to her preference relation >x;
however, we will see later that agents may have incentives not to do so. The set of all
preference profiles is P(M, W).

We now have all the ingredients of a marriage problem: a specific marriage problem
or marriage market is denoted by the triple (M, W;>). The problem we are faced with is
the following: given the preferences submitted by every individual, what kind of outcome
will arise from their collective behaviour?

Definition 3.1. Given the sets of men M and women W, a matching is a one-to-one corre-
spondence µ : M ∪W −→ M ∪W such that

(a) µ2(x) = x, ∀x ∈ M ∪W,

(b) µ(w) ∈ M ∪ {w}, ∀w ∈W, and

(c) µ(m) ∈W ∪ {m}, ∀m ∈ M.

The set of all matchings is denoted byM(M, W).

Example 3.2. Let M = {m1, m2, m3} and W = {w1, w2, w3} be sets of men and women
respectively. Then, the matching represented by

µ =

(
w1 w2 w3
m2 (w2) m1

)
matches w1 to m2 and w3 to m1, whereas w2 remains self-matched (that is, single).

Notice that because of the fact that a matching µ must be of order two, if woman w is
matched to man m, then m is matched to w.

Matchings can also be represented using graphs. These graphs will have two distinct
sets of nodes, but need not be bipartite graphs, because there can be loops.

Example 3.3. The matching of Example 3.2 can be represented using the following graph.

w1

w2

w3

m1

m2

m3

W M

1That is, ∀w ∈W and x1, x2 ∈ M∪ {w}, either x1 >w x2 or x2 >w x1; similarly, we are assuming that ∀m ∈ M
and x1, x2 ∈W ∪ {m}, either x1 >m x2 or x2 >m x1.
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The representation through graphs is more visual and all the information is explicit,
while the usual representation gives implicit information; for instance, in Example 3.2, it
is clear that w2 is self-matched, and so is man m3 even though he does not appear.

From our definition, we can define a preference relation overM(M, W) for each agent.
We assume that the preferences of individuals over matchings concern only their own
match, and thus we will write ∀x ∈ M∪W, ∀µ, ν ∈ M(M, W), µ �x ν ⇐⇒ µ(x) >x ν(x).
What is more, x is indifferent between two different matchings µ and ν only if she has the
same partner at both, that is, µ �x ν ⇐⇒ µ(x) >x ν(x) or µ(x) = ν(x).2

We write µ �W ν to denote that every woman in W likes µ at least as well as she likes
ν, and µ �W ν to denote that ∀w ∈W, µ �w ν and ∃w ∈W such that µ �w ν. Clearly, �M
and �M are defined analogously.

3.2 Stability

Since our current purpose is to observe which outcomes of the market are more likely
to occur, we must first state the rules of this game, in order to rule out some inconvenient
matchings. The general rules of the marriage problem are simple: any couple that agrees
to marry may do so, and every individual is free to remain single if she wishes.

Definition 3.4. A matching µ ∈ M(M, W) is individually irrational, or it is blocked by an
individual, if ∃x ∈ M ∪W such that x >x µ(x).

Example 3.5. Consider the marriage market (M, W;>), where M = {m1, m2, m3} and W =

{w1, w2, w3} are the sets of men and women, respectively, endowed with the following
preferences:

P(w1) = m1, m2; P(m1) = w1, w2;
P(w2) = m2, m1, m3; P(m2) = w2, w1, w3;
P(w3) = m3, m1; P(m3) = w3, w2, w1.

In this case, the matching

µ =

(
w1 w2 w3
m2 m3 m1

)
is individually irrational, since µ(m1) = w3, and m1 >m1 w3, i.e. w3 is unacceptable to m1.

Thus, an individually irrational matching is not a feasible outcome of the market, since
any individual not matched to an acceptable mate would have done better by remaining
single, an option that is always available. Therefore, all feasible outcomes must be individ-
ually rational.

Observe that for all P ∈ P(M, W), there is an individually rational matching, the one
in which everybody is self-matched.

Now, let us consider blocking couples as well:

Definition 3.6. A couple {m, w} ⊂ M ∪W blocks a matching µ ∈ M(M, W) if m >w µ(w)

and w >m µ(m).
2As different matchings may result in an individual matched to the same partner, in these preference relations

there is indeed the possibility to be indifferent between two outcomes.
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That is, we have a matching µ so that w and m both prefer to be matched to each other
than to their current partners. In this case, they would not be breaking any rule if they
both refused their match and married each other.

Example 3.7. Recalling the marriage market of Example 3.5, the pair {m2, w2} blocks the
matching µ considered.

If preferences are common knowledge, this kind of matchings is not likely to occur
either, and the only remaining feasible outcomes are the ones that meet the following
definition.

Definition 3.8. Let (M, W;>) be a marriage market. Then µ ∈ M(M, W) is a stable
matching if it is individually rational and it is not blocked by any pair of agents.

The set of all stable matchings of the marriage problem (M, W;>) is denoted by S(P).
Notice that when preferences are not common knowledge, there might exist an unsta-

ble matching3 that occurs despite there being a pair {m, w} ⊂ M ∪W that blocks it, only
because m and w were unaware of each other’s preferences. However, we will hence-
forth consider markets in which these problems do not emerge, and thus if possible, it is
desirable for the outcome to be in S(P).

We will now show that for any (M, W;>), there always exists a stable matching. We
will do so through a mechanism, which is an algorithm that builds an output -a matching-
from the input (M, W;>).

Theorem 3.9. (Gale and Shapley, 1962) For any marriage problem (M, W;>), S(P) 6= ∅.

Proof. We will display an algorithm that builds an outcome in S(P), starting from an
arbitrary preference profile P ∈ P(M, W).

Step 1. (a) Each woman proposes to her most preferred man.

(b) Each man rejects all but his most preferred of the women who have proposed
to him, and holds the chosen one as his suitor. If there is a man who receives
no proposals, he remains provisionally self-matched.

...

Step k. (a) Each woman who has been rejected in the step k − 1 proposes to the most
preferred of those men who have not yet rejected her. If no such man exists,
she remains self-matched.

(b) Each man holds as his suitor the woman he prefers among those who have
proposed to him in his step, together with the one he had held as his suitor at
the end of step k− 1, and rejects the rest.

The algorithm stops after the first step in which no woman is rejected, or when every
woman rejected has no more acceptable men. It is clear that this will happen eventually,
since |M ∪W| < ∞; and obviously, the outcome is individually rational, because nobody

3Obviously, an unstable matching is a matching µ ∈ M(M, W)\S(P).
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is ever even temporarily matched to an unacceptable mate. The ones who remain single
are the women rejected by all of their acceptable men and the men who have not received
any proposal from an acceptable woman.

To see that the resulting matching is in S(P), let us suppose it is not. Then, as we
have already ruled out the possibility of individual irrationality, we can only assume that
there is a pair {m, w} that blocks the matching. In this case, man m must be acceptable
to woman w, and thus she must have proposed to him before proposing to her current
match, and if this is so, he must have rejected her in favour of a preferred mate. Now,
following from the transitivity of >m, m prefers his match to w, and {m, w} cannot be a
blocking pair.

This mechanism, called the Deferred Acceptance Algorithm (DAA), was proposed by
Gale and Shapley (1962) [14]. The idea behind this name is that men can keep the best
available woman at any step engaged, without taking any final decision yet. Notice that
there is a symmetric algorithm in which men take the proposing role.

Example 3.10. Consider the marriage problem (M, W;>), where M = {m1, m2, m3} is the
set of men and W = {w1, w2, w3, w4} is the set of women. Let the preference profile P be
given by

P(w1) = m1, m3, m2; P(m1) = w2, w3, w1, w4;
P(w2) = m1, m2, m3; P(m2) = w3, w4, w1, w2;
P(w3) = m3, m2, m1; P(m3) = w2, w1, w4, w3;
P(w4) = m3, m2, m1.

Let us apply the DAA.
Step 1. Both w1 and w2 propose to m1, while w3 and w4 propose to m3.

• w2 >m1 w1, so m1 rejects w1 and keeps w2 as his suitor.

• m2 receives no proposals, and therefore remains provisionally self-matched.

• w4 >m3 w3, so m3 rejects w3 and keeps w4 as his suitor.

The following diagram shows every proposal that has been made in the first step; those
that have been rejected are represented by a red edge and those that have been held are
represented by a green one.

w1
m1

w2
m2

w3
m3

w4

Step 2. Only w1 and w3, who have been rejected in the first step, make proposals. w1
proposes to m3 and w3 proposes to m2.

• m1 does not receive any new proposals, so he holds w2 as his suitor.
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• m2 holds w3 as his suitor.

• w1 >m3 w4, so m3 rejects w4 and keeps w1 as his suitor.

The following diagram shows the proceeding of step 2: dashed edges represent the ten-
tative matches from step 1, and as in the diagram above, green edges represent held
proposals and red ones, rejected proposals.

w1
m1

w2
m2

w3
m3

w4

Step 3. Only w4 has been rejected in step 2, so she is the only one proposing, and she
proposes to m2.

• m1 keeps w2 as his suitor.

• w3 >m2 w4, so m2 rejects w4 and keeps w3 as his suitor.

• m3 keeps w1 as his suitor.

The diagram of step 3 is the following.

w1
m1

w2
m2

w3
m3

w4

Step 4. Only w4 has been rejected in step 3, so she is the only one proposing, and she
proposes to m1.

• w2 >m1 w4, so m1 rejects w4 and keeps w2 as his suitor.

• m2 keeps w3 as his suitor.

• m3 keeps w1 as his suitor.

The diagram of step 4 is the following.

w1
m1

w2
m2

w3
m3

w4
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w4 has no more possible proposals to make, and so her only option is to remain single.
Therefore, the algorithm ends after step 4, and every tentative match becomes definitive.
The resulting matching is

µ =

(
w1 w2 w3 w4
m3 m1 m2 (w4)

)
.

