
Treball final de grau

GRAU DE MATEMÀTIQUES

Facultat de Matemàtiques i Informàtica
Universitat de Barcelona

A categorical view of algebraic
theories

Autor: Aina Ferrà Marcús

Director: Dr. Carles Casacuberta

Realitzat a: Departament de

Matemàtiques i Informàtica

Barcelona, June 27, 2018

Abstract

Classically, algebraic structures such as groups, rings, and many others were jointly
studied with the language of universal algebra. It was later found that certain tools
from category theory, called monads, are especially suitable to encode the whole
amount of information contained in algebraic theories.

In this work we discuss monads, and, in particular, some monads that are relevant
in functional programming in Computer Science. We give a proof of the equivalence
between the category of algebraic theories (formalized as Lawvere theories) and the
category of finitary monads on the category of sets. We also prove that there is
an equivalence between the category of algebras over a monad and the category
of models of the associated Lawvere theory. Finally, we apply this equivalence of
categories to give a new proof of the fact that all localizations on the category of
abelian groups can be uniquely lifted to R-modules for every ring R.

Resum

Les estructures algebraiques com grups, anells i moltes altres es poden tractar en
un context comú que clàssicament s’anomenava àlgebra universal. En teoria de
categories, les mònades són endofunctors que resulten ser adients per sintetitzar
tota la informació continguda en les teories algebraiques.

En aquest treball s’estudien les mònades i, en particular, alguns exemples de
mònades que són rellevants en la programació funcional en Informàtica. Després es
dona una demostració de l’equivalència entre la categoria de les teories algebraiques
(formalitzada com teories de Lawvere) i la categoria de les mònades finitàries a la
categoria dels conjunts. També es demostra que hi ha una equivalència entre la
categoria d’àlgebres sobre una mònada donada i la categoria de models de la teoria
de Lawvere associada a aquesta mònada. Finalment s’aplica aquesta equivalència
de categories per donar una nova demostració del fet que totes les localitzacions a la
categoria dels grups abelians s’eleven de manera única als R-mòduls per a qualsevol
anell R.

2010 Mathematics Subject Classification. 18C15, 18C10, 03C05

i

Acknowledgements

First, I would like to thank my professor Dr. Carles Casacuberta, for being more
than a guidance to me. Thank you for showing me the beauty that lies in topology;
thank you for being patient, providing me this opportunity and not letting me jump
off the ship.

I would like to thank my two best friends Jose and Ignasi. You have been with
me for our whole undergraduate time and you have made the long lasting afternoons
in the university much better.

Thanks to the first mentor I had, Marco, for showing me that to know something
is not the same as to prove something.

I would like to thank my partner in crime Nico. Thank you for telling me that
my work looked cool even though neither you nor me understood it.

And of course, thanks to my family. You may not understand the intricate ways
of Mathematics, but you are always there for me.

ii

Contents

1 Introduction 1

2 Preliminaries 5

3 Monads and adjunctions 9

3.1 Definition and examples . 9

3.2 From adjunctions to monads . 10

3.3 From monads to adjunctions . 16

3.4 Monads in Computer Science . 19

4 Lawvere theories 23

4.1 Models of Lawvere theories . 24

4.2 An application . 26

5 Cointroduction 28

iii

1 Introduction

Universal algebra is the study of algebraic structures, such as groups and rings, by
focusing on their properties instead of their elements. In universal algebra, one takes
an algebraic structure and studies it in terms of operations and relations. In 1898,
A. N. Whitehead published A Treatise on Universal Algebra, where he credited
W. R. Hamilton and A. De Morgan as the originators of the subject matter, as
well as J. J. Sylvester with coining the term itself. At the time, structures such
as Lie algebras or hyperbolic quaternions drew attention to the need of expanding
algebraic structures beyond the typical associatively multiplicative ones. Besides
that, G. Boole’s algebra of logic made a strong counterpoint to the ordinary number
algebra, so the term universal encoded a larger field of Mathematics.

The work on this subject was minimal until the early 1930s, when G. Birkhoff
and O. Ore began publishing about it. In the following years, more papers on
the matter were published, dealing with free algebras, congruence and subalgebra
lattices, and homomorphism theorems. Some development of mathematical logic
was also made in the 1940s by A. Maltsev, although it went unnoticed due to the
war. In 1963, with his thesis, W. F. Lawvere built a bridge between category theory
and universal algebra.

In universal algebra, an algebra or algebraic structure is a set A together with
a collection of operations on A. An n-ary operation is a function that takes n
elements of A and returns a single element of A. Thus, a 0-ary operation (also
called nullary operation) is represented as an element of A (a constant). A 2-ary
operation (also called binary operation) is often denoted by a symbol between its
arguments. Operations of higher arity are usually denoted by function symbols.
After the operations have been specified, the nature of the algebra is further defined
by axioms, which in universal algebra take the form of equational laws. A collection
of algebraic structures defined by equational laws is called a variety or an equational
class.

Let us take groups as an example. A group G consists of a set of elements
together with a binary operation x · y with the following properties:

• associativity: for all x, y, z in G we have x · (y · z) = (x · y) · z;

• identity element: there exists an element e in G such that for all x in G we
have e · x = x · e = x;

• existence of inverses: for every x in G there exists an element x−1 such that
x · x−1 = x−1 · x = e.

In universal algebra, this concept can be translated with some small differences.
A group is a set G together with operations · : G2 → G, called multiplication;
e : G0 → G, called identity ; and ()−1 : G → G, called inverse, such that the
following equational laws hold:

• for all x, y, z in G, we have x · (y · z) = (x · y) · z;

1

• for all x in G, we have e · x = x · e = x;

• for all x in G we have x · x−1 = x−1 · x = e.

The main difference between those concepts is that, in the common definition,
the identity and inverse elements are defined element-wise, i.e., they are quantified
laws. In universal algebra there are no quantified laws and all of the properties are
inherent to the nature of the operations. Although this may seem like a technical
difference, it has immediate practical consequences in category theory: when defin-
ing a group object in category theory (where the object need not be a set), one
must use equational laws rather than quantified laws, as objects in general cate-
gories need not have elements. Besides, universal algebra insists on the idea that
inverse and identity are maps —a strong and useful idea in category theory.

Lawvere was responsible for translating this concept into the categorical world.
A Lawvere theory or algebraic theory is a finite-product-preserving contravariant
functor I from the category of finite cardinals to a small category L whose objects
are the finite cardinals, and I is assumed to be the identity on objects. This ac-
counts for the varieties in universal algebra. To define specific examples of algebraic
structures, the concept of a model arises. A model of a Lawvere theory is a finite-
product-preserving functor M from the category L of the given theory to any other
category C (usually the category of sets).

Retaking our group example, one can define the theory of groups as a Lawvere
theory where the small category L is the category whose morphisms are defined as

L(n,m) = Grp(Fm, Fn),

where Grp is the category of groups and Fn is the free group with n generators.
To define a group in this setting, pick any model M : L → Set and consider the
set G = M(1) with the structure imposed by M . For example, let us find the
multiplication in G. Consider the morphism

m : 2→ 1

in L corresponding to the homomorphism t 7→ xy from the free group F1 = F (t) on
one generator to the free group F2 = F (x, y) on two generators. Since M preserves
finite products, we obtain a map

G2 = G×G = M(1)×M(1) ∼= M(2)→M(1) = G,

where the last arrow is chosen to be M(m). This defines indeed a multiplication
map in G. The same method can be used to obtain the identity map and the
inversion map. This illustrates the similarity with universal algebra: inverses and
identity are not defined element-wise, but by means of maps.

