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Abstract

The Quillen-Suslin Theorem is usually stated as "Let P be a finitely generated projec-
tive module over k[x1, . . . , xn]. Then P is free". Before being proven independently and in
its full generality by Quillen and Suslin in 1976, this question was usually referred to as
the "Serre’s Conjecture", and stood as one of the most relevant open problems in algebra
and affine algebraic geometry for twenty years.
In this memoir we provide in detail all the algebraic tools needed to have a good un-
derstanding of the basic mathematics surrounding this theorem and its more elementary
proof by Vaserstein, as well as some algorithms related to it.

2010 Mathematics Subject Classification. 13C10, 13D02, 13P99



Contents

Introduction iii

1 Preliminaries 1
1.1 Splitting lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Finite filtration of a Noetherian module . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Noether’s Normalization Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Projective modules 7
2.1 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Finitely generated projective modules . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Geometric motivation of the Serre’s problem . . . . . . . . . . . . . . . . . . . 13

3 Stably free modules 18
3.1 Definition and characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Unimodular rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Action of GLn(R) on Umn(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 The Hilbert-Serre Theorem 25
4.1 Finite free and stably free resolutions . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 R Notherian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Proof of the Hilbert-Serre Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Proof of the Quillen-Suslin Theorem 35
5.1 The case of one variable k[x] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Horrock’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 The proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Algorithms for the Quillen-Suslin Theorem 42
6.1 The paper by Logar and Sturmfels . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Extension of unimodular rows to invertible matrices . . . . . . . . . . . . . . 43

Appendices 47

i



A Basic concepts and definitions 47
A.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.2 Module homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.3 Noetherianity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B Proof of Proposition 2.14 51

Bibliography 55



Introduction

In his hugely influential paper Faisceaux algébriques cohérents ([11], ca. 1955), J.P. Serre
systematically introduced modern sheaf theory into algebraic geometry, a field which
experienced an almost entire reformulation during the 1950s, with new language and
more advanced tools. On page 243 he wrote, rather innocently, (k being a field): "I ignore
if there exist finite(ly generated) projective modules over k[x1, . . . , xn] which are not free",
making it quite clear that he intended his statement as an open problem in this brand new
sheaf-theoretic framework. Nowhere in his published writings had he speculated, one
way or another, upon the possible outcome of his question. However, almost from the
start a surmised positive answer to Serre’s problem became known to the mathematical
world as the "Serre’s Conjecture". This impression was strengthened when he himself
proved, just three years later, that projective modules over k[x1, . . . , xn] are stably free.

Somewhat later, the interest in projective modules and this "conjecture" was further
heightened by the development of two new and closely related subjects in mathematics:
homological algebra and algebraic K-theory. With relevant motivations coming from these
two areas, "Serre’s Conjecture" entered the 1960s as one of the premier open problems in
algebra and affine algebraic geometry.

In the 20-year period 1956-1976, new techniques and new insights were introduced into
the study of projective modules- over general rings as well as polynomial rings. Interest-
ingly, during this period Serre’s Conjecture was solved in one special case after another,
by widely different and inventive methods that did not seem to generalize. Finally, cul-
minating almost twenty years of effort by algebraists, D. Quillen and A. Suslin proved
independently in January of 1976 the statement in its full generality- that is, that finitely
generated projective modules over k[x1, . . . , xn] are, indeed, free, for all n, and for all fields
k. Thus, nowadays this result is usually referred to as the Quillen-Suslin Theorem.

Shortly thereafter, some very ingenious shorter and more elementary proofs of it be-
came available, being the one by Vaserstein, the proof we will expose in this work, the
most popular of them. Using the technique of extending unimodular rows to invertible
matrices, his solution not only made the problem completely accessible to anyone with
basic knowledge of graduate algebra, but also established the study of unimodular rows
as a new interesting topic for research in commutative ring theory. In fact, the proofs
by Quillen and Suslin only meant the end of Serre’s problem as it had been originally
formulated, as many of its ramifications and generalizations have continued to flourish
at a steady pace since then: the list of areas of mathematics in which the theorem has
had some kind of repercussion in their development is extensive, ranging from the most
abstract to the more computational and algorithmic.

In this memoir we provide in detail all the algebraic tools needed to have a good understanding
of the basic mathematics surrounding this problem and its proof by Vaserstein, as well as some
algorithms related to it. My first contact with this theorem occurred incidentally one year
ago, while looking for some information about free resolutions of algebraic varieties. Ex-
ploring it a little more, I was impressed by its evolution and by the fact that a result so



iv Introduction

influential and originally difficult could nowadays be understood with relatively simple
but powerful algebraic tools. As someone greatly interested in commutative algebra and
all the branches that have led to its development, I soon realized the potential that the
study of this theorem had as an undergraduate’s final project, both for its impact and the
amount of interesting and varied topics of algebra it passes through.

Memoir structure

In general, the whole text is mostly self-contained and its tone is kept simple, with the
inevitable exceptions of section 2.3 and Appendix B, notably more advanced.

Every ring R in the text is commutative and unitary unless otherwise specified.

– Appendix A is a collection of some indispensable concepts and results of commutative
algebra that the reader should know before reading the main text.

– In Chapter 1 we develop four relevant notions of modern commutative algebra that
will be necessary later in our main exposition. While the Splitting lemma is essential
and Localization appears several times in many chapters, the other two are required in
specific sections and one could postpone their reading until they become necessary.

– In Chapter 2 we introduce projective modules and give some examples of them. We
later prove that finitely generated projective modules over a local ring are free and
its easy corollary that, if P is a finitely generated projective R-module, then P is
finite locally free. In Appendix B we give a demonstration of the converse implication,
considerably harder to prove, for the skilled reader. In the final section, we outline
the quite advanced geometric context in which Serre raised his initial question about
finitely generated projective modules over k[x1, . . . , xn].

– Chapter 3 presents the notion of a stably free module, a more restrictive kind of pro-
jective module which admits a really practical characterization in terms of invertible
matrices. The main object of this chapter are unimodular rows, which will allow us
to restate the whole problem using a more matrix-theoretical approach and that will
play a huge role in our final proof of the Quillen-Suslin Theorem.

– The rather technical Chapter 4 is entirely devoted to prove that finitely generated pro-
jective modules over k[x1, . . . , xn] are stably free, a result also known as the Hilbert-
Serre Theorem. This makes it possible to employ their useful properties presented
in Chapter 3 to demonstrate the Theorem this whole work is about.

– In Chapter 5 we finally prove the Quillen-Suslin Theorem, using all the tools pre-
sented so far. In its first section we give a kind of constructive proof of it in the
case of one variable, an algorithm that will appear again in the final chapter. After
demonstrating the Horrock’s Theorem, an intermediate necessary result, we prove
our desired Theorem in its generality in the last section.

– The interesting Chapter 6, more computational in its spirit, is focused on providing an
algorithm for extending any given unimodular row in C[x1, . . . , xn] to an invertible
matrix with polynomial entries, using the ideas of the previous chapter.



Chapter 1

Preliminaries

1.1 Splitting lemma

This well-known lemma of homological algebra, applicable in any abelian category,
gives a simple but handy criterion in terms of exact sequences for a module to be a direct
summand of another module, something which is extremely useful when we deal with
projective modules. Its consequences will appear constantly throughout the text:

Lemma 1.1. (Splitting lemma): Let 0 → M′
f−→ M

g−→ M′′ → 0 be an exact sequence of
R-modules. The following statements are equivalent:

(i) There is an homomorphism ϕ : M′′ → M with g ◦ ϕ = idM′′

(ii) There is an homomorphism ψ : M→ M′ with ψ ◦ f = idM′

If these conditions are satisfied, then we have isomorphisms:

M = Ker(g)⊕ Im(ϕ), M = Im( f )⊕Ker(ψ), M ∼= M′ ⊕M′′ (1.1)

Proof. i) =⇒ ii): We will prove that under i), we have M = Ker(g) ⊕ Im(ϕ), so we
will have Im(ϕ) ∼= M′′ (as g ◦ ϕ = idM′′ , ϕ is injective) and, since the sequence is exact,
Ker(g) = Im( f ) ∼= M′, obtaining M ∼= M′ ⊕ M′′. Thus, the existence of ψ of ii) will be
immediate:

Let x ∈ M. Then x− ϕ(g(x)) is in the kernel of g, since

g(x− ϕ(g(x))) = g(x)− g(ϕ(g(x))) = g(x)− id(g(x)) = g(x)− g(x) = 0 (1.2)

and hence M = Ker(g) + Im(ϕ).
This sum is direct, for if x ∈ Ker(g) ∩ Im(ϕ), there exists x′ ∈ M′′ with ϕ(x′) = x, but
g(ϕ(x′)) = 0 = x′, and ϕ is injective⇒ ϕ(x′) = x = 0. X

ii) =⇒ i): Analogously, we will prove that under ii), we have M = Im( f )⊕Ker(ψ),
so we will have Im( f ) ∼= M′ ( f injective) and Ker(ψ) ∼= M′′ (to see this last isomorphism,

1
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take ḡ = g|Ker(ψ): clearly ḡ : Ker(ψ) → M′′ is injective because if ḡ(x) = 0 ⇒ x ∈
Ker(g) ⇒ x ∈ Im( f ) ⇒ x = f (x′), x′ ∈ M′ ⇒ ψ( f (x′)) = x′ but x ∈ Ker(ψ) ⇒ x′ = 0 ⇒
x = 0, and surjective because for any x′ ∈ M′′, there exists x ∈ M with g(x) = x′, and
x − f (ψ(x)) ∈ Ker(ψ) (see the formula (1.3) below) and has image x′). Thus, we obtain
M ∼= M′ ⊕M′′, and the existence of ϕ of i) will be immediate:

Let x ∈ M. Then x− f (ψ(x)) is in the kernel of ψ, since

ψ(x− f (ψ(x))) = ψ(x)− ψ( f (ψ(x))) = ψ(x)− id(ψ(x)) = ψ(x)− ψ(x) = 0 (1.3)

and hence M = Ker(ψ) + Im( f ).
Again, this sum is direct, for if x ∈ Ker(ψ) ∩ Im( f ), there exists x′ ∈ M′ with f (x′) = x,
but ψ( f (x′)) = 0 = x′, and f is injective⇒ f (x′) = x = 0. X

Definition 1.2. If these equivalent conditions hold, the exact sequence is called split exact, or we
say that the sequence splits. Furthermore, we say that an epimorphism p (resp. monomorphism i)
splits if it fits in a split exact sequence.