In our example, women take the proposing role. We will call the resulting match-
ing from the women-proposing procedure µW , while the one resulting from the men-
proposing procedure will be called µM. Both µW and µM are stable matchings, and will
not usually be the same. There are many interesting results regarding µM and µW . For
instance, the fact that µM �M µW and µW �W µM.

Definition 3.11. Given a marriage market (M, W;>), a stable matching µ ∈ S(P) is W-
optimal if µ �W ν, ∀ν ∈ S(P).

An M-optimal matching is defined analogously. Gale and Shapley proved that such
stable matchings actually exist, and what is more, they are unique. In fact, the W-optimal
matching is µW and the M-optimal stable matching is µM.

Example 3.12. Let us consider the marriage market (M, W;>), with M = {m1, m2, m3},
W = {w1, w2, w3}, and submitted preferences given by

P(w1) = m2, m3, m1; P(m1) = w3, w2, w1;
P(w2) = m1, m2, m3; P(m2) = w1, w3, w2;
P(w3) = m3, m1, m2; P(m3) = w2, w1, w3.

There are six possible matchings in which nobody remains single (and clearly, all of them
are individually rational because nobody is unacceptable for anybody of the opposite sex):

µ1 =

(
w1 w2 w3
m1 m2 m3

)
, µ2 =

(
w1 w2 w3
m1 m3 m2

)
, µ3 =

(
w1 w2 w3
m2 m1 m3

)
,

µ4 =

(
w1 w2 w3
m2 m3 m1

)
, µ5 =

(
w1 w2 w3
m3 m1 m2

)
, µ6 =

(
w1 w2 w3
m3 m2 m1

)
.

It is easy to check that µ1 and µ2 are blocked by the pair {m2, w1}, µ5 is blocked by the
pair {m1, w3}, and µ6 is blocked by the pair {m3, w3}; µ3 and µ4 have no blocking pairs.
Thus, S(P) = {µ3, µ4}. Trivially, µW = µ3 because every woman is matched to her most
preferred mate, and similarly µM = µ4.

So far, we have seen that the set of stable matchings is not empty; we have also begun to
see that agents on opposite sides of the market have conflicting interests over the different
stable outcomes, whilst agents on the same side may have common interests regarding
the best stable matching they can achieve.

We have already said that the matching µW is the best stable matching the women can
achieve, but is there any unstable matching in which they would all do better? In other
words, are they paying a price for stability? The answer is negative.

Theorem 3.13. (Weak Pareto optimality for the women). There is no individually rational
matching µ ∈ M(M, W) such that µ �w µW , ∀w ∈W.
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The proof of this theorem is by means of the deferred acceptance algorithm.4 Obvi-
ously, the analogous result for the men is also true. Let us see a seemingly trivial example.

Example 3.14. Let (M, W;>) be a marriage market with M = {m1, m2, m3}, W = {w1, w2, w3}
and the following submitted preferences:

P(m1) = w1, w2; P(w1) = m2, m3;
P(m2) = w2, w3; P(w2) = m3, m2;
P(m3) = w3, w1; P(w3) = m2, m1.

There is no individually rational matching in which nobody remains self-matched. If we
apply the DAA with women proposing, we obtain the matching

µW =

(
w1 w2 w3
m3 m2 (w3)

)
,

and no other matching gives every woman a strictly preferred matching. However, the
following matching is weakly preferred by women to µW :

µ =

(
w1 w2 w3
m2 m3 (w3)

)
.

Indeed, µ �w1 µW , µ �w2 µW , and µ(w3) = µW(w3).

As we have observed in this example, stability and weakly Pareto-optimality need not
happen simultaneously. This is a crucial issue when trying to solve these problems in
practice, as we have to decide which one of these two properties is more desirable. In
Chapter 5 we will see how different mechanisms yield matchings with these different
properties.

Prior to the following section, let us recall the previous chapter. We can now consider
the marriage problem (M, W;>) as a game (I , S, u) with the set of players being I =

M ∪W, the set of strategies S = P(M, W), and u = (ux)x∈M∪W , with ux : S → R

any function representing the utility of an agent x ∈ M ∪W, that is, such that ∀s, s′ ∈ S,
ux(s) > ux(s′) ⇐⇒ x prefers the outcome when the strategy profile is s than the outcome
when the strategy profile is s′.

3.3 Dominated matchings and core of the game

In this section, we will study the structure of the set of stable matchings S(P). But
first, we need some previous definitions of general matching theory, such as dominated
matchings or the core of a game.

So far, we have defined a marriage market (M, W;>) as a game with the set of players
M ∪W; we have also specified the possible outcomes, M(M, W), and its rules. These
rules, together with the preference profile of the players P ∈ P(M, W), induce yet another
relation on the setM(M, W), called dominance.

4See [29], Chapter 2.
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Definition 3.15. Let (M, W;>) be a marriage market and µ, ν ∈ M(M, W) two matchings.
We say that ν is dominated by µ if there is a subset S ⊂ M∪W, namely a coalition of agents,
such that

(a) ∀x ∈ S, µ �x ν, and

(b) the rules of the market give S the power to impose µ over ν.5

In view of this, if ν is dominated by µ, we can be quite sure that ν will not be the
outcome of the game, because there is a set of players who have the power to impose µ, an
outcome they all prefer to ν. Thus, dominance seems to be somewhat related to stability.

However, notice that until now, we had only considered dominance via single indi-
viduals, ruling out individually irrational outcomes, and via couples {m, w} ⊂ M ∪W,
eliminating every outcome blocked by pairs {m, w} with m ∈ M and w ∈ W. However,
we had not considered larger coalitions up until now.

Nonetheless, the following definition and theorem show that, in the marriage market,
this simplification does not make any difference, as nothing is lost by ignoring coalitions
formed by more than two individuals.

Definition 3.16. The core of a marriage market is the set of undominated matchings.

We denote the core of the marriage market (M, W;>) by C(P).

Theorem 3.17. Let (M, W;>) be a marriage market. Then C(P) = S(P).

Proof.

⊆) Let us see that ∀µ ∈ M(M, W), µ 6∈ S(P)⇒ µ 6∈ C(P).
If µ is individually irrational, then it is dominated via a coalition formed by a single
individual. On the other hand, if it is unstable via a blocking pair {m, w} such that
m >w µ(w) and w >m µ(m), then it is dominated via the coalition {m, w}.

⊇) Let us see that ∀µ ∈ M(M, W), µ 6∈ C(P)⇒ µ 6∈ S(P).
If µ is not in the core, then it is dominated via some coalition A by some other
matching ν. In the case that µ is individually rational, ∀w ∈ A, ν(w) >w µ(w) and
so ν(w) ∈ M ∩ A.
Assume w ∈ A and m = ν(w). Then w >m µ(m), and µ is blocked by {m, w}.

We will now analyse the algebraic structure of the set of stable matchings. Let us
consider the partial orders �W , �W , �M and �M restricted to S(P). These are partial
orders, because there are stable matchings which might not possibly be compared in this
way. In fact, S(P) is a distributive lattice under these partial orders. Let us recall the
definition of lattice.

Definition 3.18. A lattice (L,≥) is a partially ordered set such that any two elements x
and y have a supremum, denoted by x ∨ y, and an infimum denoted by x ∧ y.

5By stating false preferences; we will see how this works in Section 3.4.
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A lattice is complete if each of its subsets X ⊆ L has a supremum and an infimum in L.
A distributive lattice (L,≥) is a lattice such that, ∀x, y, z ∈ L,

(a) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

(b) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

Given a lattice (L,≥), its dual lattice is a lattice (L,≥d) such that ∀a, b ∈ L, b ≥d a ⇐⇒
a ≥ b.

The following theorem helps to understand better the collision and coalescence of
interests among agents in these markets. The more general result is later proved for the
college admissions problem.

Theorem 3.19. (Conway as cited by Knuth, 1976) In the marriage problem (M, W;>), if
preferences are strict, S(P) is a distributive lattice under the partial order �W , dual to the partial
order �M. If we consider the partial order �W (resp. �M), then the maximum (resp. minimum)
element of the lattice is µW and the minimum (resp. maximum) element is µM.

That is, intuitively, every time we move closer to the W-optimal matching, we conse-
quently must move further from the M-optimal matching. Actually, an immediate corol-
lary of Theorem 3.19 is that for any two matchings µ, ν ∈ S(P), µ �M ν ⇐⇒ ν �W µ.

Another interesting result regarding stable matchings is that the set of self-matched
agents of a marriage market (M, W;>) is the same in every stable matching. This result is
called the Rural Hospital Theorem, and we will study it in the following chapter because
it is also true for the college admissions problem.

3.4 Strategic behaviour

We have not yet dug into the different strategies players can adopt, which are the
preferences agents can state. If agents are likely to say the truth regarding their preferences
is a question that arises naturally after all the previous results. We will focus on the
incentives they have for truth-telling under the deferred acceptance mechanism.

Of course, if agents had incentives to lie, then the algorithm would not be useful even
if it did yield stable outcomes with respect to the stated preferences (because these would
not be the true preferences).

Remark 3.20. On the one hand, when we consider the marriage problem (M, W;>), we are
fixing P, that is, we are assuming that either agents will not state any list differing from
their true preferences or that the preferences they state are their true ones. On the other
hand, when we consider the marriage game (I , S, u), we are taking for granted that agents
may choose any element s ∈ S as a strategy, and thus become strategic players who may
potentially lie if they wish.

Therefore, these are two completely different approaches to the same market. Reason
why, throughout this section, we will consider the same marriage market as (M, W;>) or
as (I , S, u) depending on which one fits best our purpose at every given moment. We will
use P to refer to the preference profile with true preferences submitted.
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Proposition 3.21. Truth-telling is not a dominant strategy for all agents of the marriage game
(I , S, u) when the deferred acceptance algorithm is used.

Actually, we will prove the following theorem, which is even stronger.

Theorem 3.22. (Impossibility Theorem) There is no mechanism for the marriage game (I , S, u)
which yields a matching in S(P) and makes it an dominant strategy for all agents to state their
true preferences.

