Vegetación marina alrededor del mundo: Patrones, importancia y evolución

Rafael P. Martín ginkopsida@gmail.com

Laboratory of Botany - Department of Biology, Healthcare and the Environment - Faculty of Pharmacy and Food Science - University of Barcelona

Centre de Documentació de Biodiversitat Vegetal

APECS Spai

Macroalgae / Seaweeds

Patrones 23.2 a. . 8

Patrones

Freshwater and marine biomes as classified by Olson and Dinerstein (2002). In: The Global 200: Priority ecoregions for global conservation. Annals of the Missouri Botanical Garden, 89(2): 199-224

Marine realms as classified by Spalding et al. (2007). In: Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. BioScience, 57(7): 573-583.

Antarctic Marine Flora

Small forms of *Fucus* from the European coasts

Antarctic Marine Flora

Sampling area

Sampling

Updated checklist of Deception Island

76 species

- 39 Rhodophyta
- 19 Phaeophyceae
 - 18 Chlorophyta
- 63'3% of the known Antarctic flora

	and the second	1000	12	-	10.000	-	Later 2	10000	- T 10 1	diam'r	1000	a strange	100 V 2	1000	the second	A REAL PROPERTY.	
	NR	LA V	PD E	PV E	CB A	P Fl	BA LL	CO L	BI D	BA E	IR I	MU R	Π.	C7 0	PE N	DC	
HLOROPHYTA																	Ī
crosiphonia arcta (Dillwyn) Gain							12			+		15				1	
Blidingia minima (Nägeli & Kützing) Kylin									+			15					
haetomorpha dubyana Kützing							10										
Chaetomorpha mawsonii A.H.S. Lucas												15					
Vadophora coelothrix Kützing												15					
ndophyton atroviride O'Kelly												15					
<i>Ionostroma grevillei</i> (Thuret) Wittrock												15					
lonostroma hariotii Gain		5					10+			+		15	+		10	1, 4	
Prasiola crispa (Lightfoot) Kützing							10					15					
hizoclonium ambiguum (J.D. Hooker & Harvey) Kützing												15					
hizoclonium riparium (Roth) Harvey												15					
pongomorpha pacifica (Montagne) Kützing												15					
<i>llothrix australis</i> Gain												15				1	
llothrix flacca (Dillwyn) Thuret			+						+			15	+			1	

New cites for the Deception marine flora

- 1. Austropugetia crassa R. L. Moe
- 2. Delisea pulchra (Greville) Montagne
- 3. Leniea lubrica R. L. Moe
- 4. Pantoneura plocamioides Kylin
- 5. Porphyra plocamiestris R. W. Ricker
- 6. Chordaria linearis (J. D. Hooker & Harvey) A. D. Cotton

BCN-Phyc Herbarium (Plant Biodiversity Resource Centre of the University of Barcelona).

Angulo-Preckler, *et al.*, (2018). Macrobenthic patterns at the shallow marine waters in the caldera of the active volcano of Deception Island, Antarctica. *Continental Shelf Research*, *157*, 20-31.

Antibiotic properties of macroalgae from Antarctica Methodology

Antibiotic properties of macroalgae from Antarctica Methodology

N 4	Bacus	
	3	

Microorganisms used in the antibiotic assay							
Antarctic	Microorganism Type						
Psychrobacter sp.	Gram -						
Paracoccus sp.	Gram -						
Arthrobacter sp. (A)	Gram +						
Arthrobacter sp. (B)	Gram +						
Oceanobacillus sp.	Gram +						
Bacillus aquamaris	Gram +						
Micrococcus sp.	Gram +						
Patogens							
Vibrio cholerae CECT-657	Gram -						
Escherichia coli O157H7, ATCC 43888	Gram -						
seudomonas aeruginosa NCTC 10332T	Gram -						
Escherichia coli CECT515	Gram -						
Bacillus cereus CECT 4014	Gram +						
Staphylococcus aureus CECT 59	Gram +						
Candida albicans CECT 1001	Fungus Saccharomycetes						

and the second s	the second the second					
Activity depending on Inhibition area radius						
No effect	0 (-)					
Weak inhibition	0-1mm (+)					
Moderate Inhibition	>1-3mm (++)					
Trong Inhibition	>3-7mm (+++)					
Very Strong Inhibition	>7-15mm (++++)					

Lippert et al. (2003)

Acar (1980)

Antibiotic properties of macroalgae from Antarctica

.