1.2 Localization

The process of localization is one of the most important technical tools in modern
algebra, and the truly importance of finitely generated projective modules becomes ap-
parent mainly when we think of them locally (sections 2.2 and 2.3, Appendix B), so we
better make sure to understand it well. These notions will reappear in Chapter 5, when
we prove the Quillen-Suslin Theorem, and in Chapter 6. Roughly speaking, it may be
thought of as the process of adding inverses for certain elements of a ring.

Definition 1.3. Given a ring R, we say that S ( R is a multiplicatively closed subset of R if
1 ∈ S and, for any two s, t ∈ S⇒ st ∈ S.

We can then define an equivalence relation in R× S as

(a, s) ∼ (b, t) ⇐⇒ u(at− bs) = 0 for some u ∈ S (1.4)

We write a
s for the equivalence class of (a, s) and S−1R = R× S/ ∼. S−1R is naturally a

commutative and unitary ring with the addition and multiplication defined in the same
way as with fractions of elementary algebra,

a
s
+

b
t
=

at + bs
st

a
s
· b

t
=

ab
st

(1.5)

It is elementary to see that these operations are indeed independent of the choice of the
representatives. Also note that, with the multiplication defined this way, we have that
every element of the form s

s′ with s ∈ S becomes a unit in S−1R.

Definition 1.4. Given a commutative ring R, we call spectrum of R the set of its prime ideals,
that is, Spec(R) = {p ⊂ R| p is a prime ideal in R}.
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Now, given p ∈ Spec(R), it is immediate to see that S = R\p is a multiplicatively closed
subset of R. We write Rp := S−1R in this case. The elements a

s with a ∈ p form an ideal m
in Rp. If b

t /∈ m, then b /∈ p, so b ∈ S and therefore b
t is a unit in Rp. It follows that, if a is

an ideal in Rp and a * m, then a contains a unit and is therefore the whole ring. Hence m

is the only maximal ideal in Rp.

Definition 1.5. We say that a ring is local if it only contains one maximal ideal.

Thus, Rp is a local ring, and the process of passing from R to Rp is called localization
at p. Local rings are easier to study and have very nice properties, and they play a major
role in modern algebra- in fact, many important results in this area, including the Quillen-
Suslin Theorem as we shall see, have been proved by "glueing together" local rings which
satisfy or not a certain characteristic.

The construction of S−1R can be carried through with an R-module M instead of a
ring R. Similarly, we define a relation in M× S as follows:

(m, s) ∼ (m′, s′) ⇐⇒ u(sm′ − s′m) for some u ∈ S. (1.6)

As before, this is an equivalence relation, and we write m
s for the equivalence class of the

pair (m, s). S−1M denotes the set of such fractions, and it can be made into an S−1R-
module with the obvious definitions of addition and scalar multiplication. Analogously
to Rp, we write Mp instead of S−1M when S = R\p with p a prime ideal of R, and we call
this process the localization of M at p. In this memoir, we will see that the Rp-module
Mp can usually give us information about M as a R-module.

1.3 Finite filtration of a Noetherian module

The concept of filtration appears in many contexts in mathematics, though in this
section we refer to a very concrete case: we prove that, over a Noetherian ring R, every
finitely generated R-module M admits a finite chain like the one described in Theorem
1.13. This result and the notion of associated prime will be necessary in our proof of the
Hilbert-Serre Theorem (section 4.3, Theorem 4.13).

Definition 1.6. Given two R-modules M, N, with M ⊆ N, we define their ideal quotient as
(M : N) = {a ∈ R| aN ⊆ M} (it is immediate to verify that it is an ideal). If we take M = 0, we
call this ideal the annihilator of N, AnnR(N) = {a ∈ R| aN = 0}.

Definition 1.7. Given a R-module M, we say that p ∈ Spec(R) is associated to M if there exists
a non-zero element m ∈ M such that p = AnnR(m) (we write m instead of the R-submodule (m),
to simplify). The set of associated primes of M is denoted by AssR(M).

Here is a useful criterion to know whether a prime ideal is an associated prime of M:

Lemma 1.8. p ∈ AssR(M) ⇐⇒ There exists an injective R-morphism hp : R/p ↪→ M

Proof. ⇒) If p = AnnR(m) for m ∈ M, define the R-linear map R→ M, x 7→ xm. It clearly
induces an injection R/p ↪→ M.
⇐) Suppose there is an R-injection R/p ↪→ M, and let m ∈ M be the image of 1. Then
p = AnnR(m), so p ∈ AssR(M).
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Also, these two results guarantee that there always exist associated primes if M 6= 0:

Proposition 1.9. Let R be a ring, M a R-module and a an ideal. Then, if a is maximal in the set
of annihilators of non-zero elements of M, a ∈ AssR(M).

Proof. We just have to see that a is prime. Say a := AnnR(m) with m 6= 0. Then 1 /∈ a,
as m 6= 0. Suppose b, c ∈ R with bc ∈ a, but c /∈ a. Then bcm = 0, but cm 6= 0. Clearly,
a ⊆ AnnR(cm), so a = AnnR(cm) by maximality. But b ∈ AnnR(cm), so b ∈ a. This proves
that a is prime.

Corollary 1.10. If R is Noetherian and M a R-module, M = 0 ⇐⇒ AssR(M) = ∅

Proof. ⇒ is trivial. ⇐ follows from the fact that, if R is Noetherian, the set of annihilators
of non-zero elements of M has at least one maximal ideal p and, by the Proposition 1.9,
p ∈ AssR(M).

We just need the following two previous results to prove Theorem 1.13:

Lemma 1.11. For a ring R and a prime ideal p, AssR(R/p) = {p}.

Proof. ⊇ is trivial. To see ⊆, it is enough to see that for any non-zero element m ∈ R/p,
AnnR(m) = p. To see this, say m 6= 0 is the residue of y ∈ R (so y /∈ p). Let x ∈ R. Then
xm = 0 ⇐⇒ xy ∈ p ⇐⇒ x ∈ p, so AnnR(m) = p.

Proposition 1.12. For R-modules M1, M2 and M3 and 0 → M1
f−→ M2

g−→ M3 → 0 exact, we
have AssR(M1) ⊆ AssR(M2) and AssR(M2) ⊆ AssR(M1) ∪ AssR(M3).

Proof. The first inclusion is trivial, as if we have p = AnnR(m1) with m1 ∈ M1, then
p = AnnR( f (m1)) ( f is injective), so p ∈ AssR(M2).
To prove the second inclusion, suppose we have p ∈ Spec(R) with h : R/p ↪→ M2. If
h(R/p) ∩ f (M1) 6= ∅ ⇒ ∃m1 ∈ M1 such that AnnR( f (m1)) = p by Lemma 1.11 (see its
proof), and as f is injective, that means p = AssR(m1) and so p ∈ AssR(M1).
If h(R/p) ∩ f (M1) = ∅, then the composition R/p ↪→ M2 → M3 is injective (as Im( f ) =
Ker(g), no element goes to zero in the second map), and p ∈ AssR(M3) by Lemma 1.8.

Theorem 1.13. If R is Noetherian and M 6= 0 a finitely generated R-module, there exists a finite
chain of R-submodules

0 = M0 ( M1 ( · · · ( Mn−1 ( Mn = M (1.7)

with Mi+1/Mi
∼= R/pi, with pi ∈ Spec(R). Such a chain is called a (finite) filtration of M.

Proof. As AssR(M) 6= ∅, by Corollary 1.10 we can take p1 ∈ AssR(M). Then, by Lemma
1.8, there exists M1 ⊆ M with M1

∼= R/p1 (M1 = hp1(R/p1)). Thus, we have

0 = M0 ( M1 ⊆ M (1.8)

Now, if M 6= M1, again there exists p2 ∈ AssR(M/M1) such that hp2 : R/p2 ↪→ M/M1, so
there exists M2 with M2 ⊆ M, M1 ( M2 such that M2/M1

∼= R/p2, and

0 = M0 ( M1 ( M2 ⊆ M. (1.9)
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This can be done repeatedly, obtaining a chain

0 = M0 ( M1 ( M2 ( · · · ⊆ M (1.10)

As R is Noetherian and M finitely generated, M is Noetherian and the chain of (1.10) must
eventually stabilize, so in this process there exists some n with Mn = M, and we get the
finite filtration with the desired properties.

Corollary 1.14. If R is Noetherian and M a finitely generated R-module, AssR(M) is finite.

Proof. It is enough to prove that AssR(M) ⊆ {p1, . . . , pn}, with pi the prime ideals of the
finite filtration. This follows applying Proposition 1.12 inductively to the exact sequence

0→ Mi → Mi+1 → Mi+1/Mi → 0 (1.11)

and keeping in mind the Lemma 1.11 in each step and Mi+1/Mi
∼= R/pi ∀i.

1.4 Noether’s Normalization Theorem

In this last section, we provide a standard proof of the Noether’s Normalization The-
orem. However, we are not interested in the result per se, but in the change of variables
we have to do to prove it, and Remark 1.20. We will need this very same construction in
our final proof of the Quillen-Suslin Theorem and in Chapter 6, when we discuss some
algorithmic aspects. We start with some basic definitions:

Definition 1.15. Let K be an extension field of a field k. Let S be a subset of K. We say that
the elements {s}s∈S are algebraically independent over k if they do not satisfy any non-trivial
polynomial equation with coefficients in k.

Definition 1.16. If S is a subset of K which is algebraically independent over k and its cardinality
is the greatest among all such subsets, then we call this cardinality the transcendence degree of K
over k. In this case, we say that the elements of S are a transcendence basis of K over k.

It can be proven that any two transcendence bases of K over k have the same cardinality,
whether it is finite or infinite, so the transcendence degree is well defined. We arrive now
to our most relevant definition:

Definition 1.17. For a commutative ring B and A ⊆ B a subring, we say that an element b ∈ B
is integral over A if b is a root of a monic polynomial with coefficients in A. If every element of B
is integral over A, then we say that B is integral over A.

It can be proven that the set of integral elements b ∈ B over A forms a subring of B,
obviously containing A. We also need this lemma, which we will state without proof, as
it is proved in the course of "Commutative Algebra" of our bachelor’s degree:

Lemma 1.18. (Transitivity of integral extensions): If A ⊆ B ⊆ C are rings and B is integral
over A and C is integral over B, then C is integral over A.

With this in mind, we can now demonstrate our main theorem:
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Theorem 1.19. (Nother’s Normalization Theorem): Let k[x1, . . . , xn] = k[x] be a finitely
generated integral domain over a field k, and assume that k(x) has transcendence degree r. Then
there exist elements y1, . . . , yr in k[x] such that k[x] is integral over k[y1, . . . , yr] = k[y].