Proof. We only need to find a marriage game for which no stable matching mechanism
makes truth-telling a dominant strategy. Consider the marriage game (M∪W, S, u), where
M = {m1, m2, m3}, W = {w1, w2, w3}, and the (true) preference orders are the following

>w1 : m2 >w1 m1 >w1 m3 >w1 w1;
>w2 : m1 >w2 m2 >w2 m3 >w2 w2;
>w3 : m1 >w3 m2 >w3 m3 >w3 w3;
>m1 : w1 >m1 w3 >m1 w2 >m1 m1;
>m2 : w3 >m2 w1 >m2 w2 >m2 m2;
>m3 : w1 >m3 w2 >m3 w3 >m3 m3.

If all agents submit the preference profile P ∈ P(M, W) according to their true prefer-
ence orders, there are six individually rational matchings in which nobody remains single:

µ1 =

(
w1 w2 w3
m1 m2 m3

)
, µ3 =

(
w2 w1 w3
m1 m2 m3

)
, µ5 =

(
w2 w3 w1
m1 m2 m3

)
,

µ2 =

(
w1 w3 w2
m1 m2 m3

)
, µ4 =

(
w3 w1 w2
m1 m2 m3

)
, µ6 =

(
w3 w2 w1
m1 m2 m3

)
.

Matchings µ1 and µ6 are blocked by the pair {m2, w1}, µ3 is blocked by {m1, w3}, and
µ5 is blocked by the pair {m1, w1}; µ2 and µ4 have no blocking pairs. Thus, S(P) =

{µM, µW}, with µM = µ2 and µW = µ4.
Now, suppose w1 lied and stated her following false preferences: P′(w1) = m2, m3, m1.

Then, we would have a new marriage problem (M, W;>′), with >′ the preference order
(>′x)x∈M∪W such that >′x≡>x, ∀x ∈ M ∪W\{w1}, and >′w1

: m2 >′w1
m3 >′w1

m1 >′w1
w1.

The setM(M, W) would obviously remain unchanged, and the only matching not blocked
by any couple would be µ4 = µW . Therefore, we would have S(P′) = {µW}.

Suppose instead that it was m1 who lied by stating his following false preferences:
P′′(m1) = w1, w2, w3. Then, the new problem would be (M, W;>′′), with >′′ the prefer-
ence order (>′′x )x∈M∪W such that >′′≡>x, ∀x ∈ (M∪W)\{m1}, and >′′m1

: w1 >m1 w2 >m1

w3 >m1 m1. In this case, the only stable matching would be µM; that is, S(P′′) = {µM}.
Let us now consider the only two possibilities regarding f (P), assuming that f is a

stable-matching yielding mechanism with reference to preferences P.

(i) f (P) = µM. In this case, w1 has incentives to misrepresent her preferences,
because by stating P′(w1) instead of P(w1) she would obtain f (P′) = µW , and
µW �w1 µM.
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(ii) f (P) = µW . In this case, m1 has incentives to misrepresent his preferences, because
by stating P′′(m1) instead of P(m1) he would obtain f (P′′) = µM, and µM �m1 µW .

This is not a very optimistic result. However, our next theorem will help us see why,
despite not being optimal, the DAA seems to be as good as possible.

Theorem 3.23. (Dubins and Freedman, 1981) Let (M, W;>) be a marriage problem. Then,
when a mechanism that produces the W-optimal (resp. M-optimal) stable matching is used, it
is a dominant strategy -maybe only weakly- for all w ∈ W (resp. m ∈ M) to state their true
preferences.

Proof. See [9].

Obviously, the DAA falls into the category of mechanisms for which this theorem
works. In addition, agents on the non-proposing side of the market do not have any
incentive to misrepresent their first choice.6

The last result of this chapter will help us see the relation between the marriage prob-
lem and Chapter 2 more clearly.

Theorem 3.24. Let (I , S, u) be a marriage game with I = M ∪W and S = P(M, W). If
a procedure that yields the W-optimal stable matching is used and the strategy profile chosen,
s∗ ∈ S, is a Nash equilibrium with none of its strategies weakly dominated, then the resulting
matching µ∗ is stable with respect to the true preferences P; that is, µ∗ ∈ S(P).

Proof. Let us consider the related marriage problem (M, W;>), and a W-optimal stable
matching procedure f : P(M, W)→M(M, W). Let us denote s∗ = (s∗m1

, . . . , s∗mp , s∗w1
, . . . , s∗wn),

and let us assume that µ∗ = f (s∗) /∈ S(P). Moreover, we can assert without loss of gener-
ality that this procedure is the DAA with women proposing.

Therefore, ∃mi, wj such that wj >mi µ∗(mi) and mi >wj µ∗(wj). By Theorem 3.23, s∗wj
must be wj’s true preferences; but then, wj must have proposed to mi before proposing to
µ∗(wj), and mi must have declined this proposal in favour of a more preferred one.

Let us consider the preference profile s′ ∈ P(M, W), with s′x = s∗x ∀x ∈ (M ∪W)\{mi}
and s′mi

the strategy of man mi which ranks wj as his top choice and leaves everything else
unchanged (with respect to s∗mi

). Clearly, if µ′ = f (s′), then µ′(mi) = wj, since wj proposes
to mi at the same step than before but she is not rejected.

Hence, it is clear that regardless of which particular utility function u is, umi (s
∗) <

umi (s
∗
−mi

, s′mi
), which contradicts the fact that s∗ is a Nash equilibrium.

Obviously, the analogous result swapping men and women is also true.
To conclude, there is a question that arises naturally after the study of this chapter, and

is that of how many outcomes actually form the set S(P). There is a lot of bibliography
regarding this issue, which will not be studied here, but the main conclusion is that finding
this number is NP-hard.7

6See [23].
7An asymptotic bound from above is found in [8].



Chapter 4

The college admissions problem

We turn now to study the college admissions problem. In this problem, there are two
distinct sets of agents to be matched, but unlike in the marriage problem, agents from one
of the two sets might end up assigned to many agents on the other side. This is why this
kind of problem is also called many-to-one matching problems.1

There are multiple models in real life that belong to this category, such as labour
markets in which firms employ many workers, or universities that enrol many students,
while workers usually work for a single firm and students hardly attend more than one
college at a time. In these models, one side of the market is usually made of individuals
and the other one of institutions.

When comparing many-to-one matching to the previously seen one-to-one matching,
we will observe that there are differences, but also noteworthy similarities. Many of the
differences come from the fact that institutions need to compare subsets of agents from
the other side, generally containing more than one individual. It was initially believed
that the college admissions problem could be thought of as a marriage problem, where
each one of the seats available at a given college would be treated as a single individual.2

We will see why this is not the case, even though this view will prove useful for some of
the results.

The model

Let us start to build the formal model: there are two disjoint and finite sets, students
S = {s1, . . . , sm}, and colleges C = {c1, . . . , cn}, and the aim of the market is to match
them. Each student can attend one college, and each college ci ∈ C can admit at most its
quota of students, qi ∈N; that is, the quota of college c is the number of positions or seats
it has to offer. We define the quota vector q := (q1, . . . , qn).

Similarly to the marriage problem, every student s ∈ S is endowed with preferences
over C ∪ {s} that induce a strict order relation >s. Student s submits to the central admin-
istration, which will try to find a solution to the problem, an ordered list P(s) over C∪ {s}

1The natural generalisation, many-to-many matching problems, is interestingly studied in [3].
2In [9] and [23] this is taken for granted, and in [15] there is a (mistaken) proof of the equivalence between

these two problems.
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according to her order relation >s (or not, as we have seen for the marriage market; for
now, let us suppose she does).3

Analogously, every college c ∈ C has preferences over S ∪ {c} that induce a strict
order relation >c. The ordered list college c submits to the central administration will be
denoted by P(c).

We will obviously assume that all elements of >:= (>x)x∈S∪C are complete, transitive
and strict order relations. The kind of notation is the same as the one used in the marriage
problem, so we will shorten the preference lists by leaving only the acceptable options.4

A preference profile is denoted by P = P(s1)× . . .× P(sm)× P(c1)× . . .× P(cn), where
P(x) is the preference list submitted by x ∈ S ∪ C in accordance to the order >x. The set
of all possible preference profiles is denoted by P(S, C).

To summarize, a college admissions problem is denoted by the tetrad (S, C, q;>). If
we consider it as a game G = (I , Σ, u), the elements are

(a) I = S ∪ C,

(b) Σ = P(S, C), and

(c) ∀x ∈ I , a utility function ux : Σ→ R.5

The rules of the game (I , Σ, u) are the following:

(a) any pair consisting of one student and one college that agrees to be matched may
do so,

(b) any college might decide to leave some sit empty, that is, it may prefer to leave its
quota unfilled rather than to admit some of the students in S,

(c) any student may remain unmatched if she wishes, and

(d) no college c ∈ C may admit more than its quota qc of students and no student can
enrol more than one college.

An outcome of the college admissions problem is an assignment of students to colleges
(and vice-versa), such that each student is matched to at most one college and each college
is matched at most to its quota of students. The convention is that if a student is not
matched to any college at a given matching, then she is self-matched, and if a college does
not fill its quota, then it is matched to itself in each of its empty positions.

We will call, for a given set A, an unordered family of elements of A a collection of elements
of A, not necessarily distinct, in which the order is irrelevant.6 We can now proceed to
define a matching in this model.

Definition 4.1. Let (S, C, q;>) be a college admissions problem. A matching µ is a map
from S ∪ C into the set of unordered families of elements of S ∪ C such that

3Therefore, for the moment we will use indistinctly >s and P(s). The same will be done for colleges.
4In the preference list of agent x ∈ S ∪ C, there will only be those elements y ∈ (S ∪ C)\{x} such that y >x x.
5Always keeping in mind that ux is actually a map over the set of outcomes, but because it is equivalent to a

map over Σ, there is no loss of generalisation by considering its domain is Σ.
6That is, the difference between an unordered family of elements of A and a subset of A is that in the former,

a given element of A may appear more than once.
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(a) |µ(s)| = 1, and µ(s) ∈ C ∪ {s} ∀s ∈ S,

(b) |µ(c)| ≤ qc ∀c ∈ C, and if r = |µ(c)| < qc, then µ(c) contains qc − r copies of c, and

(c) µ(s) = c ⇐⇒ s ∈ µ(c).