Lawvere theories are not the only categorical way to look at universal algebra.
Equational classes can also be represented by means of monads. A monad on a cate-
gory C is a functor T : C → C together with two natural transformations η : IdC → T
(called unit) and µ : TT → T called (multiplication) such that certain properties

2

are met (see Section 3). The connection with universal algebra becomes clear when
looking at monads from another point of view, namely adjunctions. Every ad-
junction yields a monad and every monad can be retrieved from an adjunction, in
fact in more than one way. One way to convert a monad T into an adjunction is
through the Eilenberg-Moore category of T , also called the category of T -algebras.
A T -algebra in C is a pair (A, a) consisting of an object A of C and a morphism
a : TA→ A such that some extra properties are met, as made precise in Section 3.

The intuitive idea is that an algebraic structure can be thought of a set with
additional structure that depends on the operations defined. Let us consider, for
example, the adjunction

F : Set � Grp : U,

where the free functor F returns, for a set X, the free group generated by X, and
the forgetful functor U returns the underlying set of a given group. We can consider
the corresponding monad T = UF , which, given a set X, returns the set of formal
words on X. In this case, a T -algebra (X, a : TX → X) defines an instance of a
group, since a group structure on a set X corresponds precisely to a retraction of the
free group FX onto the set X, that is, a function FX → X whose composite with
the canonical map X → FX is the identity on X. In this example, it is important
to note that the free group FX is a directed union of finitely generated free groups
F (x1, . . . , xn), namely those generated by finite subsets of X. As we shall see, it
turns out that in all adjunctions associated with Lawvere theories the left adjoint
F has this property, namely that its value on a set X is determined by the values
on finite subsets of X. The resulting monad T = UF is then called finitary, which
means that it commutes with directed unions.

Hence, both Lawvere theories and monads translate the concept of universal
algebra to the categorical world, so it is natural to expect that there is a strong
relation between them. This work focuses on the equivalence between the category
Law of Lawvere theories and the category FinMonSet of finitary monads on sets.
For a Lawvere theory L, we denote by ModL the category of models of L in Set.
Then we can associate to L a monad TL that comes from the adjunction

FL : Set � ModL : U

where U returns M(1) for every model M : L → Set, and FL is its left adjoint.
Conversely, given a monad T , we associate to it a Lawvere theory LT by defining
its morphisms as

LT (n,m) = Kl(T)(m,n)

where Kl(T) is the Kleisli category of the monad T , which may be viewed as the
subcategory of free T -algebras within the Eilenberg-Moore category of T . This
equivalence was first asserted by F. E. J. Linton in [7], although in a more general
way. In this work, we will give a self-contained proof that only involves basic
concepts of category theory here defined.

Monads are pervasive structures in many mathematical fields, and furthermore,
they are a fundamental concept of functional programming. Functional program-
ming is a programming paradigm that treats computation as the mathematical

3

evaluation of functions, avoiding mutable data. Because of that, functional pro-
gramming is very sensible to side effects and exceptions. A monad in functional
programming is viewed as an amplifier of types that give extra structure so that
some properties are met, allowing side effects to be controlled without the need
to write unnecessary code (see Section 3 for a detailed example). Monads are the
base and core of the programming language Haskell, which is used in many different
applications, such as the spam filter of Facebook.

Back to universal algebra, another feature of its relation with category theory
is that the equivalence between the category of Lawvere theories and the category
of finitary monads on sets goes through models of theories and algebras over mon-
ads. Indeed, we will prove that, given a Lawvere theory L, there is an equivalence
between the category of models of L in Set and the category of algebras over the
associated monad TL. Specifically, to a TL algebra (A, a) we associate the only
model M : L → Set such that

M(1) = A and Mϕ = an(ϕ,−) for each ϕ ∈ L(n, 1),

where an denotes the component of a acting on L(n, 1)×An (see Section 4). Con-
versely, for a model M : L → Set, we consider the TL-algebra

(M(1), UεM : TLM(1)→M(1))

where εM : FLUM →M is the counit of the adjoint pair (FL, U) described above.

This equivalence prompts the possibility to translate results involving algebras
over monads to results about models of Lawvere theories. We aim to explore, in
subsequent work, possible applications of this fact, based on results obtained in [3].
As a first instance, we give here a new proof of the fact that every localization on
the category of abelian groups lifts (in a unique way) to a localization on R-modules
for every ring R with 1.

4

2 Preliminaries

Category theory formalizes mathematical structures in terms of directed graphs
called categories, whose nodes are called objects and whose directed edges are called
morphisms. The concept was first introduced by S. Eilenberg and S. Mac Lane in
1942. They were interested in the understanding of the processes that preserve
mathematical structures, particularly in the field of algebraic topology. The first
definition they gave was a purely abstract definition of a category along the lines of
the axiomatic definition of a group. This definition evolved over time, depending
on set-theoretical foundations and on the specific goals intended in each context.
Here we present what is nowadays a standard definition in category theory.

Definition 2.1. A category C consists of

(i) a collection Ob(C) of objects ;

(ii) for all C,D ∈ Ob(C), a set C(C,D) of morphisms from C to D;

(iii) for all C,D,E ∈ Ob(C), a function

C(D,E)× C(C,D) −→ C(C,E)

called composition and denoted (g, f) 7→ g ◦ f ;

(iv) for each C ∈ Ob(C), an element idC of C(C,C), called the identity on C,
satisfying the following axioms:

• associativity: for all f ∈ C(C,D), g ∈ C(D,E), and h ∈ C(E,F), we have

(h ◦ g) ◦ f = h ◦ (g ◦ f);

• identity laws: for each f ∈ C(C,D) we have f ◦ idC = f = idD ◦ f .

With this simple and abstract definition, most mathematical structures can be
viewed as categories. However, this definition covers more than ordinary math-
ematical tools. A category can be specified by saying directly what its objects,
morphisms, composition and identities are. For example, there is a category ∅ with
no objects. There is also a category 1 with exactly one object and the identity
morphism of this object.

There is another category with two objects (with their identities) and one mor-
phism between them —composition is defined in the only possible way.

5

This idea leads to more complicated examples, all of which can be drawn like
directed graphs.

f g

gf

These examples make clear that morphisms need not be the usual maps found
in algebraic structures. They can be defined in a purely formal way, just by stating
how they combine with other morphisms. Examples also show that, contrary to
what one could expect of such a definition, categories need not be enormous. Some
are small, manageable structures that one can completely specify.

Invertible morphisms are called isomorphisms. These can be viewed as pairs of
opposite orientations in a given edge of a graph whose two composites are identities.

Example 2.2. There is a category Set whose objects are sets and whose mor-
phisms are ordinary functions between them. Composition and identities are those
of functions.

Example 2.3. There is a category Grp whose objects are groups and whose mor-
phisms are group homomorphisms.

Example 2.4. Similarly, there is a category Ab of abelian groups with group ho-
momorphisms; a category Ring of rings with ring homomorphisms; a category Vectk
of vector spaces over a field k with linear maps; a category Top of topological spaces
with continuous maps, and many more.

As mentioned before, Eilenberg and Mac Lane were interested in the processes
that preserve mathematical structures. For this purpose, they defined the concept
of a functor. Similarly as in the previous examples, a functor is a “map” between
categories.

Definition 2.5. Let C and D be categories. A functor F : C → D consists of
a function Ob(C) → Ob(D) written as C 7→ FC, and, for all C,C ′ ∈ Ob(C), a
function

C(C,C ′) −→ D(F (C), F (C ′))

written as f 7→ Ff , satisfying the following conditions:

• F (f ′ ◦ f) = Ff ′ ◦ Ff whenever f and f ′ are composable in C;

• F (idC) = idFC for every C ∈ Ob(C).
Example 2.6. There are many functors between categories, but perhaps one of the
most common kinds of functors are the so-called forgetful functors. For instance,
consider the functor U : Grp → Set that, given a group G, returns the underlying
(hence the choice of U as a name) set of G (that is, the set of its elements). If
f : G→ H is a group homomorphism, then Uf is the function f itself, just forgetting
that G and H are groups. The general fact is that U forgets additional structure.