Proof. As the integral elements form a subring, it is enough that the variables xi are in-
tegral. If they are already algebraically independent over k, then n = r and we are done
with yi = xi ∀i. If not, there exists a non-trivial relation

∑
i∈I

aix
αi

1
1 . . . xαi

n
n = 0 (1.12)

with 0 6= ai ∈ k and I finite, so the sum is taken over a finite number of distinct n-tuples
of integers (αi

1, . . . , αi
n), αi

j ≥ 0. Now let m2, . . . , mn be positive integers, and put

y2 = x2 − xm2
1 , . . . , yn = xn − xmn

1 . (1.13)

Clearly xi = yi + xmi
1 , i = 2, . . . , n, and we can substitute that in (1.12). Using vector

notation, we write (m) = (1, m2, . . . , mn) and use the dot product (αi) · (m) for αi
1 +

m2αi
2 + · · ·+ mnαi

n. If we expand now the relation of (1.12), we get

∑
i∈I

cix
(αi)·(m)
1 + f (x1, y2, . . . , yn) = 0, (1.14)

where f is a polynomial in which no pure power of x1 appears. If we select now
d > maxi,j{αi

j} and we take (m) = (1, d, d2, . . . , dn), then all the (αi) · (m) are distinct,
so the left sum of (1.14) can not be zero, and thus we obtain an integral equation for
x1 over k[y2, . . . , yn] dividing by a certain constant, if necessary (k is a field). Since each
x1, i > 1 is clearly integral over k[x1, y2, . . . , yn], all the variables are integral and it follows
that k[x] is integral over k[y2, . . . , yn]. We can now proceed inductively, using the transi-
tivity of integral extensions (Lemma 1.18), to shrink the number of y’s until we reach an
algebraically independent set of y’s, which will have r elements.

Remark 1.20. The transcendence degree of k(x1, . . . , xn) over k, with the xi being independent
variables (that is, the "usual" polynomial ring) is n, so what the proof of this theorem shows us
in this case is that, for any f ∈ k[x1, . . . , xn], it is possible to do a change of variables xi 7→ yi
such that the same polynomial written with the variables yi is monic in y1. In this situation a
"change of variables" means an automorphism of k-algebras ϕ : k[x1, . . . , xn] → k[x1, . . . , xn],
xi 7→ ϕ(xi), so that we can always recover the unique preimage of ϕ( f ) with ϕ−1. This way, for
any f ∈ k[x1, . . . , xn], we can take a change of variables based on the one in (1.13):

y1 = x1, y2 = x2 − xm2
1 , . . . , yn = xn − xmn

1 , (1.15)

such that f is monic expressed in terms of the yi, dividing by a certain constant if necessary (it is
clear that the k-algebra morphism ϕ defined on the generators like in (1.15) is an automorphism).
This change of variables ϕ will be important because, later on, we will work with some polynomial
matrices with determinant in k\0 in which monic polynomials play a huge role, and as ϕ|k = idk,
the determinant will not change under this change of variables, so we will be able to transform a
certain f to a monic f̄ conveniently. In this case, if in this "new" matrix we do not manipulate
some f̄ ’s, we can always recover a matrix with their initial polynomials f ’s by applying ϕ−1.



Chapter 2

Projective modules

Let us introduce right away the main object of this work in its full generality:

2.1 Definition and examples

Proposition 2.1. Let R be a ring and P a R-module. The following properties are equivalent:

(i) For all R-modules M, M′′, given a homomorphism f : P → M′′ and a surjective homomor-
phism g : M→ M′′, there exists a homomorphism h : P→ M making the following diagram
commutative:

P
h

}}
f
��

M
g // M′′ // 0

(2.1)

(ii) Every exact sequence of R-modules 0→ M′ → M→ P→ 0 splits.

(iii) There exists a module M′ such that P⊕M′ is free (P is a direct summand of a free module).

Proof. i) =⇒ ii): Given the exact sequence of ii), take M′′ = P and f = id in the diagram,

P
h

~~
id
��

M // P // 0

(2.2)

then h gives the desired splitting of the sequence.

ii) =⇒ iii): As every module can be represented as a quotient of a free module, there
is a surjective homomorphism r : F → P with F free, and applying ii) to the short exact

sequence 0→ Ker(r) i−→ F r−→ P→ 0, we get F ∼= P⊕M′, where M′ = Ker(r).

iii) =⇒ i): First, assume P is free and B a basis of P. The restriction f |B can be lifted
to a map γ : B → M (this means f |B = g ◦ γ), since M → M′′ is surjective (mapping the

7
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elements of B to appropriate pre-images of g). Then, the linear extension h : P → M of γ

fulfills the assertion.
Now let P ⊕ Q be free. Then f extends to a linear map f ′ : P ⊕ Q → M′′, defined by
(p, q) 7→ f (p). Let h′ : P⊕Q→ M be a lift of f ′ (just as before, this is done with h′ defined
by linear extension over a basis of P⊕Q). Then, with h := h′|P, we get g ◦ h = f .

Definition 2.2. A R-module with the equivalent properties of Proposition 2.1 is called projective.

The reader could wonder why would someone define a module satisfying these equiv-
alent properties, and we can explain now at least two important reasons that justify the
notion of a projective module, both from Homological Algebra:

The first one is trying to find a more arrow-theoretical characterization of free modules;
in almost every field of algebra the importance of free modules is unquestionable, but in
this concrete branch one is particularly interested in how do certain objects interact with
one another using morphisms between them. In this sense, a useful characterization of
free modules is that they satisfy a diagram like the one in (2.1) (see implication iii)⇒ i)),
though it was soon realized that a module does not need to be free to do so- below we
will provide some insightful examples in this direction.

The second one, more "technical" but very likely more important, comes from the func-
torial viewpoint: in Homological Algebra and Category Theory, functors are one of the
most basic and ubiquitous objects, and probably the most frequent ones are the covariant
and the contravariant Hom functors. The reader may know that in general neither kind
is exact- they are only left-exact. Projective modules are precisely the kind of modules
which make the covariant Hom functor exact, something very remarkable in this context,
although we will not prove it nor use it in our main text (nevertheless, we will use it in
Appendix B). That is, a fourth property in Proposition 2.1 could be:

(iv) The functor HomA(P,−) is exact.

All this being said, since their appearance 50 years ago, projective modules have also
showed up frequently in other branches of mathematics as well, such as algebraic number
theory, K-theory and algebraic geometry- in fact, in the section 3 of this chapter we will
explore the geometrical context in which Serre raised his famous conjecture.

In practice, one must think of projective modules as modules closely related to free
modules, as they are direct summands of them. However, there do exist projective mod-
ules which are not free. Here we present some illustrative examples of projective modules,
the first two exploring the case just mentioned:

1. Suppose R1 and R2 are non-trivial rings. Then the product ring R = R1 × R2 admits
non-free projective R-modules. Indeed, take P the ideal R1 × {0} and Q the ideal
{0} × R2. Since R = P⊕ Q, P and Q are projective. On the other hand, P cannot
be free, because taking e := (0, 1) ∈ R, we have eP = 0, whereas eF 6= 0 for any
non-zero free R-module (for F free, AnnR(F) = 0). Similarly, Q is not free either.
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Based in this construction, we can give a more familiar example: Z/2Z and Z/3Z

are projective non-free Z/6Z-modules, since Z/6Z ∼= Z/2Z⊕Z/3Z.

2. If we can find in a domain R two comaximal non-principal ideals I and J (comaximal
means I + J = R) with I J principal, then I and J are finitely generated projective non-
free R-modules (a non-principal ideal will never be free as an R-module).
Indeed, first we recall that, for I and J comaximal, I J = I ∩ J ( ⊆ trivial, ⊇ follows
from the fact that (I + J)(I ∩ J) = I(I ∩ J) + J(I ∩ J) ⊆ I J + I J = I J and (I + J) = R).
We have the natural short exact sequence

0→ I ∩ J → I ⊕ J → R→ 0 (2.3)

and since R is free, it’s also projective and the sequence (2.3) splits, thus giving
the isomorphism I ⊕ J ∼= I J ⊕ R. Finally, a non-zero principal ideal in a domain is
isomorphic as an R-module to R itself, so if I J is principal, I ⊕ J ∼= R2 and I and J
are both direct summands of a free module.
Again, based in this construction: we can take R = Z[

√
−5] and I = (3, 1 +

√
−5)

and J = (3, 1−
√
−5). It’s not hard to show that both are non-principal (using the

common argument with the multiplicative norm a + b
√
−5 7→ a2 + 5b2), and they

are comaximal, since R/I ∼= R/J ∼= Z/3Z (Z/3Z a field, so I and J are maximal),
and I 6= J. From the fact that I J = (3), principal, we deduce that both I and J are
projective non-free R-modules.

3. If P1 and P2 are projective R-modules, P1 ⊕ P2 is also a projective module, for if
P1 ⊕ Q1 and P2 ⊕ Q2 are free for some Q1 and Q2, we have the free module (P1 ⊕
Q1)⊕ (P2⊕Q2) ∼= (P1⊕ P2)⊕ (Q1⊕Q2). The converse is also true, almost trivially:
if (P1 ⊕ P2)⊕Q is free for some R-module Q, P1 ⊕ (P2 ⊕Q) fulfills the condition for
P1, and similarly for P2.
This argument can be generalized easily:

⊕
i∈I Pi is projective iff each Pi is projective.

It is clear that, for any ring R, a free R-module is always projective, and that both notions
are fairly close to each other- these previous examples show that it is not immediate to
find non-free projective modules. Ever since their appearance, algebraists have explored
for which rings R projective modules are necessarily free. This question is very hard to
answer, in general. The Quillen-Suslin Theorem proves that, over k[x1, . . . , xn] (k being a
field), this is indeed the case if the projective module is finitely generated.

2.2 Finitely generated projective modules

As the Theorem this memoir is about is concerned with finitely generated projective
modules (over k[x1, . . . , xn]), it is convenient to study now some of their properties. Actu-
ally, the main goal of this section is to study how do finitely generated projective modules
behave under localization, and which is the relation between f.g. projective modules and
locally free modules. A locally free module is defined in the obvious way having in mind
the exposition of section 1.2:

Definition 2.3. A R-module M is locally free if Mp is Rp-free ∀p ∈ Spec(R).
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We also recall from Definition 1.5 that Rp is a local ring ∀p ∈ Spec(R)- that is, it only
has one maximal ideal. Changing the notation a little bit temporarily, if a ring A is local
we usually write (A,m), where m denotes its maximal ideal. Note that A/m is a field
because m is maximal. We call it the residue field of A. The first goal of this section is to
prove that, in a local ring A, any finitely generated projective A-module is indeed free. To
do so we will need the well-known Nakayama’s Lemma and its consequences. But first:

Definition 2.4. We say that a generating set of a module is minimal if no proper subset of it
generates the module.