The set of all possible matchings of the college admissions problem (S, C, q;>) is de-
noted by M(S, C). Recalling the marriage problem, we will represent matchings in the
following way:

Example 4.2. Let (S, C, q;>) be a college admissions problem, where S = {s1, . . . , s6},
C = {c1, c2, c3}, and q = (2, 3, 2). In the matching

µ =

(
c1 c2 c3 (s5)

s2 s4 s1 c2 c2 s3 s6 s5

)
,

the assignment of college c1, which has quota 2, is {s2, s4}; similarly, the assignment of
college c3 is {s3, s6}. On the other hand, college c2 does not fill its quota q2 = 3, and enrols
only student s1, while student s5 remains unmatched.

Just as in one-to-one matchings, we can represent µ by means of a graph as follows.

c1

c2

c3

s1

s2

s3

s4

s5

s6

C

S

Notice that qi is the number of edges attached to node ci, ∀i = 1, 2, 3.

4.1 Preferences and stability

As we have briefly mentioned in the beginning of this chapter, the preferences de-
scribed above are not enough in this model to compare matchings, since colleges with
quota greater than one are unable to compare different matchings in terms of preferences
over single students. That is, they will have to compare groups of students, which is im-
possible with the tools we have so far developed. Thus, we need to consider, for every
college c ∈ C, an order relation over all the assignments that can arise from a matching;
this order will be denoted by >#

c .

Definition 4.3. Consider the college admissions problem (S, C, q;>). Let >c be the or-
dered preferences of college c over S∪ {c}, and let >#

c be a preference relation of c over all
sets of students (union itself) it could be assigned at any matching µ ∈ M(S, C). Then, >#

c
is responsive to >c if, ∀µ′ ∈ M(S, C) such that µ′(c) = (µ(c) ∪ {si})\{σ}, where σ ∈ µ(c)
and si 6∈ µ(c), then
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µ′(c) >#
c µ(c) ⇐⇒ si >c σ.

In other words, preferences >#
c are responsive to >c if, when faced with two assign-

ments differing in only one element, c prefers the assignment with its preferred element.
This is a natural extension of colleges’ preferences over individuals, and so we will hence-
forth assume that colleges have responsive preferences, on top of they being complete and
transitive (and strict over individuals).

Notice that there may exist many different responsive preference orderings >#
c for

every >c.

Example 4.4. Consider the college admissions problem (S, C, q;>) with S = {s1, . . . , s4}.
Let c ∈ C be a college with quota qc = 2 and preferences P(c) over {s1, s2, s3, s4, c} given
by P(c) = s1, s2, s3, s4. Two possible responsive preferences over entering classes are

P#
1 (c) = {s1, s2}, {s1, s3}, {s1, s4}, {s2, s3}, {s2, s4}, {s3, s4}, {s1, c}, {s2, c}, {s3, c}, {s4, c},

and

P#
2 (c) = {s1, s2}, {s1, s3}, {s2, s3}, {s1, s4}, {s2, s4}, {s3, s4}, {s1, c}, {s2, c}, {s3, c}, {s4, c}.

Stability

The notions regarding stability are analogous to those in the marriage problem.

Definition 4.5.

• A matching µ ∈ M(S, C) is individually irrational if ∃s ∈ S, c ∈ C such that µ(s) = c
and either s is unacceptable to c, or c is unacceptable to s. That is, if c >c s or s >s c.

• A matching µ ∈ M(S, C) is blocked by the college-student pair {c, s}, with c ∈ C, s ∈ S,
if µ(s) 6= c, c >s µ(s), and ∃σ ∈ µ(c) such that s >c σ.

• A matching µ ∈ M(S, C) is stable if it is not blocked by any individual agent or
college-student pair. µ ∈ M(S, C) is unstable if it is not stable.

We will denote the set of all stable matchings by S(P).

At first sight, it seems clear that this definition of stability might not prove useful
when trying to find a solution for the college admissions problem, since this model in-
volves preferences over sets of agents, and the coalitions that could potentially conspire
to improve their results are much more heterogeneous and diverse than those in the mar-
riage market. We will hence shed light on this matter and see that when preferences are
responsive, nothing is lost by considering only simple college-student blocking pairs.

Definition 4.6. Given the college admissions problem (S, C, q;>), a matching µ ∈ M(S, C)
is group unstable if there exists another matching ν ∈ M(S, C) and a coalition A ⊂ S ∪ C
such that ∀s ∈ A ∩ S and ∀c ∈ A ∩ C,

(a) ν(s) ∈ A\{s},

(b) ν(s) >s µ(s) (if µ is individually rational, (b) =⇒ (a)),
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(c) ν(c) >c µ(c), and

(d) σ ∈ ν(c) =⇒ σ ∈ A ∪ µ(c), i.e., every student in ν(c) is either a new student from
A or one of c’s old students in µ(c).

In this case, it is also said that µ is blocked by the coalition A.

In view of this, if µ ∈ M(S, C) is blocked by the coalition of colleges and students A,
then they could all get a better assignment by matching among themselves (notice that if
µ is individually rational, A must have agents from both C and S). If such coalition does
not exist, then the matching µ is called group stable. Surprisingly, this notion is equivalent
to that of stability we have seen before, as stated in the following lemma.

Lemma 4.7. Given the college admissions problem (S, C, q;>), a matching µ ∈ M(S, C) is group
stable ⇐⇒ µ ∈ S(P).

Proof.

⇒) If µ /∈ S(P) then there is a single agent, or a student-college pair that blocks µ,
namely a coalition formed by a single agent or by a pair of agents that blocks µ;
therefore, µ is group unstable.

⇐) If µ is blocked by a coalition A ⊂ S ∪ C that can achieve a matching ν ∈ M(S, C)
every member of A prefers to µ, then for c ∈ A, ν(c) >c µ(c), and hence ∃s, σ such
that s ∈ ν(c)\µ(c), σ ∈ µ(c)\ν(c) and s >c σ. Therefore, s ∈ A, and c >s µ(s), so the
matching µ is unstable via the pair {s, c}.

Thus, there are two immediate simplifications we can implement after this lemma. The
first one is that we can concentrate on small coalitions of a single agent or a student-college
pair when searching for stable matchings. The second one is that when preferences are
responsive, which we are assuming is true, we can find stable matchings by using only the
preferences P over individuals, and so the responsive preferences of college c over groups
of students, P#(c), are not needed anymore. Knowing this, it would not be a surprise
to see that many of the results seen for the marriage problem carry over to the college
admissions problem.

4.2 The related marriage problem

In this section, we are going to consider a particular college admissions problem and
slightly adjust it in a way that it becomes a marriage problem. The key aspect to take into
account is that the marriage problem is a particular case of a college admissions problem
in which all colleges have quota one. In this section, responsive preferences of colleges
over sets of students are not taken for granted.

Let C = {c1, . . . , cn} be the set of colleges and S = {s1, . . . , sm} the set of students;
the quota of college ck is qk ∈ N, and the preference profile P = P(c1) × . . . × P(cn) ×
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P(s1)× . . .× P(sm) ∈ P(S, C). If we replace every college ck ∈ C with qk copies of itself,
i.e, with the string c1

k , c2
k , . . . , cqk

k , we can assume that each one of these copies is a college
with quota one; this is why, in this section, we only need to consider preferences over
individuals and not over greater sets. Moreover, the preferences over individuals of each
one of these copies are exactly those of ck.

One problem that may arise is the fact that students do not have strict preferences
over these copies of ck, and strict preferences are a key limitation in our model; however,
this is easily fixed by replacing ck in the preference list of every student s with the string
c1

k , . . . , cqk
k , in that order. This way, we can impose ci

k >s cj
k, ∀i < j, ∀s ∈ S.

Thus, we have, for the college admissions problem (S, C, q;>), a related marriage prob-
lem (S, C̃; >̃), where C̃ = {c1

1, . . . , cq1
1 , . . . , c1

n, . . . , cqn
n }, and >̃ = (>̃x)x∈S∪C̃ are the prefer-

ence orders corresponding to S ∪ C̃. The preference profile of this marriage problem is
denoted by P̃.

The correspondence between matchings in the original college admissions problem
and the related marriage market we have built is clear now; moreover, the stability of a
matching is preserved in the transition from a college admissions problem to its related
marriage problem. Regarding this issue, we have the following lemma.

Lemma 4.8. Given the college admissions problem (S, C, q;>), a matching µ ∈ M(S, C) is
stable if, and only if, the corresponding matching of the related marriage problem (S, C̃; >̃), µ̃ ∈
M(S, C̃), is stable.

This lemma enables us to generalise some of the results of the marriage problem to the
college admissions problem, such as the fact that S(P) 6= ∅ for every marriage problem.

Nonetheless, not all of the results do generalize, and there are remarkable differences.
These differences arise when we study the strategic decisions available to the agents or the
structure of the set of stable matchings. For example, we cannot conclude from Lemma
4.8 anything regarding the preferences of colleges over different matchings, because now
stable matchings can be identified using only the preferences of colleges over single stu-
dents.

4.3 The deferred acceptance algorithm

Let us consider the deferred acceptance algorithm in the case of the college admissions
problem (S, C, q;>). In particular, we will display the deferred acceptance algorithm with
students proposing. The college-proposing deferred acceptance algorithm is obtained by
transposing the roles of colleges and students, but taking into account that on each step,
colleges make as many proposals as empty seats they have (unless there are not enough
students to make that many proposals).

Step 1. (a) Each student s ∈ S proposes to her top choice among those colleges for which
she is acceptable.