6

Example 2.7. Similarly, there are forgetful functors U : Ring → Set forgetting
the ring structure; U : Ring → Ab that forgets the multiplicative structure and
returns the underlying additive group; U : Ab→ Grp forgetting commutativity; and
U : Top→ Set forgetting the topology and returning the set of points.

Example 2.8. There is a dual concept of the forgetful functors: those that add
some kind of additional structure, called free functors. Given a set A, one can build
the free group over A, thus yielding a functor F : Set → Grp. For each set A, the
group FA is obtained from A by adding to it sufficiently many elements until it
becomes a group, but without imposing any equations other than those required by
the definition of a group.

More precisely, the elements of FA are formal expressions called words, formed
by elements of A and their formal inverses. Multiplication is concatenation of
words; two words are equal if one can be obtained from the other by cancellation of
elements adjacent to their inverses. Every function f : A→ A′ gives rise to a group
homomorphism Ff : FA→ FA′.

Example 2.9. Similarly as in the previous example, there are free functors such as
the free abelian group functor F : Set→ Ab or the abelianization functor F : Grp→
Ab. The free functor F : Set→ Top endows every set with the discrete topology.

Example 2.10. There is also a free functor F : Ring → Ring1 from the category
of rings to the category of rings with 1. Given a ring R, this functor adds to R a
new element that acts as an identity for multiplication. This is similar to the free
functor F : Top → Top∗ to the category of pointed topological spaces that adds to
every space a disjoint basepoint.

Functors are morphisms between categories and they are useful in that they
relate a category with other categories. Since categories are intended to model
all kinds of mathematical structures, one may be wondering if it is possible to
treat functors as categories themselves. Indeed, we can move one step forward and
consider transformations between functors. Such transformations provide a way to
convert one functor into another in terms of its internal structure (identities and
composition). This is reminiscent to homotopies in algebraic topology, which are
also “maps between maps”.

Definition 2.11. Let C and D be categories and let F : C → D and G : C → D
be functors. A natural transformation α : F → G is a family (αC : FC → GC)C
of morphisms in D, one for each object C ∈ Ob(C), such that, for every morphism
f : C → C ′ in C, the square

FC
Ff //

αC

��

FC ′

αC′
��

GC
Gf // GC ′

commutes. The morphisms αC are called the components of α.

7

Example 2.12. Let C be a discrete category (that is, one in which the only mor-
phisms are identities), and let F,G : C → D be functors, where D is any category.
Then F and G are just families (FC)C and (GC)C of objects in D. A natural
transformation α : F → G is a family (αC : FC → GC)C of morphisms in D.

If two functors F : C → D and G : D → C are such that G ◦ F = IdC and
F ◦ G = IdD, we say that C and D are isomorphic and that F and G are inverse
isomorphisms of categories.

However, it is rather infrequent to find isomorphisms between categories. The
degree of abstraction in category theory implies that precise equalities are often use-
less. For this purpose, we are interested in the concept of equivalence of categories,
which we next define, rather than isomorphism.

Definition 2.13. A natural isomorphism of functors is a natural transformation of
functors whose components are isomorphisms.

Thanks to this definition, we can introduce the concept of equivalence of cate-
gories. This concept establishes whether two categories are “essentially the same”.
Establishing an equivalence involves demonstrating strong similarities between the
mathematical structures concerned. Sometimes, those structures may seem totally
unrelated at a superficial level. In those cases, equivalences are especially powerful:
they create the opportunity to “translate” theorems between such mathematical
structures, knowing that the essential meaning of those theorems is preserved un-
der the translation. In some way, this is the main goal of this work: to establish a
relation between monads and Lawvere theories that allows us to translate certain
theorems.

Definition 2.14. An equivalence between categories C and D consists of a pair of
functors F : C → D and G : D → C together with natural isomorphisms

η : IdC → G ◦ F, ε : F ◦G→ IdD.

If there exists such an equivalence, we say that C and D are equivalent, and write
C ' D. We also say that the functors F and G are inverse equivalences of categories.

8

3 Monads and adjunctions

The concept of a monad was first introduced by R. Godement in 1958 (although,
more precisely, he discussed comonads in [5]). Godement was studying sheaf theory,
which is a way to capture local data about a manifold and, in doing so, obtaining
global properties. His definition was first named standard construction, which is
entirely obsolete, or triple, which is still used nowadays. The concept was later
renamed “monad” by Mac Lane, because of the analogy with monoids. Monads
are frequent in many branches of mathematics: from universal algebra, which is
the ultimate goal of this essay —focusing on Lawvere theories— to mathematical
analysis (since Cauchy completions are monads). Monads also gave birth to a new
mindset for theoretical computer science.

3.1 Definition and examples

Definition 3.1. A monad on a category C is a functor T : C → C equipped with
natural transformations η : IdC → T (the unit) and µ : TT → T (the multiplication)
such that the following diagrams commute in C:

TTT
Tµ //

µT
��

TT

µ
��

TT
µ // T

T

idT !!

ηT // TT

µ
��

T

idT}}

Tηoo

T

Example 3.2. The powerset functor P : Set→ Set is a monad on the category Set
of sets. It maps a set to the set of its subsets and, given a function f : A → B
between sets, Pf maps a set to its image under f . The unit ηA : A → PA sends
an element to the singleton subset; the multiplication µA : PPA → PA takes the
union of a set of subsets.

Example 3.3. The Giry monad acts on the category Meas of measurable spaces
and functions between them. It sends a measurable space A to the measurable
space Prob(A) of probability measures on A. The unit is the measurable function
ηA : A → Prob(A) that sends each element a ∈ A to the Dirac measure (which
assigns a subset the probability 1 if it contains a or 0 otherwise). The multiplication
is defined using integration; details are given in [4].

Example 3.4. For every ring R with 1 there is a monad T : Ab → Ab on the
category Ab of abelian groups that sends each abelian group A to the tensor product
R ⊗ A equipped with the natural morphism ηA : A → R ⊗ A sending a 7→ 1 ⊗ a
for all a. The multiplication µA : TTA→ TA comes from the multiplication in the
ring R.

Example 3.5. There is a monad T : Ab→ Ab that sends each abelian group A to
the quotient A/τA where τA is the torsion subgroup of A. In other words, T kills
the torsion from A. This monad is idempotent, in the sense that µA : TTA → TA
is a natural isomorphism for all A.

9

3.2 From adjunctions to monads

It is natural to ask oneself the properties that should be met for a functor to be
part of a monad. For this purpose, let us retake a pair of special functors: free and
forgetful. In our examples, those functors seem to act “inversely”. Although this
notion is not entirely true, it captures the idea of adjunctions. Let us see, in detail,
how this process works.

Denote by Veck the category of vector spaces over a field k and consider the
fields R and C. There is a forgetful functor U : VecC → VecR. Given a vector space
EC over C, we let UEC be the same set as EC but viewed as a vector space over R
by restriction of scalars (that is, treating a real number as a complex number with
zero imaginary part).

Given a C-linear map f : EC → WC, we can think of Uf as an R-linear map

Uf : UEC −→ UWC

by defining (Uf)(v) = f(v) for all v ∈ UEC. Moreover, U is a faithful functor,
which means that the following function is injective:

VecC(EC,WC) −→ VecR(UEC, UWC).

Now we would like to find a free functor F : VecR → VecC, as in Examples 2.6 and
2.8. Such a functor does not always exist and, even if it exists, it may be difficult to
describe. This process often requires other mathematical tools than just forgetting
additional structure. However, in this case, consider FER = C ⊗ ER. This is the
quotient (C × ER)/∼, where the relation ∼ imposes the usual bilinear conditions
over R.