Source: Camacho (2017)

Source: Carcedo (2018)

22 Antarctic macroalgae tested

- 14 Rhodophyta (8 showed activity)
- 8 Phaeophyceae (4 showed activity)

Tested microorganisms

- Antarctic bacteria were inhibited for most algae
- Gram- were more resistant
- Escherichia coli, Pseudomonas aeruginosa & Candida albicans were the most resistant

Delisea pulchra (Greville) Montagne

Desmarestia antarctica R.L.Moe & P.C.Silva

Chemical activity in different climate change scenarios

- Does Temperature changes affect to the chemical defences expression on macroalgae?
- Compare 3 different temperature scenarios in 3 different biomes (Antarctica, Mediterranean, Tropic)
- Cystosphaera jacquinotii, Cystoseira compressa, Sargassum sp.

Genus Plocamium J.V.Lamouroux in Antarctica

★

P. cartilagineum (Linnaeus) P.S.Dixon

P. hookery Harvey

P. secundatum (Kützing) Kützing

Genus Plocamium J.V.Lamouroux in Antarctica

Source: Saunders et al. (2005).

Small forms of Fucus from the European coasts

Fucus vesiculosus Linnaeus Source: aphotomarine Fucus serratus Linnaeus Source: wikipedia

Distribution

4+

++++++++

The genus Fucus

Fucus Linnaeus, 1753

About 9 accepted species

- F.chalonii
- F.cottonii
- F.vesiculosus
- F.spiralis
- F.serratus
- F.radicans
- F.distichus
- F.virsoides
- F.ceranoides

Source: Algaebase (11-07-2018)

0.01

Bayesian phylogenetic tree based on **mtDNA 23S** sequences. Numbers above and below the line are Bayesian posterior probability and MP bootstrap values (1000 replications), respectively. **Source**: Coyer *et al.* (2006)

Fucus chalonii Feldmann

Fucus cottonii M.J.Wynne & Magne

F. spiralis var. nanus (Stackhouse) Batters

F. spiralis var. limitaneus (Montagne) I.M.Pérez-Ruzafa

Ecology

Fucus chalonii Feldmann

F. spiralis var. nanus (Stackhouse) Batters

F. spiralis var. limitaneus (Montagne) I.M.Pérez-Ruzafa

Ecology

Fucus cottonii M.J.Wynne & Magne

Distribution

- 1. What is the position of those small *Fucus* forms in the phylogenetic tree? Are they true species? How was their evolution?
- 2. How different are populations? Are those differences related to ecology?
- 3. Is the distribution changing? Is there any pattern?

Methodologies

- Phycological analysis: classical study of morphology and anatomy.
- Genetic analyses: DNA-Barcoding & analysis of repetitive elements from the genome (microsatellites)
- Measures of the DNA nuclear content (C-values): current methodology by fluorimetry. Application of flux cytometry.
- Karyotype analyses: chromosome staining and Image analysis.
- Species distribution analyses and niche comparison: by maximum entropy algorithms and niche definition algorithms.

Sampling

Results

Conceptacle structure and germling growth. Fig. 6. Mature oogonium containing egg cells ready to be released; Figs 7-8. Antheridia (Fig. 7) and germlings (Fig. 8) after 6 days in culture from Locality 1 (Illaunnginga) (possible damage to

the attachment rhizoids due to transfer to microscope slide). Fig. 9. Immature oogonia from Locality 2 (Clifden). Fig. 10. Immature oogonia. Fig. 11. Antheridia both from Locality 3 (Achill Sound). Scale bar is 50 µm. **Table 2.** Calculated F_{IS} , H_{exp} and allelic richness (Å) for n individuals from populations of *Fucus spiralis* (*Fs*), *F. vesi-culosus* (*Fv*) and small salt marsh *Fucus* (ssm*F*) from Locality 2 (Clifden) and Locality 3 (Achill Sound).