(b) Each college c ∈ C rejects all but the best qc students among those students
who proposed to it, where qc denotes the quota of c. Those that remain are
tentatively assigned a seat at c.
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...

Step k. (a) Each student who has been rejected in the step k − 1 proposes to her top
choice among those colleges that have not yet rejected her and for which she is
acceptable, if there exists such college.

(b) Each college c rejects all but the best qc students among those who have just
proposed and those who were tentatively assigned to it at the step k− 1. The
ones that are not rejected are tentatively assigned one seat at c.

The algorithm stops in the step in which no proposal is rejected or there are no more
possible proposals to make, and the tentative assignments at that moment become defini-
tive; if a student has been rejected by all the colleges to which she has proposed, then she
is not assigned to any college and remains self-matched. Similarly, if a college has not
filled its quota by the step the algorithm stops, then it remains self-matched in all of its
empty positions.

Notice that there is a difference between the DAA for the marriage problem and the
one we have just described for the college admissions problem: in the latter, at every
step, no university receives proposals from unacceptable students. As stable matchings
are always individually rational, this can be done without loss of generality,7 and the
algorithm will probably stop earlier than otherwise.

Example 4.9. Consider the college admissions problem (S, C, q;>), where C = {c1, c2, c3},
S = {s1, s2, s3, s4, s5}, q = (2, 2, 1), and the submitted preferences are given by

P(s1) = c1, c3, c2; P(c1) = s2, s3, s1, s5;
P(s2) = c3, c2, c1; P(c2) = s4, s5, s2;
P(s3) = c1, c2, c3; P(c3) = s3, s4, s1, s5, s2.
P(s4) = c1, c3, c2;
P(s5) = c3, c1, c2.

Step 1. Every student proposes to her first-choice college but s4, who has to apply to her
second choice because she is unacceptable to her first choice.

• c1 receives proposals from s1 and s3. It keeps both tentatively assigned.

• c2 receives no proposals, and so it remains self-matched in all of its positions.

• c3 receives proposals from s2, s4 and s5. As s4 >c3 s5 >c3 s2, it rejects s2 and s5, and
keeps s4 tentatively assigned.

Step 1 can be represented by means of the following directed graph, where green edges
represent accepted proposals and red ones represent declined proposals:

7Because we have removed only those proposals that would be rejected for certain.
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s1
c1

s2

s3 c2

s4
c3

s5

Step 2. Only s2, s5 make proposals in this step: s2 proposes to c2, while s5 proposes to c1.

• s3 >c1 s1 >c1 s5, so c1 rejects the received proposal and does not change its tentative
assignment.

• c2 keeps s2 tentatively assigned.

• c3 receives no new proposals, so its tentative assignment remains unchanged.

Step 2 is represented below. Dashed edges indicate tentative assignments from the previ-
ous step, while the colour of the edge indicates if that proposal has been accepted (green)
or rejected (red).

s1
c1

s2

s3 c2

s4
c3

s5

Step 3. s5 is the only student to make a proposal in this step, and proposes to c2.

• c1 receives no proposals, so its tentative assignment remains unchanged.

• c2 accepts s5’s proposal, and so its tentative assignment is {s2, s5}.
• c3 receives no new proposals, so its tentative assignment remains unchanged.

Step 3 is represented below in the same way as be have represented step 2.

s1
c1

s2

s3 c2

s4
c3

s5
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In Step 3 no proposal has been rejected, so the algorithm stops and the resulting match-
ing for this college admission problem using the DAA with students proposing is

µ =

(
c1 c2 c3

s1 s3 s2 s5 s4

)
.

4.4 Strategies and truth-telling

Just as in the marriage market, when preferences are strict, there is a C-optimal stable
matching that every college likes at least as well as any other stable matching, µC, and
a S-optimal stable matching that every student likes at least as well as any other stable
matching, µS. The following two definitions carry over immediately from the marriage
problem.

Definition 4.10. Consider the college admissions problem (S, C, q;>). For every element
x ∈ S ∪ C, we can define two order relations over the set M(S, C): ∀µ, ν ∈ M(S, C), we
write µ �x ν to denote that x likes µ at least as well as ν (that is, either µ(x) >x ν(x) or
µ(x) = ν(x)), and µ �x ν to denote that x strictly prefers µ to ν (⇔ µ(x) >x ν(x)).

We can also define order relations overM(S, C) for the sets S and C. We write µ �S ν

to indicate that ∀s ∈ S, µ �s ν and ∃s ∈ S such that µ �s ν, and µ �S ν to indicate that
∀s ∈ S, µ �s ν. Orders �C and �C are defined analogously.

Definition 4.11. Given the college admissions problem (S, C, q;>), µ ∈ S(P) is S-optimal
if ∀ν ∈ S(P), µ �S ν. A C-optimal matching is defined analogously.

Just as in the marriage problem, the S-optimal stable matching is unique, and is the
one obtained when using the deferred acceptance algorithm with students proposing, and
similarly the C-optimal stable matching is the one obtained when colleges take the initia-
tive. The following theorem, however, is not equivalent to that in the marriage problem.

Theorem 4.12. Given the strict preference profile P ∈ P(S, C), the S-optimal matching of the
college admissions problem (S, C, q;>) is weakly Pareto optimal for the students, but the C-optimal
stable matching might not be even weakly Pareto optimal for the colleges.

Proof. On the one hand, for the part of the proof regarding students the result carries
over immediately from the marriage problem. On the other hand, the result concerning
colleges will we shown by means of a counterexample. We will find a college admissions
problem (S, C, q;>) so that every college in C prefers another matching to the C-optimal
matching.

Consider (S, C, q;>) with S = {s1, s2, s3, s4}, C = {c1, c2, c3} and q = (1, 1, 2). Let the
preference profile P be given by

P(s1) = c3, c1, c2; P(c1) = s3, s2, s4, s1;
P(s2) = c1, c3, c2; P(c2) = s4, s3, s2, s1;
P(s3) = c2, c3, c1; P(c3) = s3, s2, s4, s1.
P(s4) = c3, c2, c1.
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There are twelve individually rational matchings in which no agent is self-matched,
and only one of them is stable:

µ1 =

(
c1 c2 c3
s1 s2 s3 s4

)
, µ5 =

(
c1 c2 c3
s2 s3 s1 s4

)
, µ9 =

(
c1 c2 c3
s3 s4 s1 s2

)
,

µ2 =

(
c1 c2 c3
s1 s3 s2 s4

)
, µ6 =

(
c1 c2 c3
s2 s4 s1 s3

)
, µ10 =

(
c1 c2 c3
s4 s1 s2 s3

)
,

µ3 =

(
c1 c2 c3
s1 s4 s2 s3

)
, µ7 =

(
c1 c2 c3
s3 s1 s2 s4

)
, µ11 =

(
c1 c2 c3
s4 s2 s1 s3

)
,

µ4 =

(
c1 c2 c3
s2 s1 s3 s4

)
, µ8 =

(
c1 c2 c3
s3 s2 s1 s4

)
, µ12 =

(
c1 c2 c3
s4 s3 s1 s2

)
.

Matchings µ1, µ2, µ3, µ10, µ11 and µ12 are blocked by the pair {c1, s2}, µ4 and µ7 by the
pair {c2, s3}, and µ6, µ8, µ9 are blocked by the pairs {c3, s4}, {c3, s2} and {c3, s3}, respec-
tively. Therefore, S(P) = {µ5}, and µC = µS = µ5.

However, µ9 �C µ5. That is, even though µ5 is the C-optimal stable matching, there is
another assignment, µ9, that every college strictly prefers to µ5.

Therefore, we have seen that there may exist matchings that all colleges strictly prefer
to the C-optimal stable outcome. Nonetheless, if there is a matching µ ∈ M(S, C) such
that at least one student is self-matched or one college does not fill its quota, the following
theorem states that they could not have hoped for a better result.

Theorem 4.13. (Rural Hospital Theorem) Given the problem (S, C, q;>) with strict prefer-
ences over individuals >, the set of admitted students and filled seats is the same ∀µ ∈ S(P).
Moreover, any college c ∈ C such that |µ(c)| < qc for some µ ∈ S(P), is assigned exactly the
same set of students at every stable matching, that is, ν(c) = µ(c), ∀ν ∈ S(P).

The motivation for this theorem is that when trying to assign hospitals to residents
in the United States, it was observed that many hospitals in rural areas did not fill their
quotas, and so the central administration tried to find a way to reassign these residents
and solve this problem. Theorem 4.13 asserts that this is an impossible task, unless they
let an unstable matching be the final outcome.

Let us now turn to the kind of questions agents are faced with when playing this game.
The strategies of both students and colleges consist of stating lists of preferences. Our next
theorem gives some insight into the kind of strategies colleges are likely to adopt. As seen
in Theorem 4.12, the C-optimal stable matching might not be weakly Pareto optimal for
the colleges, and so this theorem does not come as a surprise.

Theorem 4.14. Given the college admissions problem (S, C, q;>), there does not exist any stable
matching procedure that makes it a dominant strategy for every college to state its true preferences.

Proof. Consider the example used in the proof of Theorem 4.12. If there existed a proce-
dure that always yielded a matching in S(P) and made it a dominant strategy for every
college to say the truth, it would do so for any problem (S, C, q;>), and so it is sufficient
to show that it does not exist for this particular case.
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Let us consider the problem as a game G = (I , Σ, u), with I = {s1, s2, s3, s4, c1, c2, c3}
and Σ = P(S, C). Recall that S(P) = {µ5}, with

µ5 =

(
c1 c2 c3
s2 s3 s1 s4

)
,

and so any stable matching procedure must yield µ5. Notice that even though µ5 is the
C-optimal matching, college c3 is quite unhappy, because he has been given his third and
fourth choices. Imagine that c3 had lied and instead of submitting its true preferences
P(c3) = s3, s2, s4, s1, it had submitted the shortened preference list P′(c3) = s2, s1. That
is, let us suppose that the strategy profile chosen was P′ = P(s1)× . . .× P(s4)× P(c1)×
P(c2)× P′(c3).