The number of elements of a minimal generating set for an arbitrary R-module need
not be unique, and it usually is not. However, if M is finitely generated, there obviously
exist minimal generating sets with finite cardinal, and the infimum of these is uniquely
determined by M. Before going with Nakayama’s Lemma:

Remark 2.5. In a local ring (A,m), x /∈ m ⇐⇒ x is a unit. ⇐ is trivial (otherwise m = A!),
while ⇒ can be deduced from the fact that every non-unit element of a ring is contained in some
maximal ideal (using Zorn’s Lemma), and if A is local, it must be m.

Lemma 2.6. (Nakayama’s Lemma): Let M be a finitely generated A-module, (A,m) a local
ring. Then mM = M =⇒ M = 0.

Proof. Suppose M 6= 0 and {u1, . . . , un} a minimal generating set of M. As mM = M, we
have un ∈ mM, and there is an equation un = a1u1 + · · ·+ anun with ai ∈ m. Thus

(1− an)un = a1u1 + · · ·+ an−1un−1. (2.4)

As an ∈ m, (1 − an) /∈ m and by Remark 2.5, it is a unit in A. Thus un belongs to
(u1, . . . , un−1), in contradiction with the minimality of the generating set.

Corollary 2.7. If M is a f.g. A-module and N ⊆ M is such that M = mM + N, then N = M.

Proof. M/N is finitely generated, and we have m(M/N) = (mM + N)/N = M/N. By
Nakayama’s Lemma, this implies M/N = 0 =⇒ M = N.

Now, for any ring R and I ( R an ideal, M/IM is naturally a R/I-module with
multiplication defined as ām̄ = am. Clearly, for any generating set {m}i∈I of M as a
R-module, {mi}i∈I is a generating set of M/IM as a R/I-module, so if M is a finitely
generated R-module, M/IM is a finitely generated R/I-module. In the case where (A,m)

is local and M finitely generated, M/mM is an A/m-vector space with finite dimension.

Proposition 2.8. Let (A,m) be a local ring, k = A/m and M a finitely generated A-module. Then
any minimal generating set {m1, . . . , mn} of M forms a k-basis {m1, . . . , mn} for M/mM. In
particular, every minimal generating set has the same number of elements, µ(M) = dimk M/mM.

Proof. We just have to prove that if {m1, . . . , mn} is a minimal generating set of M, then
{m1, . . . , mn} are linearly independent in k (they are naturally a generating set). If they
were not, we could take wlog {m2, . . . , mn} as a generating set for M/mM. But then M =

∑n
i=2 Ami + mM, and by Corollary 2.7 we would have M = ∑n

i=2 Ami, in contradiction
with the minimality of the initial generating set! Thus they are linearly independent. The
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second part follows from the fact that two minimal finite generating sets with different
cardinality would form two k-basis with a different number of elements, which is clearly
impossible, since the number of elements of a basis of a finite vector space is unique.

With this we arrive finally to our desired result:

Proposition 2.9. Supose A = (A,m) is a local ring and M is a finitely generated projective
A-module. Then M is free.

Proof. By Proposition 2.8, if we take {m1, . . . , mn} a minimal generating set of M, their
projection in M/mM forms a basis for M/mM as a k-module. Define now ϕ : An → M
by sending the ith basis vector to mi; as it is surjective and M is projective, we have

an isomorphism An ∼=−→ M ⊕ Ker(ϕ), with Ker(ϕ) finitely generated, as there exists an

split epimorphism φ : An ↪→ Ker(ϕ). Reducing mod m, we get kn ∼=−→ (M/mM) ⊕
(Ker(φ)/mKer(φ)), but we know that the map is an isomorphism on the first factor, as
it matches up the basis vectors. Thus, the second factor must be trivial, so Ker(ϕ) =

mKer(ϕ). But, as Ker(ϕ) is a finitely generated A-module, Nakayama’s Lemma implies
that Ker(φ) = 0, and hence the original ϕ is an isomorphism and M is free.

Actually, I. Kaplansky proved that the finite generation of M is not required, and the
result holds for arbitrary projective modules over A. Thus, local rings are also one of the
kind of rings for which projective modules are necessarily free. From this we will deduce
easily the other important result of this section, Proposition 2.12, although we will have to
prove a simple lemma before, Lemma 2.11.

In section 1.2 there is the explanation on how, given a multiplicatively closed set S ( R,
one can form S−1M, a S−1R-module in a natural way. Going further, it is easy to prove
that localization at S can be thought of as a functor S−1 : ModR → ModS−1R by sending a
R-morphism f : M→ N to the naturally defined S−1R-morphism

S−1 f : S−1M→ S−1N

m
1
7→ f (m)

1

(2.5)

In fact, it is an exact functor, in the sense of Proposition 2.10. The reader unfamiliar with
the language of functors may just "believe" this result. As it is presented in the course
"Introduction to Commutative Algebra" of our bachelor’s degree and it is straightforward
to demonstrate, we shall just state it without proof:

Proposition 2.10. Applying the functor S−1 to an exact sequence of R-modules

0→ M1
f−→ M2

g−→ M3 → 0 (2.6)

yields an exact sequence

0→ S1M1
S1 f−−→ S1M2

S1g−−→ S1M3 → 0 (2.7)

Lemma 2.11. Localization preserves finite direct sums- that is, given a finite family of R-modules
{M1, . . . Mn}, one has S−1(

⊕n
i=1 Mi) ∼=

⊕n
i=1 S−1Mi as S−1R-modules.
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Proof. As S−1 is an exact functor, from Proposition 2.10, for any two R-modules M and N
one has two natural exact sequences of S−1R-modules

0→ S−1M→ S−1(M⊕ N)→ S−1N → 0

0→ S−1M→ S−1M⊕ S−1N → S−1N → 0.
(2.8)

One can now apply the Five Lemma (Lemma A.16) in the obvious way between both to
see that S−1(M⊕N) ∼= S−1M⊕ S−1N. For an arbitrary finite direct sum the result follows
by induction.

This lemma has as simple corollaries that the localization of a f.g. free R-module,⊕n
i=1 R, is always a f.g. free S−1R-module, and the same applies to f.g. projective R-

modules. This will look clearer in the proof of our desired result:

Proposition 2.12. If P is a finitely generated projective R-module, then P is locally free.

Proof. As P is finitely generated, there exists a R-module Q such that Rn ∼= P ⊕ Q for
some n ∈ N. Now localizing at any p ∈ Spec(R), S = R\p, by Lemma 2.11 one has
(S−1R)n ∼= S−1(Rn) ∼= S−1(P⊕Q) ∼= S−1P⊕ S−1Q- that is, (Rp)n ∼= Pp ⊕Qp. Thus, Pp is
a direct summand of a free Rp-module, so it is a projective Rp-module. As it is obviously
finitely generated and Rp is a local ring, by Proposition 2.9 Pp is free ∀p ∈ Spec(R), and
thus P is locally free.

It is clear that, since P is finitely generated, Pp is finitely generated as a Rp-module
∀p ∈ Spec(R), so one could easily write "finite locally free" in the proposition above. For
any p ∈ Spec(R), one defines the rank of projective R-module P at p as rkp(P) := rankRpPp.
It is a natural question to ask how does the function rk(P) : Spec(R) → Z vary with
p ∈ Spec(R). The complete but "hard" answer to this question is that it is continuous with
respect to the Zarisky topology on Spec(R). For those unfamiliar with this terminology,
an "easy" and sufficient answer to it in our case (and a direct consequence of its "hard"
counterpart, as in this case Spec(R) is connected) could be Proposition 2.13, when R is a
(commutative) integral domain, the usual case in algebraic geometry:

Proposition 2.13. If R is an integral domain, then any f.g. projective R-module has constant
rank.

Now, the remarkable fact about Proposition 2.12 is that, by imposing this condition
on rkpP (that is, rkpP is continuous with respect to the Zarisky topology/ constant if R
integral domain), the converse implication also holds. So, in an integral domain, one has

Proposition 2.14. If P is a finitely generated module being finite locally free with rkpP constant
over Spec(R), then P is a finitely generated projective R-module.

Proposition 2.14 is significantly harder to prove than its reciprocal, and doing so re-
quires more advanced techniques, so one may just assume its validity and continue to
section 3. Nevertheless, the interested reader will find a detailed demonstration of it in
Appendix B, though many well-known but quite technical results of commutative algebra
will be taken for granted in it.
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Thus, together with the previous four discussed in section 1, Propositions 2.12 and
2.14 give yet a fifth characterization of projective modules in the case in which they are
finitely generated (and R is commutative and an integral domain). In fact, this property
is the one which really gives finitely generated projective modules their geometric value,
as we shall see in the following.

2.3 Geometric motivation of the Serre’s problem

A curious fact about the Quillen-Suslin Theorem is that it can be treated (and solved)
without any reference to algebraic geometry nor having a strong knowledge of it, despite
it solving a problem which was originally formulated in a geometric context- in fact, the
content of this section will not appear for the rest of the text. Nevertheless, our treatment
of the Theorem would not be complete without comprehending what geometric intuition
led Serre to formulate the question in the first place. The purpose of this section is to
sketch this geometric origin, following the original paper of Serre.
Although we will keep the exposition simple and without proofs, it will take us some
pages of definitions to finally arrive to the geometric meaning of our problem. Some prior
knowledge of standard algebraic geometry will be inevitably assumed, and the first pages
will be devoted to providing an introduction to sheaf theory.

In retrospective, Faisceaux algébriques cohérents ("Coherent algebraic sheaves") might be
the most influential paper in 20th century abstract algebraic geometry. In it, Serre not
only introduced sheaves into this field, but developed systematically and in great detail
many of the sheaf-theoretic methods that are still in use today, most importantly sheaf
cohomology, which has been proven to be an incredibly powerful tool. His far-reaching
approach led to a reformulation of the entire subject during the 1950s and 1960s, mostly
headed by A. Grothendieck. Nowadays, FAC is still a reference article by many geometers
and sheaves are ubiquitous in modern algebraic geometry- in fact, they are necessary even
to define the notion of scheme, its main object of study.