Let us work a little bit more with this example to understand what is really
happening there. The elements of C⊗ ER can be written as

z1 ⊗ v1 + z2 ⊗ v2 + · · ·+ zn ⊗ vn,

where zk ∈ C and vk ∈ ER. Since zk = xk + iyk for all k, the previous expression
can be rewritten as

1⊗ w1 + i⊗ w2

for some w1, w2 ∈ ER. Therefore, every element of C ⊗ ER can be written as
1⊗ w1 + i⊗ w2.

Given an R-linear map f : ER → WR, we can define its C-linear counterpart

Ff : FER −→ FWR

as (Ff)(z ⊗ v) = z ⊗ f(v). This functor F is called a complexification functor.

There is a map η : ER → UFER defined as

η(v) = 1⊗ v,

10

which is R-linear, since η(λv) = 1⊗ (λv) = λ⊗ v = λ(1⊗ v) = λη(v) for all v ∈ ER
and λ ∈ R.

There is also a map ε : FUWC → WC defined by

ε(z ⊗ v) = zv,

which is C-linear since ε(z′(z ⊗ v)) = ε(z′z ⊗ v) = (z′z)v = z′(zv) = z′ε(z ⊗ v).

Hence, we can define a map

Φ: VecR(ER, UWC) −→ VecC(FER,WC)

as Φ(f)(z ⊗ v) = zf(v) = ε(z ⊗ f(v)), which is bijective and has an inverse

Ψ: VecC(FER,WC) −→ VecR(ER, UWC)

defined by Ψ(g)(v) = g(1 ⊗ v) = g(η(v)). Therefore, Φ maps the identity of UWC
to the map ε and, similarly, Ψ maps the identity of FER to η.

Note that UFER is again a vector space over R, of twice the dimension of ER,
equipped with a natural inclusion ER → UFER. Moreover, we can iterate UF and
consider UFUFER, for which there is a natural map into UFER coming from the
multiplication C⊗C→ C of complex numbers. These are precisely the ingredients
of a monad.

This process is describing that, although the functors U and F are not inverse
of each other, the maps FER → WC and ER → UWC are closely related. This kind
of relation is formalized by means of the following definition.

Definition 3.6. Let F : C � D : G be two categories and two functors. We say
that F is left adjoint to G and G is right adjoint to F if

D(FC,D) ∼= C(C,GD)

naturally in C ∈ Ob(C) and D ∈ Ob(D).

Example 3.7. Let P be a preordered set (that is, a set equipped with a relation
≤ that is reflexive and transitive). Then P can be considered as a category whose
objects are the elements of P and for which there is an unique morphism x → y
whenever x ≤ y. In this case, P is called a preorder category.

We define the concept of Galois connection (f, g) between two preordered cate-
gories P and Q as a pair of order-preserving maps

f : ObP � ObQ : g

such that f(x) ≤ y if and only if x ≤ g(y), for x ∈ ObP and y ∈ ObQ.

Each Galois connection (f, g) gives rise to a pair of adjoint functors between P
and Q. Let us see a specific example. Consider P = (Z,≤) and Q = (R,≤) with
their usual orders. Then the functions

ι : Z � R : b·c

where ι represents the inclusion and b·c the floor function (returning the integral
part of every real number), yield an adjoint pair since

ι(z) ≤ r if and only if z ≤ brc for all z ∈ Z, r ∈ R.

11

Proposition 3.8. Given two categories C and D, every pair of adjoint functors
F : C � D : U give rise to a monad T = UF on C.

Proof. When looking at books and articles about category theory, no matter how
basic they are, this proof is always omitted or considered routine. Because of this,
we will present here an extensive, perhaps too detailed, proof.

Since F and U are adjoint functors, there exists a natural isomorphism ΦX,Y

such that D(FX, Y) ∼= C(X,UY). By definition, ηX = ΦX,FX(idFX) (the unit) and
εY = (ΦUY,Y)−1(idUY) (the counit). Since Φ is a natural isomorphism, η : IdC → UF
and η : FU → IdD are natural transformations.

First, let us prove that Uf ◦ηX = ΦX,Y (f) for all f : FX → Y . Due to naturality,
the following diagram commutes:

D(FX, Y)
ΦX,Y // C(X,UY)

D(FX,FX)
ΦX,FX //

f∗

OO

C(X,UFX)

(Uf)∗

OO

That is to say,
(Uf)∗ ◦ ΦX,FX = ΦX,Y ◦ f∗

or, equivalently,
(Uf)∗(ΦX,FX(idFX)) = ΦX,Y (f∗(idFX)).

By definition
(Uf)∗(ηX) = ΦX,Y (f)

and finally
Uf ◦ ηX = ΦX,Y (f).

Similarly, εY ◦ Fg = (ΦX,Y (g))−1 for all g : X → UY .

Now, let us consider UF : C → C and write T = UF . We will prove that T is
a monad, by letting η : IdC → T be the unit of the adjunction and µ : TT → T be
defined as µX = UεFX .

We have a diagram

T

idT !!

ηT // TT

µ
��

T

idT}}

Tηoo

T

which can be rewritten as

UFX

idUFX
''

ηUFX // UFUFX

µX

��

UFX

idUFX
ww

UFηXoo

UFX

12

Let us check that it commutes:

µX ◦ ηUFX = UεFX ◦ ηUFX = ΦUFX,FX(εFX) = idUFX

and

µX ◦ UFηX = U(εFX ◦ FηX) = U((ΦX,FX)−1(ηX)) = U(idFX) = idUFX .

We must check that the following diagram commutes too:

TTT
Tµ //

µT
��

TT

µ
��

TT
µ // T

It can be rewritten as

UFUFUFX
UFµX //

µUFX

��

UFUFX

µX

��
UFUFX

µX // UFX

so we must prove that µX ◦ UFµX = µX ◦ µUFX for all X ∈ C. Since µX = UεFX ,
this is just

UεFX ◦ UFUεFX = UεFX ◦ UεFUFX
and, operating with U , we get

U(εFX ◦ FUεFX) = U(εFX ◦ εFUFX).

Since U is a functor, it will be enough to prove that

εFX ◦ FUεFX = εFX ◦ εFUFX

or, equivalently,
εFX ◦ FUεFX = (ΦUFUFX,FX)−1(UεFX)

ΦUFUF,FX(εFX ◦ FUεFX) = UεFX .

Since Φ is a bijection for every pair of objects, it is enough to prove that

ΦUFUFX,FX(εFX ◦ εFUFX) = UεFX .

Finally, operating, we have that

ΦUFUFX,FX(εFX ◦ εFUFX) = U(εFX ◦ εFUFX) ◦ ηUFUFX =

= UεFX ◦ (UεFUFX ◦ ηUFUFX) = UεFX ◦ ΦUFUFX,FUFX(εFUFX) =

= UεFX ◦ idUFUFX = UεFX .

�

13

The relationship between adjunctions and monads yields a wide variety of ex-
amples from every branch of Mathematics.

Example 3.9. There is a forgetful functor U : Cat → DirGraph that admits a left
adjoint F , defining the free category on a directed graph. A directed graph G
consists of a set V of vertices, a set E of edges and two functions s, t : E ⇒ V
defining the source and target of each directed edge. The free category on G has
V as its set of objects and identities for each vertex together with finite paths of
edges as morphisms. Composition is defined by concatenation of paths.

The adjunction induces a monad on DirGraph that carries a directed graph G to
the graph with the same vertices but whose edges are finite directed paths of edges
in G. This is the underlying directed graph of the free category G.

Example 3.10. The free-forgetful adjunction between sets and groups induces the
free group monad F : Set→ Set that sends a set A to the set FA of finite words in
letters a ∈ A together with formal inverses a−1.