In this case, every matching would be individually irrational, with the exception of

µ9 =

(
c1 c2 c3
s3 s4 s1 s2

)
and µ12 =

(
c1 c2 c3
s4 s3 s1 s2

)
,

and µ12 would still be blocked by the pair {c1, s2}. Therefore, S(P′) = {µ9}.
Now, recalling that µ5 is the only stable matching of the problem (S, C, q;>), it is clear

that truth-telling is a dominated strategy for college c3, because it prefers its assignment
when stating P′(c3).

Therefore, colleges (assuming they have the necessary information) in the college ad-
mission problem are likely to misrepresent their preferences in a way that they obtain a
better result than at any stable matching. Clearly, if a single college can do so, a coalition
of agents including at least one college can too.

However, students do not have this privilege for themselves, and their situation is as in
the marriage market, because unlike colleges, their preferences in the college admissions
problem are symmetrical to those of women or men in the marriage market.

Theorem 4.15. Given the college admissions problem (S, C, q;>), a stable matching mechanism
that yields the S-optimal stable matching makes it a dominant strategy for all students to state their
true preferences.

Proof. If the theorem were false, there would be a student for whom stating her true
preferences would not be a dominant strategy. Then, she would be able to benefit as well
in the related marriage market (S, C̃; >̃). This contradicts Theorem 3.23.

The positive side of this result is that students in a college admissions problem need
not waste their time playing strategically: by knowing that their best option is to say the
truth, they can submit their true preferences without fear of having made a mistake.

4.5 The set S(P)

We will now study the set of stable matchings of the college admissions problem
(S, C, q;>). We assume throughout that preferences over individuals are strict, but col-
leges might be indifferent among various sets of students. In this section, the preference
orders given by all agents respect their true orders.



32 The college admissions problem

In order to ease the notation, given an agent x ∈ S ∪ C, her preference relation >x and
two matchings µ, ν ∈ M(S, C), we will write ν(x) ≥x µ(x) to say that either ν(x) >x µ(x)
or ν(x) = µ(x).

Lemma 4.16. Consider the college admissions problem (S, C, q;>). Let µ, ν ∈ S(P), and suppose
there ∃c ∈ C such that µ(c) 6= ν(c). Let µ̃, ν̃ be their corresponding stable matchings in the related
marriage market (S, C̃; >̃). Then,

∃ci position of c such that µ̃(ci) >̃ci ν̃(ci)⇒ ∀cj, µ̃(cj) ≥̃cj ν̃(cj),

with i, j ≤ qc.

In other words, this lemma says that there cannot be two matchings in S(P) such that
there is a college indifferent between its two corresponding entering classes, unless this
two classes are exactly the same.

Thus, when preferences over individuals are strict, colleges also have strict preferences
over their entering classes when considering only the outcomes in S(P), and we can
now assert that some more results from the marriage market carry over to the college
admissions problem. The following theorem is one of them.8

Theorem 4.17. Consider the college admissions problem (S, C, q;>), and let µ, ν ∈ S(P). Then
µ �C ν ⇐⇒ ν �S µ.

Proof. If we consider the related marriage market, (S, C̃; >̃), then

µ �C ν ⇐⇒ µ̃(ci) ≥̃ci ν̃(ci) ∀ci ∈ C̃, and ∃cj ∈ C̃ such that µ̃(cj) >̃cj ν̃(cj), (4.1)

where (⇒) follows from Lemma 4.16, while (⇐) uses the responsiveness of ci’s prefer-
ences. Now, by definition, (4.1) ⇐⇒ µ̃ �C̃ ν̃ ⇐⇒ ν̃ �S µ̃, by Theorem 3.19, and clearly
ν̃ �S µ̃ ⇐⇒ ν �S µ.

The following corollary is an immediate conclusion.

Corollary 4.18. The optimal stable matching for one side of the market (S, C, q;>) is the worst
stable matching for the other side.

These are quite remarkable results, since at first sight it would seem obvious that
agents on one side of the market compete with each other for the best matching on the
other side, but these two last results assert that when we narrow the possibilities down to
stable matchings solely, all colleges prefer the C-optimal stable outcome and all students
prefer the S-optimal matching, and what is more, µC is the less desirable stable matching
for every student and µS is the less desirable stable matching for every college.

8It is the generalisation of the corollary of Theorem 3.19.
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This resembles what we have previously seen regarding lattices in the marriage prob-
lem. Let us then turn again to lattices. Firstly, given two matchings of the college admis-
sions problem (S, C, q;>), µ, ν ∈ M(S, C), we define the maps λµ,ν and ηµ,ν from S ∪ C to
the set of unordered families of elements of S ∪ C as follows:

∀c ∈ C, λµ,ν(c) =
{

µ(c) if µ(c) >c ν(c),
ν(c) otherwise.

∀s ∈ S, λµ,ν(s) =
{

µ(s) if ν(s) >s µ(s),
ν(s) otherwise.

Therefore, λ assigns each student the alternative she likes the least, and each college
the one it likes the most. Below, we define η as the opposite of λ.

ηµ,ν(c) =
{

µ(c) if ν(c) >c µ(c),
ν(c) otherwise.

ηµ,ν(s) =
{

µ(s) if µ(s) >s ν(s),
ν(s) otherwise.

Notice that λµ,ν and ηµ,ν need not be matchings. For example, λµ,ν will only be a
matching in the case that λµ,ν(s) = c ⇐⇒ s ∈ λµ,ν(c). What is clear is that, when they
are matchings, λµ,ν (resp. ηµ,ν) is the least upper bound for {µ, ν} under �C (resp. �S)
and the greatest lower bound under �S (resp. �C). That is, when λµ,ν, ηµ,ν ∈ M(S, C),

λµ,ν = µ ∨C ν = µ ∧S ν,
ηµ,ν = µ ∨S ν = µ ∧C ν.

We will now see that S(P) is a lattice under the partial orders �C and �S. But first, we
need to show that if µ and ν are stable matchings, then λµ,ν and ηµ,ν are stable matchings
too. In order to ease the notation, we will henceforth get rid of the subscripts µ, ν when
referring to λµ,ν and ηµ,ν.

Theorem 4.19. Let (S, C, q;>) be a college admissions problem. Then µ, ν ∈ S(P) =⇒ λ, η ∈
S(P).

Proof. Assuming that the original college admissions problem is (S, C, q;>), we consider
the related marriage market (S, C̃; >̃) and the matchings µ̃, ν̃ ∈ S(P̃), corresponding to
µ, ν ∈ S(P), respectively.

By Theorem 3.19, λ̃ = µ̃ ∨C̃ ν̃ ∈ S(P̃). Now, by Lemma 4.16, if for any college c ∈ C,
λ(c) = µ(c) (the proof for λ(c) = ν(c) is analogous), then µ �c ν, and so µ̃(ci) ≥̃ci ν̃(ci)

∀ci position of c, and hence λ̃(ci) = µ̃(ci), ∀ci. Therefore, ∀σ ∈ µ(c), ∃ci position of c such
that σ = λ̃(ci).

Suppose now that λ is not a matching. That is, ∃s ∈ S, ∃c1, c2 ∈ C, c1 6= c2, such that
s ∈ λ(c1) ∩ λ(c2). By what we have just seen, there must be some positions ci

1 of c1 and

cj
2 of c2 such that s = λ̃(ci

1) = λ̃(cj
2), but then λ̃ would not be a matching, and we have a

contradiction. Thus, λ ∈ M(S, C).
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Let us see that λ ∈ S(P). Clearly, it is individually rational, so let us assume it is not
in S(P) by supposing there is a blocking pair {c, s}. Then, s >c σ, for some σ ∈ λ(c), and
so there must be some position ci of c such that σ = λ̃(ci) and s >̃ci λ̃(ci). But now, by
Theorem 3.19, λ̃ ∈ S(P̃) =⇒ λ̃(s) >̃s ci =⇒ λ(s) >s c =⇒ {c, s} does not block λ.

To prove η ∈ S(P), the reasoning is analogous.

Combining the results given in Theorems 4.17 and 4.19, we have the following corol-
lary, which is the generalisation of Theorem 3.19 for the college admissions problem.

Corollary 4.20. S(P) forms a complete and distributive lattice (LC,�C) (resp. (LS,�S)) under
the partial order �C (resp. �S), and the lattice (LC,�C) is dual to the lattice (LS,�S).

4.6 Stable matchings and the core

After all the results seen until now, a natural question arises: is the set of stable match-
ings related in a clear way to the core of (S, C, q;>), like in the marriage problem? We
will answer this question after some previous definitions that are very similar to those in
the marriage market.

Definition 4.21. Let (S, C, q;>) be a college admissions problem, and let µ, ν ∈ M(S, C).
ν dominates µ via a coalition A ⊂ S ∪ C if, ∀s ∈ S ∩ A, ∀c ∈ C ∩ A,

(a) c′ = ν(s) =⇒ c′ ∈ A,

(b) s′ ∈ ν(c) =⇒ s′ ∈ A,

(c) ν(s) >s µ(s), and

(d) ν(c) >c µ(c).

Instead, ν weakly dominates µ via A if ∀s ∈ S ∩ A, ∀c ∈ C ∩ A, (a) and (b) are true and,

(c’) ν(s) ≥s µ(s) and ∃s∗ ∈ A such that ν(s∗) >s∗ µ(s∗), and

(d’) ν(c) ≥c µ(c) and ∃c∗ ∈ A such that ν(c∗) >c∗ µ(c∗).

The core of the game is defined as in the marriage market, but as we have just defined
another relation, the weak domination, we will also define a new core, the core defined
by weak domination.

Definition 4.22. The core of the college admissions problem (S, C, q;>) is the subset of
M(S, C) formed by all the matchings that are not dominated by any other matching. It is
denoted by C(P).