Despite the importance of the article, the aim of this section is more modest, and we
will only treat the notions necessary to understand our problem, which are actually a lot.
Unsurprisingly, it is inevitable to define what is a sheaf and, before, a presheaf :

Definition 2.15. Let X be a topological space. A presheaf F of abelian groups on X consists of
the data

a) for every open set U ⊆ X, an abelian group F(U).

b) for every inclusion V ⊆ U of open sets, a morphism of abelian groups ρUV : F(U)→ F(V)

subject to the conditions

(0) F(∅) = 0, where ∅ is the empty set,

(1) ρUU : F(U)→ F(U) is the identity map, and

(2) if W ⊆ V ⊆ U are three open sets, then ρUW = ρVW ◦ ρUV .
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We define a presheaf of rings replacing the word "abelian group" in the definition by
"ring". These will be important later. Also, as a matter of terminology, if F is a presheaf on
X, we also refer to F(U) as the sections of the presheaf F over the open set U. We also call
the maps ρUV restriction maps, and sometimes write s|V instead of ρUV(s), if s ∈ F(U).
A sheaf is, roughly speaking, a presheaf whose sections are determined by local data:

Definition 2.16. A presheaf F on a topological space X is a sheaf if it satisfies the following
supplementary conditions:

(3) if U is an open set, {Vi} is an open covering of U and s ∈ F(U) is an element such that
s|Vi = 0 for all i, then s = 0;

(4) if U is an open set, {Vi} is an open covering of U, and we have elements si ∈ F(Vi) for each
i with the property that, for each i, j, si|Ui∩Uj = sj|Ui∩Uj , then there is an element s ∈ F(U)

such that s|Vi = si for each i (and (3) implies s is unique).

Example 2.17. Let G be an abelian group and denote by FU the set of functions on U with values
in G; for U ⊆ V, define φVU : FV → FU the restriction of such functions. We thus obtain a
system (FU , φVU) and hence a sheaf F(X), the sheaf of germs of functions with values in G.

Now, sheaves are defined on open sets, but it is convenient to attempt to isolate the
behaviour of a sheaf at a single fixed point of X. If F is a presheaf on X and P ∈ X, we
define the stalk FP of F at P to be the direct limit of the groups F(U) for all open sets U
containing P, via the restriction maps ρ. That is,

Definition 2.18.
FP = lim−→Ui3P F(Ui) =

⊔
Ui3P

F(Ui)/ ∼ (2.9)

where, for xi ∈ F(Ui) and xj ∈ F(Uj), xi ∼ xj iff there is some F(Uk) with F(Uk) ⊆ F(Ui),
F(Uk) ⊆ F(Uj) such that ρUiUk (xi) = ρUjUk (xj). (Intuitively, two elements of the disjoint union
are equivalent iff they "eventually become equal" by further restriction).

Thus, any element of FP is represented by a pair (U, s), where U is an open neigh-
bourhood of P and s ∈ FP, and such that any two pairs (U, s) and (V, s) define the same
element in FP iff there is an open neighbourhood W of P with W ⊆ U ∩V with s|W = t|W .
(One can carry out all the basic definitions about sheaves by using stalks instead of open
sets and, in fact, Serre originally did it that way).

We arrive now to the important notion of a sheaf of A-modules, which actually includes
the other two kinds of sheaves exposed so far:

Definition 2.19. Given a sheaf of rings A on X, F is a sheaf of A-modules on X if

(1) for each open set U ⊆ X, the group F(U) is an A(U)-module, and

(2) for each inclusion of open sets V ⊆ U, the restriction homomorphism F(U) → F(V) is
compatible with the module structures via the ring homomorphism A(U)→ A(V).

One may obtain many different kinds of sheaves of A-modules using various construc-
tions: subsheaves, quotient sheaves, direct sum of sheaves, tensor product of sheaves...
These constructions can be enlarged when one allows morphisms between them come into
play, which can be defined quite naturally and are very useful in practice:
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Definition 2.20. Let A be a sheaf of rings and F and G two sheaves of A-modules. Then φ : F→ G

is an A-homomorphism if for each open set U ⊆ X, φU : F(U) → G(U) is a homomorphism of
A(U)-modules and, whenever V ⊆ U is an inclusion, we get the following commutative diagram:

F(U)
φU //

ρUV

��

G(U)

ρUV

��
F(V)

φV // G(V)

(2.10)

It is easy to see that the kernel and the cokernel of a morphism are again sheaves.
Finally,

Definition 2.21. A sheaf of A-modules F is said to be coherent if

(a) F is of finite type- that is, it is locally generated by a finite number of its sections, so for each
U ⊆ X, there is an epimorphism A(U)p � F(U), and

(b) for any s1, . . . , sp ∈ F(U), the sheaf of relations between the si (Ker(φ : A(U)p → F(U))

with φ(ei) = si ∀i) is of finite type.

It is easy to see that every coherent sheaf of A-modules F is locally isomorphic to the
cokernel of a homomorphism Aq → Ap.

All this being said, now it is time to connect a little all these terms to algebraic geom-
etry. From now on, k will denote any commutative algebraically closed field.
Let X = Ar

k be the affine space of dimension r over the field k. We equip X with the
Zarisky topology, so a subset of X is closed iff it is the zero set of a family of polynomials
in k[x1, . . . , xr]. For an open set U of X, we denote by OU = { p

q , p, q ∈ k[x1, . . . , xr]| q(x) 6=
0 ∀x ∈ U}. Any fraction like this is said to be regular in U, and for all points x ∈ X for
which q(x) 6= 0, x 7→ p(x)

q(x) defines a continuous function with values in k (k being given
the Zarisky topology). It can be easily proven that the {OU}U⊆X form a subsheaf O of
the sheaf F(X) of germs of functions on X with values in k (Example 2.17), particularly a
sheaf of rings. Note that the stalk of O at x for any x ∈ X, Ox, is the local ring of x in X.
This is why the sheaf O is called the sheaf of local rings.
This can be generalized to any locally closed subspace Y of X (Y = U ∩ F, with U (resp.
F) an open (resp. closed) subspace of X) by taking the sheaf of germs of functions on Y
with values in k and restricting F(X)x → F(Y)x for each x ∈ Y. In this case, the ring Ox,Y
is isomorphic to the localization of k[x1, . . . , xn]/I(F) in the maximal ideal defined by the
point x. In this way, one can associate this sheaf to any "classical" algebraic variety, both
affine and projective.
In fact, having this in mind, Serre "redefined" and enlarged the concept of algebraic vari-
ety, taking a definition which is quite close to that of a scheme, in retrospective:

Definition 2.22. An algebraic variety over k is a set X equipped with

(1) a topology (the Zarisky topology), and

(2) a subsheaf OX of the sheaf F(X) of germs of functions on X with values in k (the sheaf of
local rings),
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this data being subject to axioms:

(a) There exists a finite open covering {Vi}i∈I of the space X such that each Vi, equipped with
the structure induced from X, is isomorphic to a locally closed subspace Ui of an affine space,
equipped with the sheaf OUi defined before- that is, there is an homeomorphism of Vi to Ui
which transforms OVi to OUi (also called a "chart").

(b) The diagonal ∆ = {(x, x)| x ∈ X} of X×X is closed in X×X (the topology in X×X being
the product topology and having in mind (a)).

With this notion of algebraic variety, one can prove that, for any algebraic variety V,
the sheaf OV is a coherent sheaf of rings on V. Then, an algebraic sheaf on V is any sheaf
of OV-modules, and it is said to be coherent if it satisfies Definition 2.21. Also, V is said
to be affine if it is directly isomorphic to a closed subvariety of an affine space. For two
algebraic varieties X and Y, φ : X → Y is said to be a morphism between them if φ is
continuous and if for any x ∈ X and f ∈ Oφ(x),Y, then f ◦ φ ∈ Ox,X .

After all this way, our last two steps to understand the geometric intuition behind
Serre’s problem are the notions of algebraic vector bundle and sheaf associated to a module M:

- An algebraic vector bundle over k of rank r with base (a variety) V is an algebraic
variety E together with a surjective morphism of algebraic varieties p : E → V such that,
for each point x ∈ V, p−1(x) ∼= kr and which is locally trivial in the sense that, for each
point x ∈ V, there exists an open neighbourhood U of x such that p−1(U) = E|U ∼= U× kr,
and such that the two isomorphisms over an intersection Ui ∩Uj differ by a linear auto-
morphism (of vector spaces).
One must think of algebraic vector bundles as "vector spaces parametrized by an algebraic
variety". The reader may be more familiar with topological vector bundles; the ones just
defined are their analogous but in the context of algebraic geometry, so we require the
fiber space to be an algebraic variety and the morphism between it and the base V to be a
morphism of algebraic varieties. Also, we say that E is a trivial bundle if it is isomorphic
to the product E× kr.
Now, if U is an open subset of V, one can consider J(E)U the set of regular sections of E on
U, and for U ⊆ W, we have the restriction homomorphism ρWU : J(E)W → J(E)U . These
form a sheaf J(E), called the sheaf of germs of sections of E, and since E is a vector
bundle, each J(E)U is a Γ(U,OV)-module and J(E) is an algebraic sheaf on E which is
locally isomorphic to Or

V (and in particular, coherent). Conversely, it is easily seen that any
algebraic sheaf F on V which is locally isomorphic to Or

V is isomorphic to a sheaf J(E),
where E is determined up to isomorphism.

- If we take V an affine variety and O the sheaf of local rings of V, the ring F(V) =

Γ(V,O), also called the ring of coordinates of V, is an algebra over k with no non-zero
nilpotent elements (if V is embedded as a closed subvariety of kr, A is identified with the
quotient algebra of k[x1, . . . , xn] by the ideal of polynomials vanishing on V, and is a f.g.
k-algebra). Conversely, if A is a commutative k-algebra with no non-zero nilpotent ele-
ments which is f.g., there exists a (unique) variety V such that A is isomorphic to Γ(V,O).
Now let M be an A-module. M defines a constant sheaf on V, which we denote again
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by M; the same way, A defines a constant sheaf, and the sheaf M can be considered as
a sheaf of A-modules. Define A(M) = O ⊗A M, the sheaf O also being considered as a
sheaf of A-modules; then it is clear that A(M) is a sheaf of O-modules (by "extension of
scalars") and thus an algebraic sheaf on V, and if M is f.g., it is coherent. We call it the
sheaf associated to M. Note that the stalk of A(M) at any point x ∈ X is isomorphic to
Ox ⊗A M ∼= Mx (localized at x).

Now, by what we proved in the previous section, if we take M to be a finitely generated
A-module, M is projective if and only if the Ox-module Ox ⊗A M is free for every x ∈ V.
Note that if F is a coherent algebraic sheaf on V and if Fx is isomorphic to Op

x , F is
isomorphic to Op in a neighbourhood of x; if this property is satisfied in every x ∈ V, the
sheaf F is thus locally isomorphic to the sheaf Op, the integer p being constant on every
connected component of V. Hence,

Proposition 2.23. For F a coherent algebraic sheaf on a connected affine variety V, the following
two properties are equivalent:

(1) F(V) is a projective A-module.

(2) F(V) is isomorphic to the sheaf of germs of sections of a vector bundle with base V

In other words, the mapping E 7→ J(E) gives a bijective correspondence between
classes of algebraic vector bundles over V and classes of finitely generated projective A-
modules, and in this correspondence, a trivial bundle corresponds to a free modules and
conversely.