Example 3.11. There are functors D : Set → Top, that equips a set with the
discrete topology; U : Top→ Set that sends a topological space to its set of points;
and I : Set → Top that equips a set with the indiscrete topology. We have that D
and U are a pair of adjoint functions, but so are U and I, meaning that we have two
different monads. We have a monad over Set, arisen from the adjunction D a U ,
which is the identity. We also have a monad over Top, arisen from U a I that
sends a topological space to the space with the same set of points equipped with
the indiscrete topology.

Example 3.12. The inclusion functor of the category of complete metric spaces
with uniformly continuous mappings to the category of metric spaces has a left ad-
joint. Such adjoint is the completion of a metric space on objects and the extension
by density on arrows. This yields a monad on metric spaces.

Example 3.13. There is a monad T : Ab∗ → Ab∗ on the category Ab∗ of abelian
groups with a distinguished element that, given an abelian group A and an element
e ∈ A, returns the underlying abelian group of a free ring on A with unit e. This
may sound surprising, but it comes from a rather simple adjunction. Let us denote
by Ring1 the category of rings with unit. There is a functor U : Ring1 → Ab∗ that
forgets the ring structure and returns the underlying abelian group. As in most
adjunctions, the left adjoint F : Ab∗ → Ring1 is more complicated. To understand
it, let us look at rings with another mindset.

Suppose that A is a ring with unit. Then the multiplication on A yields a bilinear
map

µ : A× A −→ A,

where we write µ(a, b) = a · b and require µ to be associative. This map µ can also
be seen as a homomorphism of abelian groups

µ : A⊗ A −→ A
a⊗ b 7−→ a · b

14

which is associative. Distributivity follows from the properties of the tensor product.
There is also a group homomorphism

η : Z −→ A
1 7−→ e

that provides A with a unit for µ, i.e., µ(a, e) = a = µ(e, a) for all a ∈ A. Thus,
the group A equipped with the functions µ and η is a monoid in the category of
abelian groups, and this is precisely a ring with unit.

Now, given an abelian group A with a distinguished element e, how can we turn
it into a monoid? The answer is hidden in the properties of the tensor product.
Consider

F (A, e) = A⊕ (A⊗ A)⊕ (A⊗ A⊗ A)⊕ . . . / ∼

where ∼ denotes an equivalence relation such that a ∼ e⊗ a ∼ a⊗ e for all a ∈ A,
e⊗ a⊗ b ∼ a⊗ e⊗ b ∼ a⊗ b⊗ e ∼ a⊗ b for all a, b ∈ A, and so on. The properties
of the direct sum and those of the tensor product ensure that F (A, e) is a ring with
unit e.

Note that the equivalence relation ∼ would not be necessary if we were not
asking the ring to have a prescribed unit. Similarly, further conditions can be
imposed within the equivalence relation if we want to obtain additional properties
on the ring structure, such as commutativity.

Example 3.14. The previous example is a good algebraic introduction to the
James construction. The James construction is a monad J : Top∗ → Top∗ on the
category Top∗ of topological spaces with a basepoint, coming from an adjunction

Top∗

F ++
MonTop

U

jj

where MonTop stands for topological monoids (with the unit as basepoint). While
U denotes the forgetful functor as usual, the functor F may be defined in the same
fashion as in the previous example. Thus, consider a topological space X with a
basepoint x0 and define

F (X, x0) = X ∨ (X ×X) ∨ (X ×X ×X) ∨ . . . / ∼

where ∼ is an equivalence relation used to impose that x0 acts as a unit, namely

x ∼ (x0, x) ∼ (x, x0)

for all x ∈ X. The points of X can be multiplied in F (X, x0) by defining x·y = (x, y)
for x, y ∈ X, and in fact F (x, x0) becomes a monoid by extending this multiplication
over all summands. The fact that F (X, x0) is a free topological monoid over X
follows from the properties of the wedge sum and those of the Cartesian product.

There are some topological spaces, such as the circle S1 or the 3-sphere S3,
where a multiplication is already defined. Those are topological monoids. However,

15

there are many other spaces where no multiplication exists. Thanks to the James
construction, it becomes possible to take two points of any space and multiply them
formally.

The usual notation for the James construction on a space X is JX. As in the
algebraic counterpart, the equivalence relation defining JX may be replaced by a
stronger one so as to require additional properties for a topological monoid (such
as commutativity).

Example 3.15. There is a functor U : Set+ → Set from pointed sets to sets that
forgets the basepoint; this functor has a left adjoint F : Set → Set+ that sends a
set A to the pointed set A+ = A

⊔
{a} with a disjoint basepoint. This adjunction

induces a monad T+ : Set→ Set that adds a new point at a time. The components
of the unit are given by the obvious inclusion ηA : A→ A+. The components of the
multiplication µA : (A+)+ → A+ are defined to be the identity on the subset A and
to send the two new points in (A+)+ to the new point in A+. In Computer Science,
this is called the maybe monad. It is further discussed in Section 3.4.

3.3 From monads to adjunctions

After having studied several examples, it seems natural that monads arise from
adjunctions. But is it possible to retrieve an adjunction from a given monad? The
answer is yes: it is possible, and in multiple ways. In order to understand how, first
we need to introduce more notation.

Definition 3.16. Let T = (T, µ, η) be a monad on a category C. A T -algebra in
C is a pair (A, a) of an object A in C and a morphism a : TA → A such that the
following diagrams commute:

TTA
µA //

Ta
��

TA

a
��

TA a // A

A

idA !!

ηA // TA

a
��
A

At this point, it should be noted that such definitions describe structure and
properties. But, as a piece of advice, finding the algebras for a monad is not always
easy. Sometimes, one has to settle for the abstract definition. In other cases, one
may find a way to identify them to some known structure. In some other cases, the
known structure can be extremely difficult.

Example 3.17. The algebras over the James construction are the topological
monoids.

Example 3.18. Let us look at the example of the maybe monad. An algebra is a
set A together with a map a : A+ → A so that the following diagrams commute:

(A+)+
µA //

Ta
��

A+

a

��
A+

a // A

A

idA

ηA // A+

a
��
A

16

While the first one does not add additional conditions, the triangle asserts that
the map a : A+ → A restricts to the identity on the A component (remember that
ηA was the trivial inclusion). Thus, the data of an algebra is a set with a specified
basepoint: the image of the extra point under the map a.

There are two canonical (typically distinct) ways to recover an adjunction.

Definition 3.19. Let T = (T, µ, η) be a monad on a category C. The Eilenberg-
Moore category of T is the category CT whose objects are the T -algebras (A, a) and
whose morphisms (A, a)→ (B, b) are maps f : A→ B in C such that the following
diagram commutes in C:

TA
Tf //

a
��

TB

b
��

A
f // B

Example 3.20. Recalling the pointed set monad with its algebras, a morphism
(A, a)→ (B, b) is a map f : A→ B such that

A+
f+ //

a
��

B+

b
��

A
f // B

Since a and b are the identity on the components of A and B respectively, the
map f+ carries the extra point in A+ to the extra point in B+. This condition
demands that the basepoint of A should go to the baisepoint of B. In conclusion,
the Eilenberg-Moore category of this monad is isomorphic to Set∗.

Definition 3.21. Let T = (T, µ, η) be a monad on a category C. The Kleisli
category of T is the category CT whose objects are those of C, and a morphism from
A to B in CT is a morphism A→ TB in C.

P. J. Hilton was the first to conjecture that every monad arises from an adjunc-
tion. The two following solutions were provided more or less simultaneously, using
different constructions, by S. Eilenberg and J. C. Moore, and H. Kleisli.

Proposition 3.22. If T = (T, µ, η) is a monad on a category C, then there is a
category B and an adjoint pair F : C → B, U : B → C such that T = UF .