Definition 4.23. The core defined by weak domination of the college admissions problem
(S, C, q;>) is the set of matchings that are not weakly dominated by any other matching.
It is denoted by CW(P).
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Trivially, CW(P) ⊆ C(P), because domination implies weak domination, but unlike
in the marriage market, in the college admissions problem we have that CW(P) 6= C(P).
However, our next proposition states that under our assumptions regarding preferences,
the set of stable matchings equals the core defined by weak domination.

Proposition 4.24. Let (S, C, q;>) be a college admissions problem. If preferences over individuals
are strict, then S(P) = CW(P).

Proof.

⊆) If µ /∈ CW(P), then µ is weakly dominated via a coalition A ⊂ S ∪ C by some other
matching ν ∈ M(S, C). Therefore, ∃a ∈ A such that ν(a) >a µ(a). Now, if µ is
individually irrational, then it is obviously unstable, and so µ /∈ S(P). Suppose
then that µ is individually rational, and that there is a c ∈ C ∩ A (the reasoning for
s ∈ S ∩ A is even less complicated) such that ν(c) >c µ(c); then, ∃s ∈ ν(c)\µ(c),
∃σ ∈ µ(c)\ν(c) such that s >c σ. Now, by definition, s ∈ ν(c)⇒ s ∈ A, and because
ν(s) 6= µ(s), the only possibility is that ν(s) >s µ(s). Therefore, µ is blocked via the
college-student pair {c, s}, and µ /∈ S(P).

⊇) If µ /∈ S(P), there are two possible cases: on the one hand, if µ is individually
irrational for an agent x ∈ S ∪ C, then it is clearly strictly (not simply weakly)
dominated by the matching ν ∈ M(S, C) such that ν(y) = µ(y), ∀y ∈ (S ∪ C)\{x},
and ν(x) = x if x ∈ S, or ν(x) = (µ(x)\{s}) ∪ {x} if x ∈ C, where s ∈ S is
unacceptable to x. On the other hand, if µ is unstable via the college-student pair
{c, s}, then ∃σ ∈ µ(c) such that s >c σ; in this case, the matching µ is weakly
dominated via the coalition ({c} ∪ {s} ∪ µ(c))\{σ} by a matching ν ∈ M(S, C) such
that ν(s) = c and ν(c) = ({s} ∪ µ(c))\{σ}.

Notice that Proposition 4.24 states that there might exist some unstable matching in
the core, which is a quite surprising result.

Example 4.25. Let us consider the college admissions problem (S, C, q;>), with S =

{s1, s2, s3}, C = {c1, c2} and q = (2, 1). Agents are endowed with the following pref-
erences over single agents:

c1 >si si >si c2, ∀i = 1, 2, 3
s1 >cj s2 >cj s3 >cj cj, ∀j = 1, 2

In this case, there are only the three following individually rational matchings:

µ1 =

(
c1 c2

s1 s2 (c2)

)
, µ2 =

(
c1 c2

s1 s3 (c2)

)
, and µ3 =

(
c1 c2

s2 s3 (c2)

)
.

Moreover, S(P) = µ1, since µ2 is blocked by the pair {c1, s2} and µ3 is blocked by the pair
{c1, s1}.

However, let us see that µ2 ∈ C(P). On the one hand, µ2 is not dominated by µ3,
because there is only one possible coalition, which is A = {s2, s3, c1}, but µ3(c1) = {s2, s3}
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and µ2(s3) >s3 µ3(s3). On the other hand, µ2 is not strictly dominated by µ1 because the
only possible coalition is A = {s1, s2, c1}, but µ1(s1) = c1 = µ2(s1).

Therefore, we have that µ2 /∈ S(P), but µ2 ∈ C(P).



Chapter 5

Alternative mechanisms

As we have mentioned in Chapter 3, the DAA is not the only possible mechanism we
can use to find a possible solution for the college admissions problem. There are many
problems equivalent to the college admissions problem which are quite common in real
life and therefore, the fact that many different mechanisms are used should not come as a
surprise. That is why we turn now to review some of them.

Different mechanisms yield different outcomes. For instance, we have seen that the
DAA yields a stable matching, the best one for the proposing side of the market. When
an administration is faced with a college admissions problem, choosing one mechanism
over another depends only on which properties of the outcome are most valued for the
particular problem it is trying to solve.

In this chapter, three essentially different mechanisms are presented: we start with the
top trading cycles mechanism, then turn to the Boston student assignment and then to
serial dictatorship, which forks into two different algorithms depending on some charac-
teristics of each particular problem.

5.1 Top Trading Cycles mechanism

The top trading cycles mechanism (TTC) was developed by David Gale (even though
he did not publish it), and first introduced by Shapley and Scarf (1974) [32]. It was build to
answer a problem which is slightly different to the college admissions problem: the house
allocation problem. An outline of this problem is given before the algorithm. However,
the algorithm is adapted in order to find a possible solution to the college admissions
problem.

For a clear survey and characterisation of the TTC mechanism, see Dur (2012) [10].

The house allocation problem

The house allocation problem is quite similar to the marriage market; in fact, it is
another example of a one-to-one matching problem. It draws an economic model of
trading indivisible commodities, such as houses, among agents. There are n agents in
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the market, and each one of them owns one of these commodities (which we will simply
call houses from now on). Agents may trade houses, but none of them can have more
than one at the same time. Notice that money has no place in this model, as one item is
simply traded for another. Every agent is endowed with a preference relation over the set
of houses.

Thus, the elements of this market are:

• A = {a1, . . . , an} is the set of agents,

• H = {h1, . . . , hn} is the set of houses, and

• ∀a ∈ A, there is a strict preference relation over houses >a, namely a total order over
the set H.

Then, to state that agent a ∈ A prefers house h to house h′, we write that h >a h′. The
set of all preference relations is >:= (>a)a∈A, which is called a preference profile. Thus,
the market is denoted by the triple (A, H;>).1

The aim of the market is to redistribute the n commodities taking into account these
preferences. It is easy to see that the main difference between this model and the marriage
model is that one side of the market (houses) has no say in the matter, and thus its elements
are not strategic players. Another remarkable difference is that |A| = |H|, always.

The outcome of the market after the necessary trades are made is called an allocation.

Definition 5.1. An allocation of the house allocation problem (A, H;>) is a bijective map
α : A→ H.

Just as the marriage or the college admissions problem, the house allocation problem
(A, H;>) can be seen as a game (I , S, u), with I = A, S = P(A), P(A) being the set of all
possible preference profiles, and u = u1 × . . .× un, with ui any utility function on the set
of all possible allocations ∀i = 1, . . . , n, which is compatible with the preference relation
>i.

Now that we have explained the problem for which the Top Trading Cycles mechanism
was first introduced, we will present the algorithm. The following TTC mechanism is an
adaptation from Abdulkadiroǧlu and Sönmez (2003) [2] for our particular problem.2 Let
(S, C, q;>) be a college admissions problem, with the set of students S = {s1, . . . , sm} and
the set of colleges C = {c1, . . . , cn}, with quotas q = (q1, . . . , qn). Students and colleges are
endowed with the strict preference profile P = P(s1)× . . .× P(sm)× P(c1)× . . .× P(cn).

Step 0. We define, for j = 1, . . . , n, counters ij := qj. We also consider the graph Γ0 with
nodes S ∪ C and no edges.

Step 1. (a) Every node s ∈ S points to her most preferred college c ∈ C and every node
c ∈ C points to its most preferred student s ∈ S. That is, we consider directed
edges from one set to the other and vice-versa.

1Actually, it could simply be denoted by the pair (A;>), as H depends only on A.
2In fact, in [2], the problem considered is the school choice problem, which is midway between house allocation

and college admissions, because schools have several seats to offer, but their preferences are more like priorities
of students, and so schools are not strategic agents.
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(b) If there is some cycle (c0, s0, . . . , ck, sk, c0),3 student sj is assigned college cj,
and the counter ij is reduced by one, for j = 0, . . . , k. We consider the new graph
with no edges Γ1, with nodes S1 = S\{s0, . . . , sk} and C1 = {cj ∈ C; ij 6= 0}.

...

Step k. (a) Consider Γk−1. Every node s ∈ Sk−1 points to its most preferred college
c ∈ Ck−1 and every node c ∈ Ck−1 points to its most preferred student s ∈ Sk−1.

(b) If there is some cycle (c0, s0, . . . , cl , sl , c0),4 student sj is assigned college
cj, and the counter ij is reduced by one, for j = 0, . . . , l. If Sk, Ck = ∅,
stop. Otherwise, consider the new graph with no edges Γk, with nodes Sk =

Sk−1\{s0, . . . , sl} and Ck = {cj ∈ Ck−1; ij 6= 0}.

The outcome of this TTC mechanism is an element µ ∈ M(S, C). However, this mecha-
nism is not equivalent to de DAA, because µ might not be in S(P) (there could be blocking
pairs).

Nevertheless, µ is strategy-proof and Pareto-efficient; that is, truth-telling is a dominant
strategy for all agents (unlike in the DAA), and no other matching gives a more preferred
assignment to at least one agent without leaving someone else worse than they were at µ.

In view of this, it is clear that when faced with the decision to choose between the
DAA and the TTC mechanism, any administration should study what properties of the
outcome are preferred: both mechanisms can be strategy-proof for students,5 and so the
administration does not need to worry about families lying or playing strategically, but if
Pareto-optimality is more important than stability, the TTC should be chosen; otherwise,
the DAA should be chosen.

We would also like to highlight that an extension of the TTC mechanism, the Top
Trading Cycles and Chains algorithm, is currently used in kidney exchange. We have no
space to explain this case, but for the interested reader we recommend Roth and Sönmez
(2004) [31].

5.2 Boston Student Assignment

The Boston Student Assignment mechanism is not quite as interesting, mathematically
speaking, as the two previous algorithms, but it is the one that has been used to assign
public schools in Catalonia and public nursery schools in Barcelona until this year, and
so it is important for us to consider it as well.6 Obviously, it was the one used in Boston
public schools too. In Abdulkadiroǧlu et al. (2005) [1], the situation of the public school
system in Boston in 2005 is concisely explained.