Finally, going back to our problem, we want to consider the total affine space, that is,
X = Ar

k and O the natural sheaf of local rings, so Γ(X,O) = k[x1, . . . , xr]. By what we
have said so far, there is a bijective correspondence between finitely generated projective
k[x1, . . . , xr]-modules and algebraic vector bundles over Ar

k of finite rank. Thus, Serre’s
problem can be restated in geometric terms as

Is every algebraic vector bundle over the affine space Ar
k a trivial bundle? (for all r ∈N).

It is a standard result in topology that, if X is a contractible space, every topological
vector bundle over it is trivial, so any topological vector bundle over Ar

k, with k being
the more familiar R or C, is always trivial. Thus, the motivation of Serre’s question was
to know whether this was still true in the geometric setting (that is, for algebraic vector
bundles) and for any field k, with the "moral impulse" that Ar

k should still behave like
a "contractible" space. When Quillen and Suslin proved that finitely generated projective
modules over k[x1, . . . , xn] are necessarily free, it was proved that this is indeed the case.



Chapter 3

Stably free modules

We have seen that, in one of its many equivalent criteria, an R-module P is projective
iff there is a R-module Q such that P ⊕ Q is free. It has been shown that this does not
necessarily imply that P itself is free. Remarkably, even if Q is finitely generated and free
and P⊕Q is free, P need not be free. This motivates the concept of a stably free module,
a more restrictive kind of projective module with useful and interesting properties which
will be key in our demonstration of the Quillen-Suslin Theorem, once we prove, in Chapter
4, that any finitely generated projective module over k[x1, . . . , xn] is stably free.

3.1 Definition and characterization

Definition 3.1. An R-module P is said to be stably free of type m (0 ≤ m < ∞) if P⊕ Rm is
free. A module is said to be stably free if it is stably free of type m for some m. (Such a module P
is, of course, projective, and if m = 0, P is free.)

Remark 3.2. This terminology is a little bit informal, since the type of P is not a uniquely deter-
mined integer (if P has type m, then it also has type m + k for any k ≥ 0). If we want to associate
a uniquely defined non-negative integer to P, we can define its "minimal type" to be the smallest
integer m ≥ 0 such that P⊕ Rm is free.

Thus, every free module is stably free (of type 0). As we anticipated in the introduc-
tion of this chapter, there do exist stably free modules which are not free. We will give
an example of one in the next section, once we have introduced the concept of unimodular
row, which will make the example look less artificial.

Also, there is a good reason why we want to restrict the m above to be a finite cardinal
number. In fact, if we don’t impose such a restriction, any projective module P would
satisfy the definition. The proof of this is a famous trick of S. Eilenberg:

18



3.1 Definition and characterization 19

Proof. Let P⊕Q ∼= E with E free, and let F = E⊕ E⊕ E . . . (also free). Then:

P⊕ F ∼= P⊕ E⊕ E . . .
∼= P⊕ (Q⊕ P)⊕ (Q⊕ P) . . .
∼= (P⊕Q)⊕ (P⊕Q) . . .
∼= E⊕ E . . .
∼= F!

(3.1)

Another relevant observation is that a stably free module P is of interest mainly in the
case when it is finitely generated. That’s due to another beautiful trick found by M. Gabel,
which shows that:

Proposition 3.3. If P is stably free but not finitely generated, then P is actually free.

Proof. Say P⊕ Rm ∼= F, where F is free with basis ei, i ∈ I. Since P is not finitely generated,
I must be an infinite set (otherwise, it would be finitely presented ⇐⇒ finitely gener-
ated). P can then be viewed as Ker( f : F � Rm) for some epimorphism f . As Rm is finitely

generated, for a sufficiently large finite subset I0 ⊂ I, we have F0 = ∑ei∈I0
ei · R

f−→ Rm al-
ready onto. Thus, F = P + F0. Writing Q = P ∩ F0, we have two short exact sequences:

0→ Q→ P→ P/Q→ 0

0→ Q→ F0 → Rm → 0
(3.2)

the first one trivially and the second one from the fact that Ker( f |F0) = P ∩ F0. Now, by
the Second Isomorphism Theorem (for two modules S and T, (S + T)/T ∼= S/(S ∩ T)),
we get P/Q = P/(P ∩ F0) ∼= (P + F0)/F0 = F/F0 ∼= ∑i∈I\I0

ei · R. Since I\I0 is infinite, we
can write P/Q ∼= Rm ⊕ F1 for some free module F1. Now, as in both of the sequences of
(3.2) the module on the right is free (thus projective), both split, so

P ∼= Q⊕ (P/Q) ∼= Q⊕ (Rm ⊕ F1) ∼= (Q⊕ Rm)⊕ F1
∼= F0 ⊕ F1 = free,

as we wanted to prove.

In view of this, we shall henceforth restrict more justifiably our attention to finitely
generated stably free modules, the ones we are really interested in.

In this case, the definition of a stably free module P (of type m) is equivalent to the
existence of a short exact sequence

0→ Rm g−→ Rn → P→ 0 (3.3)

for some suitable m, n ∈N.
As the sequence splits, we get that P is stably free of type m iff P ∼= Ker( f : Rn � Rm)

for a suitable (split) epimorphism f . Now, note that if M is the matrix associated with
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f (recall Remark A.14), then M is right invertible, i.e. there exists an n × m matrix N
such that MN = Im (N would be the matrix associated to the homomorphism g, so that
f ◦ g = idRm ). Conversely, any right invertible m × n matrix M defines a f.g. stably free
R-module P of type m, namely

P = {α = (a1 . . . an)
T |M · α = 0} (The also called ’solution space’ of M) (3.4)

The following criterion for the freeness of P = Ker(Rn f−→ Rm) will be extremely
important to restate the problem in other (and more useful) terms:

Proposition 3.4. P = Ker(Rn f−→ Rm) is free if and only if f can be lifted to an isomorphism
f ′ : Rn → Rm ⊕ Rr for some r, such that π1 ◦ f ′ = f , where π1 is the projection onto the first
factor (so the following diagram commutes):

Rm ⊕ Rr

π1
��

Rn f //

f ′
::

Rm

(3.5)

Proof. Suppose P is free, so there exists g : P
∼=−→ Rr. Then one may write Rn = Q ⊕ P

in such a way that the restriction of f to Q gives an isomorphism f0 : Q → Rm. Then
f0 ⊕ g : Rn → Rm ⊕ Rr clearly gives the desired isomorphism.

Conversely, if an isomorphism f ′ with π1 ◦ f ′ = f exists, then P = Ker( f ) ∼= Ker(π1) =

Rr, so it is free.

In the situation of (3.5), we are interested in having Rn ∼= Rm ⊕ Rr =⇒ n = m + r. It
could strike the inexperienced algebraist that this is not always the case- indeed, there do
exist some rings A for which Am ∼= An 6=⇒ m = n. When a ring satisfies it we say that
it has the invariant basis number (IBN) property. Fortunately, every commutative, unitary,
non-trivial ring R (our case) has the IBN property, as the proposition below shows:

Proposition 3.5. If R is a commutative ring with identity 1 6= 0, then R has the IBN property.

Proof. Assume there exists an R-module isomorphism f : Am → An. Let e1, . . . , em be the
canonical basis of Am. By Krull’s Theorem (every non-trivial commutative ring R contains
at least one maximal proper ideal, using the Zorn’s Lemma), we can take a a maximal ideal
I ( A. Then, as f is an A-morphism, if (i1, . . . , im) ∈ Im, f (i1, . . . , im) = ∑m

k=0 ik f (ek) ∈ In,
as each ik ∈ I. Thus, f induces an A/I-module morphism f ′ : ( A

I )
m → ( A

I )
n, which is

actually an isomorphism. Since I is maximal, A/I is a field and f ′ is an isomorphism
between finite-dimensional vector spaces, which can only occur for n = m.

This being proved, we can now give an insightful matrix theoretic interpretation of
the previous Proposition 3.4: Let M denote the m× n matrix corresponding to f , and N
the (m + r) × n = n × n matrix corresponding to f ′ (if such a f ′ exists). The condition
π1 ◦ f ′ = f says that M is a submatrix of N, particularly its first m rows. The condition of
f ′ being an isomorphism says that N is an invertible matrix; that is, there exists another
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matrix N′ of size n× n such that NN′ = Im+r and N′N = In.We denote the set of all n× n
invertible matrices with coefficients in R by GLn(R). We state the very same Proposition
3.4 in this new matrix theoretic context:

Proposition 3.6. For any right invertible m × n matrix M with coefficients in R, m < n, the
(stably free) solution space of M is free if and only if M can be extended to an invertible n × n
matrix by adding a suitable number of new rows.

Remark 3.7. As in a commutative ring R we can compute the determinant and the adjugate of a
matrix without problem, with the general formula M−1 = 1

det(M)
adj(M), we have that

M ∈ GLn(R) ⇐⇒ det(M) ∈ R∗ (here R∗ denotes the set of invertible elements of R) (3.6)

3.2 Unimodular rows

Pursuing further this "matrix completion" perspective, we introduce the concept of
"unimodular row", very important from now on:

Definition 3.8. We say that (v1, . . . , vn) ∈ Rn is a unimodular row if ∑n
i=1 viR = R. The set

of all unimodular rows of length m with entries in R is denoted by Umn(R).

Remark 3.9. A row (v1, . . . , vn) ∈ Umn(R) iff there are wi ∈ R such that ∑ viwi = 1. Therefore,
if w = (w1, . . . , wn), then vwT = 1.

Remark 3.10. A row, considered as a (1× n)-matrix, describes a surjective linear map of modules
Rn → R (via left-multiplication) ⇐⇒ the row is unimodular.

This proposition below will give us our new key criterion for a f.g. stably free module
to be free:

Proposition 3.11. For any ring R, the following statements are equivalent:

(i) Any finitely generated stably free R-module is free

(ii) Any finitely generated stably free R-module of type 1 is free

(iii) Any unimodular row over R can be extended to an invertible matrix by adding a suitable
number of new rows.