Proof. Let us start with the Kleisli construction. Consider B = CT , the Kleisli
category of T . Define a functor U : CT → C by UA = TA. Given f ∈ CT (A,B),
define Uf to be Tf ◦ µB. Define also a functor F : C → CT by FA = A, and, given
f ∈ C(A,B), let Ff be the composite ηA ◦ Tf . It then follows from the definitions
that C(A,UB) = C(A, TB) ∼= CT (A,B) = CT (FA,B).

Now let us move on to the Eilenberg-Moore construction. Let B = CT be the
Eilenberg-Moore category of T . The functor U : CT → C takes a T -algebra (A, a)

17

and returns the object A. Given f ∈ CT ((A, a), (B, b)), define Uf = f by simply
acting upon the objects A and B and forgetting the extra structure. Define also a
functor F : C → CT by FA = (TA, µA). This is indeed a T -algebra, since the follow-
ing diagrams commute because they come from the square and triangle identities
of a monad.

TTTA
µTA //

TµA
��

TTA

µA
��

TTA
µA // TA

TA

idTA ""

ηTA // TA

µA
��
A

Given f ∈ C(A,B), defined Ff = Tf , which is a morphism of T -algebras since the
following diagram commutes because µ is a natural transformation:

TTA
TTf //

µA
��

TTB

µB
��

TA
Tf // TB

We need to check that C(A,U(B, b)) ∼= CT (FA, (B, b)), which amounts to proving
that C(A,B) ∼= CT ((TA, µA), (B, b)). Consider

Ψ: CT ((TA, µA), (B, b))→ C(A,B)

defined by Ψ(h) = h ◦ ηA, which, as we next show, is inverse to the function

Φ: C(A,B)→ CT ((TA, µA), (B, b))

defined by Φ(g) = b ◦ UFg = b ◦ Tg.

Let us prove that Φ(Ψ(h)) = h for every h ∈ CT ((TA, µA), (B, b). First we write
Φ(Ψ(h)) = b ◦ Th ◦ TηA. In the following diagram, the triangle commutes since
(T, η, µ) is a monad, and the right square commutes because h is a morphism of
T -algebras:

TA
idTA //

TηA ##

TA
h // B

TTA

µA

OO

Th
// TB

b

OO

Hence, b ◦ Th ◦ TηA = h, as needed.

Next, we check that Ψ(Φ(g)) = g for every g ∈ C(A,B), where we view B as
U(B, b) for a certain T -algebra structure b : TB → B. We have that Ψ(Φ(g)) =
b ◦ Tg ◦ ηA. However, Tg ◦ ηA = ηB ◦ g since η is a natural transformation, and
b ◦ ηB = idB because b : TB → B endows B with a T -algebra structure. �

These two solutions are closely related: the Kleisli category CT embeds into the
Eilenberg-Moore category CT as the full subcategory generated by the image of the
left adjoint F in the Eilenberg-Moore construction. Indeed, for all objects A and
B of C, we have

CT (FA, FB) ∼= C(A,UFB) = C(A, TB) = CT (A,B).

18

This is why the Kleisli category is sometimes called the category of free T -algebras.

What is more, one may consider, for any monad T = (T, µ, η) on C, the category
AdjT whose objects are fully specified adjunctions inducing the monad (T, µ, η). A
morphism G ∈ AdjT (D,D′)

D G //

U ''

D′
U ′

��
C

F ′

FF
F

gg

is a functor commuting with both the left and right adjoints, i.e., so that GF = F ′

and U ′G = U . On this scenario, the Kleisli category CT is initial in AdjT and the
Eilenberg-Moore category CT is terminal. That is to say, for any pair of adjoint
functors (U, F) between C and D inducing the monad T = (T, µ, η) on C, there
exist unique functors J and K

CT J //

''

D

��

K // CT

��
C

OOff FF

which commute with both left and right adjoints.

3.4 Monads in Computer Science

When researching about monads, examples and applications, one will notice an
interesting fact: results in Computer Science (more precisely in functional program-
ming) come before the mathematical ones. We know that category theory is helpful
to abstract complicated results into general definitions. In other words, it is helpful
within mathematics. But can it be helpful for something as tangible as Computer
Science? The answer was first discussed by E. Moggi in 1991 [9].

Moggi introduced the concept of monads in the context of programming lan-
guages. In fact, his definition of a monad is exactly the same as the one we pre-
sented previously. He used monads to capture different notions of computation that
go beyond total functions, such as non determinism, side effects and exceptions. Al-
though Moggi’s first approach was to study category theory in a logical way in order
to understand the foundations of computation and as a proving tool, it has become
much more.

Functional programming is a programming paradigm that treats computa-
tion as the evaluation of mathematical functions and avoids changing-state and
mutable data. Haskell was born in 1990, motivated by the need of having an open
standard for such functional languages. Nowadays there are many more, such as
PHP, JavaScript, Perl and even some libraries to code with Python as well. What
started as a theoretical approach has today very important applications, such as the
spam filter in Facebook [10] and air traffic analysis tool for NATS [11]. What we
mean is that category theory, and specifically monads, have real world applications
through Computer Science.

19

In functional programming, unlike other programming paradigms, we do not
have exceptions. This means that, if the computation goes wrong at some point, it
will produce an error that will only be visible at the end of the whole computation.
Exceptions allow us to stop at a set moment and decided what to do next. For
example, when dividing by zero, functional programming would go down with the
error while an exception could be risen and decide to skip that division. For this
precise reason, monads are key for functional programming.

Monads are amplifiers of types: they add new properties to the ones we already
had, so we can work around exceptions. But in order to act properly with other
functions, we need to define two properties:

• the unit operation takes a value from a plain type and creates an equivalent
monadic value. In our example, this can be seen in the inclusion ηA : A→ A+,
which takes a value from the set A and returns the monadic value in the
set A+.

• the bind (multiplication) operation that takes the value, a function that works
on it and returns a new monadic value. It lets us transform operations on the
unamplified type into operations on the amplified type, obeying the compo-
sition rules.

Monads are responsible for controlling side effects in functional programming, as
well as acting as exceptions. They embed extra structure and logic behavior to our
predefined types. So, for example, monads can provide a way to divide by zero (of
course, by skipping the operation) without the need to perform further checkings in
our coding. However, monads in category theory and monads in computer science
are not exactly the same. The latter come from the former, but they have evolved to
more practical definitions. Sometimes, it is possible to find the exact mathematical
concept that gives birth to a monad. Sometimes, the computer science monad is
just a reminiscence of the general definition.

As a case study, we will present a monad whose relation with the mathematical
world is clear. Recall the monad from Example 3.15, whose name of maybe monad
comes from the fact that a map in the Kleisli category is a function A→ B+ which
may be thought of as a partially defined function from A to B: the elements of A
that are sent to the free basepoint have “undefined output”.

The maybe monad is a data type that is either a single value or no value at
all. It is used as a checked exception: at any point that the computation might
fail, the rest of the code will be skipped and nothing will be returned; otherwise,
it will return the proper value. Let us see an example based on C# code to really
understand it. Suppose we have a function

int d i v i s i o n b y (int x) {
return a / x ;

}

20

But we want to be able to have x null and work with that with a safe code. One
possibility is to consider the operator Nullable<T> and reconvert our function to
work properly.