Locality-taxon	п	$F_{\rm IS}$	$H_{\rm exp}$	Å
2- <i>Fs</i>	6	0.590*	0.327	1.400
2-ssmF	5	0.271	0.513	2.800
2- Fv	6	0.102	0.570	2.726
3- <i>Fs</i>	15	0.618^{*}	0.295	1.472
3-ssmF	6	0.510*	0.374	2.600
3- <i>Fv</i>	14	0.504^{*}	0.813	4.266

Significant F_{IS} values are marked with an asterisk. Allelic richness (Å) is standardized to n = 5.

Table 3. Pairwise F_{ST} values comparing populations of *Fucus spiralis* (*Fs*), *F. vesiculosus* (*Fv*) and small salt marsh *Fucus* (ssm*F*) from Locality 2 (Clifden) and Locality 3 (Achill Sound).

Locality-taxon	2-ssmF	2- <i>Fv</i>	3- <i>Fs</i>	3-ssmF	3- <i>Fv</i>
2- <i>Fs</i>	0.408	0.447	-0.059	0.469	0.238
2-ssmF		0.073	0.492	0.349	0.064
2-Fv			0.526	0.464	0.078
3- <i>Fs</i>				0.497	0.327
3-ssmF					0.182

Sjøtun *et al.* (2017). Unravelling the complexity of salt marsh 'Fucus cottonii' forms (Phaeophyceae, Fucales). European Journal of Phycology, 52(3), 360-370.c

Results from **STRUCTURE** (A) and **INSTRUCT** (B) **analyses** with K = 2; and from INSTRUCT analysis with K = 3 (C). Localities 2 and 3 consist of individuals sampled as *Fucus spiral*is (Fs), *F. vesiculosus* (Fv) and small salt marsh *Fucus* (ssmF). Each individual is represented by a bar and colours represent the proportional assignment to the STRUCTURE/INSTRUCT groups.

Sjøtun *et al.* (2017). Unravelling the complexity of salt marsh 'Fucus cottonii' forms (Phaeophyceae, Fucales). European Journal of Phycology, 52(3), 360-370.c

The two first principal components (PC) of a **Principal Component Analysis** showing genetic affiliation of haplotype composition of ssmF (blue), *F. vesiculosus* (ves) (green) and *F. spiralis* (spi) (orange-red) from Locality 2 (Loc2) and Locality 3 (Loc3). The circles represent 95% inertia ellipses for the populations, which characterizes the dispersion of each population around its centre of gravity. Percentages along axes indicate the proportion of overall variability explained by the principal components.

Results

Average nuclear DNA content (2C; pg) in *Fucus vesiculosus* (Fv, black circles), *F. spiralis* (Fs, grey circles) and small salt marsh *Fucus* (ssmF, white circles). Data from Illaunnginga (Locality 1), Clifden (Locality 2) and Achill Sound (Locality 3) are shown, together with unpublished data from Norway (**) and earlier published data (*) from Spain (Gómez Garreta *et al.*, 2010), USA (Kapraun, 2005) and France (Phillips *et al.*, 2011, recalculation from Peters *et al.*, 2004).

Results

Bayesian tree of COI-1 region for the studied species of Fucus plus several other species from the genus from GenBank

Discussion

- The ssmF showed high variation with respect to reproduction mode, genetic affiliation and nuclear DNA content.
- ssmF can originate from different Fucus taxa (Coyer et al., 2006; Neiva et al., 2012). This is supported by our microsatellite study (in ex.: locality 2 ssmF derived mainly from F. vesiculosus, Locality 3 ssmF higher degree of hybridization/introgression)
- Kapraun, 2005; Gómez Garreta et al., 2010; Phillips et al., 2011 reported variable genome size for some brown algae, ¿autopolyploids?, ¿allopolyploids?

Near Future...

- Keep studying the composition of Antarctic flora quantitatively (Second BLUEBIO expedition)
- Finish the current Antarctic experiments and start new collaborations (role of seaweed in cloud formation & Passengers)
- Apply the methodologies showed to all the small Fucus forms and compare the results to understand the underlying processes of their evolution

(Thank You!)