Proof. ii) ⇐⇒ iii): Follows from Proposition 3.6, when we gave a freeness criterion in
matrix-completion terms.

i) =⇒ ii): Is obvious.

ii) =⇒ i): We prove the result by induction on m, where P⊕ Rm is free. For m = 1
it follows by hypothesis from ii). Now assume the result for m− 1, and let P be a finitely
generated stably free R-module of type m. Then P⊕ Rm ∼= Rn, so (P⊕ Rm−1)⊕ R ∼= Rn,
and this implies P⊕ Rm−1 is stably free of type 1. By ii), it is free. Thus P⊕ Rm−1 ∼= Rk

for some k. By induction, P is free.
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Remark 3.12. In light of this proposition, if we want to see that a f.g. stably free R-module is free,
it is enough to prove that any unimodular row over R can be extended to an invertible matrix by
adding a suitable number of new rows. We will apply this to k[x1, . . . , xn] in the future.
Alternatively, we may see that the f.g. stably free R-module associated to the solution space of a
unimodular row (seen as the matrix of a surjective homomorphism Rn → R) is not free by proving
that the row can not be extended to an invertible matrix. This will be used in the example below.

Definition 3.13. A unimodular row which satisfies the condition iii) above is called completable.

We are now ready to give an interesting example of a f.g. stably free module which is
not free. For this, consider the coordinate rings of the real n-shpere,

Rn = R[x0, . . . , xn]/(x2
0 + · · ·+ x2

n − 1), (3.7)

and take for each the unimodular row τn = (x0, . . . , xn) ∈ Umn(Rn) (which clearly belongs
to Umn(Rn), as τnτT

n = 1 in Rn- we think of the xi as representatives of the residue class of
xi in (3.7), in each case). Then the solution space Pn associated to each unimodular row τn
is a f.g. stably free module, but it is only free for n = 1, 3 and 7. Indeed, below we show
explicitly an invertible (sub)matrix for each of these three cases, all with determinant 1 and
constructed considering the multiplication rule in the complex numbers, the quaternions
and the Cayley numbers, respectively:

x0 x1| x2 x3| x4 x5 x6 x7
x1 −x0| x3 −x2| x5 −x4 −x7 x6

x2 −x3 −x0 x1| x6 x7 −x4 −x5
x3 x2 −x1 −x0| x7 −x6 x5 −x4

x4 −x5 −x6 −x7 −x0 x1 x2 x3
x5 x4 −x7 x6 −x1 −x0 −x3 x2
x6 x7 x4 −x5 −x2 x3 −x0 −x1
x7 −x6 x5 x4 −x3 −x2 x1 −x0


(3.8)

Nevertheless, using a bit of topology, it can be shown that for n = 2 this is not possible:
suppose the row (x0, x1, x2) can be extended to an invertible matrix σ ∈ GL3(R2), with
e1σ = (x0, x1, x2). We can think of σij, det(σ) as "functions" on the real 2-sphere

S2 = {(v0, v1, v2) ∈ R3| v2
0 + v2

1 + v2
2 = 1} (3.9)

Now, for any point of S2 we can define a tangent vector as follows: if v ∈ S2, consider

ϕ(v) = (σ−1T

12 (v), σ−1T

22 (v), σ−1T

32 (v)) ∈ R3, (3.10)

where σ−1T

ij denotes the ij-entry of the matrix σ−1T ∈ GL3(R2). Clearly 〈v, ϕ(v)〉 = 0 (it

corresponds to multiply the first row of σ by the second column of σ−1, which is 0, as
σσ−1 = Id3), and so ϕ(v) is a tangent vector to S2 at the point v. Since σ−1T

i2 are polyno-
mials, the map ϕ : S2 → R3 is a differentiable function. As σ−1T ∈ GLn(A), the vector
ϕ(v) can never be the zero vector. Thus ϕ is a nowhere zero vector field on S2, but this
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is well-known to be impossible by the famous Hairy Ball Theorem, a standard result in
Algebraic Topology proved in our bachelor’s degree, which states that such a continu-
ous tangent vector field on S2 can not exist- it must vanish somewhere ("in any attempt to
comb a hairy ball flat, there will always be at least one tuft of hair at one point on the ball").

In fact, this Theorem states further that there is no non-vanishing continuous tangent
vector field on even-dimensional n-spheres, so by the same argument it follows that the
solution space associated to the unimodular row τn is not free for any n even.
The remaining odd cases for n are considerably harder to prove, and we will not explore
here how to do it. Anyway, it can be proven that τn is completable only in the cases
in which the manifold Sn is parallelizable, that is, that its tangent bundle is a trivial bun-
dle. A deep and difficult topological result of Bott, Milnor and Kervaire states that Sn is
parallelizable iff n = 1, 3, 7, so τn is completable only in these three cases.

3.3 Action of GLn(R) on Umn(R)

The group GLn(R) of invertible n× n matrices over R acts on the set Umn(R) of uni-
modular rows in the following natural manner: for v ∈ Umn(R), σ ∈ GLn(R),

v 7→ vσ (3.11)

Indeed, if w ∈ M1×n(R) is such that vwT = 1, then vσ(w(σ−1)T)T = 1, so vσ ∈ Umn(R)
and the map above is well defined as an action of GLn(R) on Umn(R). If v′ = vσ for some
σ ∈ GLn(R), we say that v′ and v are conjugate under this action, and we write v ∼ v′.
The equivalence classes of Umn(R) under ∼ are the orbits of this GLn(R)-action.

The proposition below has a nice consequence in terms of conjugate unimodular rows:

Proposition 3.14. The orbits of Umn(R) under the GLn(R)-action are in one to one correspon-
dence with the R-modules P for which P ⊕ R ∼= Rn. Under this correspondence, the orbit of
(1, 0, . . . , 0) corresponds to the free module Rn−1.

Proof. To any (b1, . . . , bn) ∈ Umn(R) we can associate P = P(b1, . . . , bn), the solution space

(i.e. kernel) of the R-homomorphism Rn (b1,...,bn)−−−−−→ R. Such a P is a typical module for
which P⊕ R ∼= Rn, by (3.3). Suppose now

P(b1, . . . , bn) ∼=β P(c1, . . . , cn) (3.12)

for another (c1, . . . , cn) ∈ Umn(R) (β the isomorphism). Then, in virtue of the well-known
Five Lemma (Lemma A.16), we can complete the following commutative diagram

0 // P(b1, . . . , bn) //

β

��

Rn (b1,...,bn) //

∃α

��

R //

Id
��

0

0 // P(c1, . . . , cn) // Rn (c1,...,cn) // R // 0

(3.13)
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with a suitable isomorphism α : Rn → Rn. If M ∈ GLn(R) denotes the matrix of this
isomorphism α, applying the right square of the diagram to a basis ei of Rn we obtain

(b1, . . . , bn) = (c1, . . . , cn) ·M. (3.14)

Conversely, suppose (b1, . . . , bn) = (c1, . . . , cn) · M for some M ∈ GLn(R). Then, if w ∈
M1×n is so that (b1, . . . , bn)wT = 0, it is clear that MwT satisfies (c1, . . . , cn)MwT = 0. The
other direction is done analogously using M−1 (which exists), and so the automorphism
defined by M induces an isomorphism of the two kernels P(b1, . . . , bn) ∼= P(c1, . . . , cn).

The second statement of the proposition is immediate- it is clear that P(1, 0, . . . , 0) ∼=
Ker(Rn (1,0,...,0)−−−−−→ R) ∼= Rn−1.

Corollary 3.15. Let (b1, . . . , bn) ∈ Umn(R). Then these two statements are equivalent:

(i) (b1, . . . , bn) is completable.

(ii) (b1, . . . , bn) ∼ (1, 0, . . . , 0).

Proof. i) =⇒ ii): Suppose (b1, . . . , bn) ∈ Umn(R) can be extended to an invertible ma-
trix M′ ∈ GLn(R). If M′M = In, then e1 = e1M′M = (b1, . . . , bn)M =, i.e. (b1, . . . , bn) ∼ e1.

ii) =⇒ i): If (b1, . . . , bn) = (1, 0, . . . , 0)M, with M ∈ GLn(R), then M is a completion
of (b1, . . . , bn) to a square invertible matrix, and so (b1, . . . , bn) is completable.

This characterization of completable unimodular rows in Corollary 3.15 will be ex-
tremely important in the sequel. In Chapter 4 we will prove that every f.g. projec-
tive module over k[x1, . . . , xn] is stably free, and in Chapter 5 we will prove that ∀ f ∈
Umn(k[x1, . . . , xn]) we have f ∼ e1, thus proving the Quillen-Suslin Theorem, as every f.g.
stably free module will then be free by Proposition 3.11.



Chapter 4

The Hilbert-Serre Theorem

This chapter is entirely devoted to prove that projective modules over k[x1, . . . , xn] are
stably free, a result informally referred to as the "Hilbert-Serre Theorem", as it was proved
by Serre using arguments more or less similar to those used in some sophisticated proofs
of the well-known Hilbert’s Syzygy Theorem. This equivalence is what will allow us to
prove the Quillen-Suslin Theorem in the next chapter, using some of the properties and
characterizations of stably free modules we saw in Chapter 3, when we introduced them.
Quite surprisingly, the fact that finitely generated projective modules over k[x1, . . . , xn] are
stably free was known "from the beginning" historically speaking, as it was proved in 1958
by Serre himself, just three years after the initial problem was formulated. Nevertheless, it
would take almost twenty years more to prove that stably free modules over k[x1, . . . , xn]

are indeed free, thus solving affirmatively the conjecture.
Our way of proving this result requires some new mathematical tools, such as various
types of resolutions of modules, which will take some pages to present.

4.1 Finite free and stably free resolutions

Definition 4.1. We say that a R-module M has a finite free resolution if there exists a resolution

0→ Fn → · · · → F0 → M→ 0 (4.1)

with each Fi finite free (that is, each Fi
∼= Rni for some ni ∈N).

Free resolutions will be our key characterization for proving that a projective module
M is stably free, as the following theorem shows:

Theorem 4.2. Let M be a projective R-module. Then M is stably free ⇐⇒ M admits a finite
free resolution

Proof. ⇒) Trivial, as M being stably free is equivalent to the existence of a short exact
sequence like the one in formula (3.3),

0→ Rm → Rn → M→ 0 (4.2)

25



26 The Hilbert-Serre Theorem

for some m, n ∈N, which is a obviously a finite free resolution.

⇐) Assume the existence of a finite free resolution like the one in (4.1). We’ll prove
that M is stably free by induction on the length n of its resolution:
If n = 0, then we get 0→ F0 → M→ 0, so M is already isomorphic to a finite free module
and is thus stably free. Assume now that it holds for n ≤ n0, and we’ll prove it for n0 + 1.
Given a finite free resolution

0→ Fn0+1 → · · · → F0 → M→ 0 (4.3)

we can consider M1 = Ker(F0 → M), and as M is projective, F0 ∼= M⊕M1 and M1 is also
projective. Hence, we obtain the two natural exact sequences

0→ M1 → F0 → M→ 0

0→ Fn0+1 → · · · → F1 → M1 → 0
(4.4)

as, by the exactness of the original sequence, M1 = Ker(F0 → M) = Im(F1 → F0), so the
natural morphism F1 → M1 is surjective.
Then M1 has a finite free resolution of length n0, so by the induction hypothesis there
exists a finite free module F such that M1 ⊕ F is free. Since F0 ⊕ F is also finite free and
F0 ⊕ F ∼= (M⊕M1)⊕ F ∼= M⊕ (M1 ⊕ F), we can conclude that M is stably free.