Nul lab le<int> d i v i s i o n b y (Nul lab le<int> x)
{

i f (x == n u l l)
r e turn n u l l ;

e l s e
re turn new Nul lab le<int >(a / x) ;

}

You can always have your original int, without the amplified value, calling the
Value property. The problem now is how do we combine old functions that did not
know about the amplified type with this one.

s t a t i c Nul lab le<T> Bind<T>(Nul lab le<T> ampl i f i ed ,
Func<T, Nul lable<T>> func)
{

i f (amp l i f i ed == n u l l)
r e turn n u l l ;

e l s e
re turn func (amp l i f i ed . Value) ;

}

This means that any method that takes an int and returns an int, or takes an int
and returns a Nullable<int> can now have the nullable semantics applied to it.
This would be a dummy implementation of the maybe monad. Out of curiosity,
this would be the implementation in Haskell:

return :: a -> Maybe a

return x = Just x

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

(>>=) m g = case m of

Nothing -> Nothing

Just x -> g x

The maybe monad can be used to create a safe wrapper for functions with
restricted domains (logarithm, square root...). Such functions can be composed
and will still be safe without the need to perform further verifications. They are
also used to simplify nested “if then” expressions that otherwise would be unwieldy
and illegible. It is also implemented natively in the Haskell lookup tables.

The conclusion of this section should be that category theory, and specifically
monads, are useful not just in mathematical applications. Studying them is not
only positive for other mathematical fields, but also for the real world. It could be
nourishing for an engineer to learn Haskell and, in doing so, learning category theory.

21

Category theory helps understand the foundations of computational languages and
fuels new programming paradigms that are used in important companies such as
Facebook.

22

4 Lawvere theories

Lawvere theories, otherwise known as algebraic theories, first appeared in F. W.
Lawvere’s doctoral dissertation in 1963. They are a categorical method for doing
universal algebra. Universal (or equational) algebra is the study of algebraic struc-
tures focusing on their logical signature (given by operations that satisfy equational
axioms). Lawvere took this idea into the categorical world: any algebraic structure
can be thought of as a small category with finite products together with a functor
that infuses certain properties.

Given a category C, a skeleton of C is a full subcategory C0 ⊆ C which contains
exactly one object of each isomorphism class of objects of C. We denote by ℵ0 a
skeleton of the category of finite sets, whose objects are the finite cardinals and
whose morphisms are all functions between them.

Definition 4.1. A Lawvere theory is a pair L = (L, I) where L is a small cat-
egory with Ob(L) = Ob(ℵ0) and with (strictly associative) finite products, and
I : (ℵ0)op → L is a functor such that

• I strictly preserves finite products, and

• I is the identity in objects.

Hence every function f : m → n in ℵ0 yields an element If ∈ L(n,m) through
the (contravariant) functor I.

Lawvere theories form a category Law whose morphisms (L, I) → (L′, I ′) are
functors F : L → L′ that are strict product-preserving functors such that I ′ = FI.

Example 4.2. The theory of groups is a Lawvere theory where L(n,m) is the set
of group homomorphisms from a free group Fm on m generators to a free group
Fn on n generators. Thus, by the universal property of free groups, L(n,m) is in
bijective correspondence with the set of functions from m to Fn, that is, the set of
m-tuples of elements in Fn.

A group is a set G equipped with an associative binary operation µ : G×G→ G
and a fixed element e ∈ G acting as a unit for µ, in which every element has an
inverse. Each functor G̃ : L → Set preserving finite products yields a group, namely
G = G̃(1) equipped with the multiplication given by G̃(µ) ∈ Set(G × G,G) where
µ ∈ L(2, 1) sends the generator t ∈ F1 = F (t) to the element xy ∈ F2 = F (x, y).
Associativity of µ comes from associativity in F2. The unit element in G comes
from 1 ∈ F2, and the existence of inverses follows from the inverses in F2.

Example 4.3. The theory of commutative algebras over a field k is a Lawvere
theory where L(m,n) is the set of k-algebra homomorphisms from the polynomial
ring k[x1, . . . , xm] on m variables into the polynomial ring on n variables. The
addition and multiplication of a k-algebra A come from the maps t 7→ x + y and
t 7→ xy respectively from k[t] to k[x, y], which are elements of L(2, 1).

23

Example 4.4. Not every mathematical structure can be thought as an algebraic
theory —there is no theory of fields, for example. From the point of view of universal
algebra, not all properties of fields can be expressed as equational laws. Inverse
elements only exist for non-zero elements, and this particularity cannot be expressed
in terms of operations and equational laws. Hence there is no “free field generated
by a set”, which means that there does not exist any monad on Set whose algebras
are precisely the fields. We will prove later that there is a relation between monads
on sets and Lawvere theories, which implies that there cannot be a Lawvere theory
for the theory of fields.

4.1 Models of Lawvere theories

As in the case of the theory of groups, the structures modeled by a Lawvere theory
can be recovered by considering the following notion.

Definition 4.5. A model of a Lawvere theory (L, I) in a category C with finite
products is a functor M : L → C that preserves finite products (up to isomorphism).

A model, roughly speaking, is anything that satisfies the equations of the alge-
braic theory, i.e., an “instance” of such.

A general fact about Lawvere theories is that for each of them, say L, there is
a monad TL such that the category of models of L is equivalent to the category of
TL-algebras. This fact will be proved below. Furthermore, as we next show, the
correspondence sending L to TL defines an equivalence of categories between the
category of Lawvere theories and a full subcategory of the category of monads on
Set, namely the category of finitary monads.

Definition 4.6. A monad T on sets is called finitary if it is determined by its
values on the finite cardinals n ∈ ℵ0.

More precisely, T is finitary if and only if, for every set X, the set TX is equal
to the union of the subsets (Tϕ)(Tn) for all functions ϕ : n → X and every finite
ordinal n.

For a Lawvere theory L = (L, I), we denote by ModL the category of models of
L in Set. Since I is bijective on objects and contravariant, every n ∈ ℵ0 yields such
a model, namely

FLn = L(n,−);

that is, for each k ∈ ℵ0 we pick (FLn)(k) = L(n, k), and for each function f : k1 → k2

in ℵ0 we pick the function (If)∗ : L(n, k2) → L(n, k1). This functor ℵ0 → ModL
extends uniquely to a functor FL : Set→ ModL as follows. For each set X we define
(FLX)(k) to be a quotient of the union⋃

n∈ℵ0

L(n, k)×Xn

where, for each function f : k1 → k2 in ℵ0 and all g ∈ L(n, k2) and x ∈ Xk2 , we
identify (g, x) with ((If)∗g, f̃(x)), where f̃ : Xk2 → Xk1 is determined by f . For

24

example, if f : 3 → 5 is the function given by f(0) = 0, f(1) = 4, f(2) = 4, then
f̃ : X5 → X3 is given by f̃(a, b, c, d, e) = (a, e, e).

For instance, if L is the theory of groups, then FLX can be viewed as the free
group on the set X (where X need not be finite). For every word w ∈ Fn =
F (t1, . . . , tn) and each x = (x1, . . . , xn) ∈ Xn, we let w(x1, . . . , xn) be the corre-
sponding word evaluated on the elements x1, . . . , xn.

The functor FL is left adjoint to the forgetful functor U : ModL → Set, since
every function α : X → M(1) where M is a model of L can be lifted uniquely to a
natural transformation α̃ : FLX →M by defining its nth component at k = 1,

L(n, 1)×Xn →M(1), (4.1)

by sending each (ϕ, x1, . . . , xn) to (Mϕ)(α(x1), . . . , α(xn)). Hence, TL = UFL is a
finitary monad.

This is part of the proof of the following central result.

Theorem 4.7. There exists an equivalence between the category of Lawvere theories
and the category of finitary monads on sets.

Proof. Given a Lawvere teory L = (L, I), the associated monad TL is the one result-
ing from the adjunction FL : Set � ModL : U discussed above. As a consequence of
this definition, the monad TL = UFL preserves directed unions (i.e., it is finitary).

Conversely, given a monad T , we can associate a Lawvere theory LT = (L, I) to
it by defining its sets of morphism as follows:

LT (n,m) = Klop(T)(n,m) = Kl(T)(m,n) = Set(m,Tn).

Next we check that there are natural isomorphisms LTL
∼= L for every Lawvere

theory L, and TLT
∼= T for every finitary monad T .