In this algorithm, there is a slightly different approach to agents’ preferences. Clearly,
if we reformulate the house allocation problem in order to obtain more than one room in
every house (that is, each house has now a quota), we obtain a new problem, often called

3If there is more than one cycle, we consider only the longest one.
4Just as in Step 1, if there is more than one cycle, only the longest one is considered.
5Recall that the DAA is strategy-proof for all agents in S when students are the ones proposing.
6The new algorithm is a variation of the Serial Dictatorship, which we analyse in the next section.



40 Alternative mechanisms

the student choice problem. In this problem, there are agents –students– and schools, and
each school has a limited number of seats to offer. But schools are not agents: they cannot
choose their preferences, because every student has a priority number for each school.
These priority numbers are usually determined by a central administration and are based
on characteristics such as vicinity to the school or having a sibling studying there already,
and thus schools do not have the opportunity to misrepresent them and play strategically.

That being said, there is a clear isomorphism between school choice and college admis-
sions, and one can treat these school priorities as if they were indeed school preferences.
Therefore, that is exactly what will be done hereafter.

Given the college admissions problem (S, C, q;>), with S = {s1, . . . , sm}, C = {c1, . . . , cn}
and preference profile P = P(s1)× . . .× P(sm)× P(c1)× . . .× P(cn), where P(si) is the
preference ranking of colleges student si submits, such that |P(si)| ≤ n, ∀si ∈ S, and P(cj)

is the priority order of college cj over S, ∀cj ∈ C.
Now, we will adapt the Boston mechanism to the problem (S, C, q;>). Observe that

because we consider it from the very beginning, the first thing this algorithm does is to
determine the preference profile P.

Step 0. (a) For every ci ∈ C, a priority ordering P(ci) over the elements of S is deter-
mined, based on administrative policies.

(b) Every student s ∈ S submits a preference list P(s) stating her preferences
over C.

Step 1. The first choices of the students are considered: every college ci ∈ C considers
all the students who have ranked it as their first choice, and taking into account its
priority ordering over S ∪ {ci}, it accepts these students one by one until either its
quota qi is filled or there are no more students who have chosen it as their top choice.
...

Step k. In this step, only the students who have not yet been assigned to any college are
considered, as they have been rejected by every college ranked above the kth place.
Seats are assigned likewise in Step 1, but considering only students’ kth choices.

The Boston mechanism stops when either every student is assigned to a school or every
student who is not yet assigned to any school has no more schools on her list. If this is the
case, the administration assigns these students to a random school with unfilled quota.

Despite it being widely used, the Boston mechanism has some severe weaknesses
which may lead to serious implications for the central administration taking care of the
assignment:

• It does not yield a stable outcome, and so many families could become quite un-
happy, even to the point of bringing suits against the administration.

• It does not yield a Pareto-optimal outcome, and so it is not an efficient algorithm.

• Clearly, the previous two points imply that families have legitimate reasons to mis-
represent their stated preferences, that is, to play strategically, because they can
easily benefit from it. Usually, these misrepresentations consist of ranking first in
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their list the school for which they have the highest priority, even if it is not their
favourite one. This should also be a problem for the central administration, because
the lists submitted by students, if true, provide invaluable information that could be
used to make decisions.

In [2], there is a brief explanation of the three different mechanisms we have seen so
far, as well as a clear comparative with the most important features each one of them has
and does not have.

5.3 Serial Dictatorship

The last mechanism we will describe is the serial dictatorship mechanism. This mech-
anism, just as the top trading cycles mechanism, was first aimed to solve the house allo-
cation problem. The key aspect of this mechanism is that, having specified an order of
agents on one side of the market, the first agent on that side chooses her top choice, the
second one her top choice among those that are still available, and so on until the last
agent remaining.

This mechanism has been used to assign colleges in Turkey or China, for example;7 in
these countries, the process of college admissions is centralised. This means that, just as
in the school choice problem, colleges are not strategic agents.

This specific problem is often called student placement problem. It differs from the school
choice problem in an important aspect: whilst in the school choice problem priorities for
each school are determined by an exogenous administration, in the student placement
problem students are ranked based on an exam score.

The elements of the student placement problem are the following:

• a set of students S = {s1, . . . , sm},

• a set of colleges C = {c1, . . . , cn},

• a quota vector q = (q1, . . . , qn), with qi ∈N, ∀i ∈ {1, . . . , n},

• a preference profile for students >S= (>s)s∈S, where ∀s ∈ S, >s is a strict preference
relation of student s over C ∪ {s}.

• a finite set of categories for colleges K,

• an exam score profile for students, e = (es)s∈S, such that for every s ∈ S, es = (es
k)k∈K

with es
k ∈ (0,+∞) being the exam score of student s in the category k ∈ K,8 and

• a type function that maps each college to a category type, t : C → K.

We can see that there are more elements in this problem than in any of the others we
have seen. However, we cannot assert immediately that college c ∈ C has a preference

7See [4] and [35].
8There is a rigid limitation to this problem: we suppose that @s′ ∈ S\{s} such that es

k = es′
k . However,

whenever this problem arises, ties can be broken in different ways such as the students’ ages or the alphabetical
order of their names.
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relation over S ∪ {c}, and therefore this is obviously not the typical college admissions
problem. The motivation to introduce categories and therefore exam score profiles and a
type function is that, even though all colleges consider a unique exam which is taken by
all students, each college may give more importance to one part of the exam or another.9

Formally, this means that each college c ∈ C admits students according to their exam
score in category t(c). As there is a unique category for each college, we can consider a
preference relation for every c, >c, based solely on the ranking in its category t(c); now,
we can denote a student placement problem by (S, C, q,>, e, t), with >:= (>x)x∈S∪C.

When |K| = 1, we speak of one skill category serial dictatorship,10 and when |K| > 1,
we speak of multi-category serial dictatorship. We start by displaying the one skill category
mechanism and then turn to the multi-category mechanism.

One Skill Serial Dictatorship Mechanism

Let us consider the student placement problem (S, C, q,>, e, t). The algorithm is the
following:

Step 0. We define, for j = 1, . . . , |C|, counters ij := qj.

Step 1. The highest priority agent, that is, s1 := arg max
s∈S

(es), is assigned to her preferred

choice under >s1 . We define S1 := S\{s1}, and the counter corresponding to the
college to which s1 has been assigned is lowered by one.
...

Step k. The kth highest priority agent, sk := arg max
s∈Sk−1

(es), is assigned to her top choice

under >sk among those that are still available, that is, the ones with ij 6= 0. If no
such college exists, sk remains self-matched. We define Sk := Sk−1\{sk} and the
counter corresponding to the college to which sk has been assigned is lowered by
one. If Sk = ∅ or ij = 0 ∀j, the algorithm stops.

Multi-Category Serial Dictatorship Mechanism

Let us introduce the Multiple-Category Serial Dictatorship algorithm for the student
placement problem (S, C, q,>, e, t).

Step 1. (a) For every category k ∈ K, we consider the ranking induced by the exam
scores (es

k)s∈S, and implement the induced one skill serial dictatorship. This
leads to a tentative student placement.11

(b) ∀s ∈ S, we construct a new preference relation >1
s as follows: if s is not

assigned to more than one college, >1
s :=>s; otherwise, >1

s is the preference
relation obtained from >s by moving the option of remaining self-matched, s,

9When we consider the university entrance procedure in Spain, which is based mainly on the examen de
selectivitat, it is reasonable that different faculties ponder differently, for instance, the students’ English score.

10In this case, all colleges have the exact same preferences over S.
11Notice that this is not necessarily a matching, because a student could be assigned to more than one college.
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right after s’s favourite college among those that are tentatively assigned to her,
and keeping everything else unchanged. We obtain a new preference profile
(restricted to S) >1:= (>1

s )s∈S.
...

Step k. Proceed as in Step 1, and construct >k from >k−1. If no student is assigned more
than one college, the algorithm stops.

Our next theorem shows the relationship between this last algorithm and the DAA
with colleges proposing. Its proof can be found in [4].

Theorem 5.2. (Balinski and Sönmez, 1999) Let us consider the student placement problem
(S, C, q,>, e, t). Then, the multi-category serial dictatorship algorithm is equivalent to the deferred
acceptance algorithm with colleges proposing for the related college admissions problem (S, C, q;>).

Notice that this implies that multi-category serial dictatorship, just as deferred accep-
tance, is not Pareto-efficient, but yields the stable matching µC.
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Final Remarks

As we have seen throughout this work, examples of two-sided matching markets are
quite common in our daily lives, yet almost unknown to the public.

The main purpose of the current study was to set the foundations of matching theory
in the most mathematically correct possible manner, and I think this goal has been fulfilled
to a great extent. In order to do so, we may have explained the marriage problem more
extensively than we thought we would; indeed, the first title we had thought of was "The
College Admissions Problem", but it was clear, after having read most of the bibliography,
that the marriage problem had to have a privileged place in the final draft, as it is the
basis from which other two-sided matching markets are built.

In this study, we have focused on the marriage problem and the college admissions
problem, and have only quickly mentioned the house allocation problem, the student
choice problem, the student placement problem and kidney exchange. However, there are
many more matching markets, such as the labour market, or even dating apps.

We have seen how agents in these markets should act interdependently, depending
on the properties of the outcome resulting from the algorithm used by the central ad-
ministration that supervises the market; properties such as stability, strategy-proofness or
Pareto-dominance are studied.

While doing this work, we have tried to investigate how school choice functions in
Catalonia, and have completely failed to find straight to the point information; it is hard to
understand why the mechanism used is not made public, and I hope that the Generalitat
becomes more transparent, at least in this aspect, in the near future.

To conclude, it has been a pleasant surprise to discover a field of study that, by means
of mathematical arguments, explains such natural and common situations of the modern
world.
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[1] A. Abdulkadiroǧlu, P.A. Pathak, A.E. Roth, T. Sönmez, The Boston Public School
Match, The American Economic Review, 95, no. 2, (2005), 368–371.
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