On one hand,

LTL(n,m) = Set(m,TLn) = Set(m,UFLn) = Set(m, (FLn)(1)) =

Set(m,L(n, 1)) ∼= L(n, 1)× m. . . ×L(n, 1) ∼= L(n,m),

where the first bijection comes from the fact that m ∼= 1+ m. . . +1 in ℵ0, and the
second bijection comes from the fact that m ∼= 1× m. . . ×1 in ℵop

0 .

On the other hand, for every n ∈ ℵ0,

TLT
n = UFLT

n = (FLT
n)(1) = LT (n, 1) = Set(1, Tn) ∼= Tn.

Since both TLT
and T are finitary, we may conclude that TLT

∼= T . This completes
the proof. �

We conclude this section by proving that the models of a theory can be recovered
from the associated monad.

25

Theorem 4.8. For every Lawvere theory L = (L, I) there is an equivalence between
the category of models of L in Set and the category of TL-algebras.

Proof. We need to define functors Φ: ModL → SetTL and Ψ: SetTL → ModL
together with natural isomorphisms ΨΦ ∼= IdModL and ΦΨ ∼= IdSetTL .

For a TL-algebra A = (A, a : TLA → A), denote by an : L(n, 1) × An → A the
nth component of a. Pick the only model M : L → Set such that M(1) = A and
Mϕ : An → A is given by Mϕ = an(ϕ,−) for each ϕ ∈ L(n, 1), and define ΨA = M .
Conversely, for a model M : L → Set, define ΦM to be

(M(1), UεM : TLM(1)→M(1)),

where εM : FLM(1)→M is the counit of the adjoint pair (FL, U). The equality

UεM ◦ ηUM = idUM

follows from the fact that εM is adjunct to the identity of UM . We also note that
the nth component

(UεM)n : L(n, 1)×M(n)→M(1)

sends each (ϕ, x) to (Mϕ)(x) as a special case of (4.1).

Now, on one hand, ΨΦM is the only model whose value at 1 is M(1) and whose
value at ϕ ∈ L(n, 1) is (UεM)n(ϕ,−) = Mϕ. Hence ΨΦM = M for every M in
ModL.

On the other hand, ΦΨA = ΦM where M(1) = A and Mϕ = an(ϕ,−). Thus
(UεM)n = an for all n and therefore UεM = a. This implies that ΦM = A, as
desired. �

4.2 An application

A monad T = (T, µ, η) on a category C is called idempotent if µ : TT → T is an
isomorphism. Idempotent monads are also called localizations. Thus, a localization
on a category C consists of a functor E : C → C equipped with a unit η : IdC → E
such that ηEX : EX → EEX and EηX : EX → EEX are equal and they are
inverses of µX (since µX ◦ ηEX = idEX and µX ◦ EηX = idEX). General properties
of localizations can be found in [2].

For a Lawvere theory L = (L, I), we consider models of L in the category Ab
of abelian groups and their interaction with localizations on Ab. We focus on the
following example: for a ring R with 1, consider the theory with

L(m,n) = Ab(Rn, Rm),

whose models are precisely the R-modules. A localization E : Ab→ Ab is said to lift
to R-modules if there is a localization Ẽ on R-modules such that UẼ ∼= EU , where
U is the forgetful functor sending every R-module to the underlying abelian group
—in other words, the underlying abelian group of ẼM is naturally isomorphic to
EUM for every R-module M .

26

The following is a new proof, using the language of Lawvere theories, of a result
contained in [3]. The general principle behind it is the fact that a localization E
lifts to T -algebras for a monad T if and only if T preserves E-equivalences (i.e.,
morphisms f : X → Y such that Ef : EX → EY is an isomorphism).

As we next show, the latter condition holds if T is the monad associated with
the Lawvere theory of R-modules for a ring R with 1.

Theorem 4.9. Every localization E on abelian groups lifts uniquely to R-modules
for every ring R with 1.

Proof. Consider the Lawvere theory L = (L, I) with L(m,n) = Ab(Rn, Rm) and
the associated monad TL. Since L is enriched in abelian groups, we may view TL
as a monad on Ab.

According to [3, Theorem 4.2], it suffices to show that TL preservesE-equivalences
for every localization E. Since TLA is a natural quotient of a direct sum of
L(n, 1) × An over all finite ordinals n, it suffices to check that An → Bn is an
E-equivalence whenever A→ B is an E-equivalence, and this follows from the fact
that localizations commute with finite products [2, Lemma 3.5]. �

Example 4.10. As an explicit example, let R = Z(p) be the ring of integers localized
at a prime ideal (p). Then the natural quotient A→ A/TA of every abelian group
by its torsion subgroup defines a localization on Ab that lifts to Z(p)-modules as
A → A/TpA when A is a Z(p)-module (i.e., an abelian group uniquely q-divisible
for all primes q 6= p). Also the rationalization functor A → Q ⊗ A that turns A
into a uniquely divisible abelian group lifts to Z(p)-modules with the same form
A→ Q⊗ A.

27

5 Cointroduction

The equivalence between Lawvere theories and finitary monads is only a special
case of a more general relation. First of all, arbitrary monads (not necessarily
finitary) correspond to algebraic theories of a more general nature, for which the
set of objects is larger than ℵ0. Details about this claim can be found in [6] and [7].

Even more generally, the concept of algebraic theory with arities is discussed
in [1], where an equivalence is given with a suitable category of monads with ari-
ties. In this context it is feasible to consider algebraic theories enriched in additive
categories as a special case of algebraic theories with arities, so that the associated
monads are defined on the category of abelian groups.

Theorem 4.9 probably holds for such algebraic theories in full generality. We
expect to develop this idea in subsequent work.

One necessary ingredient to undertake this project is the concept of a colimit
(and related notions of coend and left Kan extension), which we have omitted in
this work for simplicity, although they are the most natural way to define finitary
left adjoints of forgetful functors, such as the functor FL discussed in Section 4 for a
Lawvere theory L. The existence of left adjoints (without an explicit construction)
is also guaranteed, under suitable assumptions, by general results such as the Freyd
Adjoint Functor Theorem [8, p. 117].

28

References

[1] C. Berger, P. A. Melliès, M. Weber. Monads with arities and their associated
theories. Journal of Pure and Applied Algebra 216 (2012), 2029–2048.

[2] C. Casacuberta. On structures preserved by idempotent transformations of
groups and homotopy types. In: Crystallographic Groups and Their General-
izations (Kortrijk, 1999), Contemporary Mathematics 262, American Mathe-
matical Society, Providence, RI, 2000, pp. 39–68.

[3] C. Casacuberta, O. Raventós, A. Tonks. Comparing localizations across ad-
junctions. arXiv:1404.7340

[4] M. Giry. A categorical approach to probability theory. In: Categorical Aspects
of Topology and Analysis, Lecture Notes in Mathematics 915. Springer, 1982,
pp. 68–85.

[5] R. Godement. Topologie algébrique et théorie des faisceaux. Hermann, Paris,
1973.

[6] M. Hyland, J. Power. The category theoretic understanding of universal alge-
bra: Lawvere theories and monads. Electronic Notes in Theoretical Computer
Science 172 (2007), 437–458.

[7] F. E. J. Linton. Some aspects of equational categories. In: Conference on
Categorical Algebra (La Jolla, 1965). Springer, 1966, pp. 84–94.

[8] S. Mac Lane. Categories for the Working Mathematician, Graduate Texts in
Mathematics 5, Springer, New York, 1971.

[9] E. Moggi. Notions of computation and monads. Information and Computation
93 (1991), 55–92.

[10] https://code.facebook.com/posts/745068642270222/fighting-spam-

with-haskell/

[11] http://www.well-typed.com/pr/2010-05-05-air traffic analysis

tool for nats/

29