We introduce now another kind of resolution which will be more practical in our
proofs, as we will see:

Definition 4.3. A resolution

0→ En → · · · → E0 → M→ 0 (4.5)

is called stably free if all the modules Ei are (finite) stably free.

The next proposition shows us how closely related these two kinds of resolutions are.
Note that M need not be projective:

Proposition 4.4. Let M be a R-module. Then M has a finite free resolution of length n ⇐⇒ M
has a stably free resolution of length n.

Proof. ⇒) Trivial, since every finite free resolution is a stably free resolution.

⇐) Suppose we have a stably free resolution for M like the one in the definition above.
As the Ei are stably free, we have that, for each i ≤ n, there exists a Fi finite free such that
Ei ⊕ Fi is (finite) free. Observe that, taking F = Fi ⊕ Fi+1, we can form an exact sequence

0→ En → · · · → Ei+1 ⊕ F → Ei ⊕ F → · · · → E0 → M→ 0 (4.6)

with

Ei+2
∂i+2⊕0−−−−→ Ei+1 ⊕ F

∂i+1⊕id−−−−→ Ei ⊕ F
∂i−0−−→ Ei−1

e 7−→ (∂i+2(e), 0)

(e, f ) 7−→ (∂i+1(e), f )

(e, f ) 7−→ ∂i(e)
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In this way, we have changed two consecutive modules in the resolution to make them
free, and this process can be done inductively starting with E0 and E1 (F = F0 ⊕ F1), then
with E1 and E2 (with F = F2, as E1 ⊕ F0 ⊕ F1 is already finite free) and so on, obtaining a
finite free resolution of the module M:

0→ En ⊕ Fn → · · · → E2 ⊕ F2 ⊕ F3 → E1 ⊕ F0 ⊕ F1 ⊕ F2 → E0 ⊕ F0 ⊕ F1 → M→ 0 (4.7)

Definition 4.5. We say that a module M is of finite stably free dimension if it admits a finite
stably free resolution. Its stably free dimension is the minimum length of all such resolutions.

It’s not hard to guess that our main goal will be to prove that every finitely generated
projective module over k[x1, . . . , xn] is of finite stably free dimension, which will imply it
is stably free by the results presented so far. Various technical steps, one after the other,
will be necessary to demonstrate that. Although, technically speaking, R need not be
Noetherian to prove the results in the next section, this hypothesis will be key to simplify
substantially some of the propositions we will come upon with. However, the first of them
are easily demonstrable without this assumption. We begin with the Schanuel’s Lemma
and a useful consequence of it:

Lemma 4.6. (Schanuel’s Lemma): For a R-module M, suppose we have the two short exact
sequences

0→ K → P→ M→ 0

0→ K′ → P′ → M→ 0
(4.8)

where P, P′ are projective. Then there is an isomorphism K⊕ P′ ∼= K′ ⊕ P.

Proof. Since P is projective, for P′ → M there exists a homomorphism φ : P → P′ making
the right square in the diagram below commute:

0 // K i // P //

φ
��

M //

id
��

0

0 // K′
j // P′ // M // 0

(4.9)

We have that Im(i) = Ker(P→ M) and, since the right square of (4.9) commutes, we have
Im(φ ◦ i) ⊆ Ker(P′ → M) = Im(j) ∼= K′, so we can then define the morphism ϕ : K → K′

which sends each element k ∈ K to the element k′ ∈ K′ such that φ(i(k)) = j(k′), thus
obtaining the following commutative diagram:

0 // K i //

ϕ
��

P r //

φ
��

M //

id
��

0

0 // K′
j // P′ s // M // 0

(4.10)
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It is easy to prove that, with the construction above, we get an exact sequence:

0 −→K
i⊕ϕ−−→ P⊕ K′

φ−j−−→ P′ −→ 0

k 7−→ (ik, ϕk)

(p, k′) 7→ φp− jk′
(4.11)

(we have changed a bit the notation to make the diagram look clearer, with ik = i(k),...)
i ⊕ ϕ is trivially injective from the fact that i is injective, and from the commutativity of
(4.10) it is clear that the composition is 0, so Im(i⊕ ϕ) ⊆ Ker(φ− j).
To see Im(i⊕ ϕ) ⊇ Ker(φ− j), consider a (p, k′) with φ(p)− j(k′) = 0. Then φ(p) = j(k′)
and j(k′) ∈ Ker(s), so φ(p) ∈ Ker(s) and p ∈ Ker(r). As Ker(r) = Im(i), there exists
a k ∈ K with p = i(k), and by definition of ϕ, ϕk = k′, so (p, k′) = (i(k), ϕ(k)) and
Im(i⊕ ϕ) ⊇ Ker(φ− j).
To see that φ− j is surjective, it is enough to see that for p′ ∈ P′, there must be a p ∈ P
with r(p) = s(p′) (as r is surjective), and clearly s(φ(p) − p′) = r(p) − s(p′) = 0, so
φ(p)− p′ ∈ Ker(s) = Im j ∼= K′, so there exists a k′ ∈ K′ with p′ = φ(p)− j(k′) and φ− j
is thus surjective.

Finally, with the short exact sequence of (4.11) and using the fact that P′ is projective,
the sequence splits, and we obtain K⊕ P′ ∼= K′ ⊕ P, as we wanted to prove.

Definition 4.7. We say that two modules M1, M2 are stably isomorphic if there exist finite free
modules F1, F2 such that M1 ⊕ F1

∼= M2 ⊕ F2.

Lemma 4.8. Let M1 and M2 be stably isomorphic and

0→ N1 → E1 → M1 → 0

0→ N2 → E2 → M2 → 0
(4.12)

be exact sequences, where E1, E2 are stably free. Then N1 and N2 are also stably isomorphic.

Proof. By definition, there is an isomorphism M1 ⊕ F1
∼= M2 ⊕ F2, so we can obtain two

natural exact sequences

0→ N1 → E1 ⊕ F1 → M1 ⊕ F1 → 0

0→ N2 → E2 ⊕ F2 → M2 ⊕ F2 → 0
(4.13)

so by Schanuel’s Lemma, N1 ⊕ E2 ⊕ F2 ∼= N2 ⊕ E1 ⊕ F1. Since E1, E2 are stably free for
some F̄1 and F̄2 (so E1 ⊕ F̄1 and E2 ⊕ F̄2 are free), taking F̄ = F̄1 ⊕ F̄2 we obtain N1 ⊕ (E2 ⊕
F̄⊕ F2) ∼= N2 ⊕ (E1 ⊕ F̄⊕ F1) and N1, N2 are thus stably isomorphic.

4.2 R Notherian

From now on, R will refer to a commutative Noetherian ring. We will see that, under
this hypothesis, we can prove quite easily that finite free resolutions behave well with
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respect to short exacts sequences, in the sense of Theorem 4.12, the key result needed to
finally demonstrate the Hilbert-Serre Theorem, in the last section. Also, to simplify the
text, we will write FR for "finite free resolution" and SFR for "finite stably free resolution".

The following proposition shows us, using the previous lemma, how easily any "par-
tial" stably free resolution of a module M can be completed to a SFR of M:

Proposition 4.9. Suppose M has stably free dimension n (it admits a SFR of length n). Now let

Em → · · · → E0 → M→ 0 (4.14)

be an exact sequence with Ei stably free for i = 0, . . . , m. Then

(i) If m < n− 1 there exists a stably free module Em+1 such that the exact sequence above can
be continued preserving its exactness to

Em+1 → · · · → E0 → M→ 0 (4.15)

(ii) If m = n− 1 and we take En = Ker(En−1 → En−2), then En is stably free and thus

0→ En → · · · → E0 → M→ 0 (4.16)

is a stably free resolution.

Proof. (i) It follows immediately from the fact that R is Noetherian: as each Ei is finitely
generated, we can pick Em+1 to be finite free (and thus stably free).

(ii) Taking En = Ker(En−1 → En−2), we have two exact sequences

0→ En → · · · → E0 → M→ 0

0→ E′n → · · · → E′0 → M→ 0
(4.17)

the second one being a SFR of M. We can see that En is stably free using an inductive
argument inserting the kernels Kn = Ker(En → En−1) = Im(En+1 → En) and K′n
defined similarly for the E′i in each exact sequence:
By Lemma 4.8, K0 and K′0 are stably isomorphic, as we have the two exact sequences

0→ K0 → E0 → M→ 0 0→ K′0 → E′0 → M→ 0 (4.18)

But also K0 = Im(E1 → E0), K′0 = Im(E′1 → E′0), and as K1 = Ker(E1 → E0),
K′1 = Ker(E′1 → E′0), we have the natural short exact sequences

0→ K1
i−→ E1 → K0 → 0 0→ K′1

i−→ E′1 → K′0 → 0 (4.19)

Using the same argument, K1 and K′1 in (4.19) are again stably isomorphic, and this
can be done repeatedly so, at the end, we get that Kn−1 = Ker(En−1 → En−2) and
K′n−1 = Ker(E′n−1 → En−2) are stably isomorphic. But Kn−1 = En as we defined
it, and K′n−1

∼= E′n using the left-exactness of the second sequence. If Kn−1 ⊕ F ∼=
K′n−1 ⊕ F (for F, F′ finite free), as K′n−1 is already stably free, K′n−1 ⊕ F is also stably
free and then Kn−1 ⊕ F is stably free too, which necessarily implies Kn−1 = En is
stably free.
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As a consequence, we get this corollary, which will have relevant consequences:

Corollary 4.10. If, for E stably free,

0→ N → E→ M→ 0 (4.20)

is exact, then M is of stably free dimension ≤ n ⇐⇒ N is of stably free dimension ≤ n− 1.

Proof. • ⇐) It is enough to "glue" on the left hand side a SFR of N, so we get the (easy
to see) exact sequence

0→ En−1 → · · · → E0
α−→ E→ M→ 0 (4.21)

where α is the natural composition E0 → N → E.

• ⇒) As M has stably free dimension n, by Proposition 4.9 we can construct a SFR

0→ En → · · · → E1 → E→ M→ 0 (4.22)

As N ∼= Ker(E→ M) = Im(E1 → E), the natural sequence

0→ En → · · · → E1 → N → 0 (4.23)

is exact and thus a SFR of N with length n− 1.

The previous corollary and the simple construction of the next lemma will be our final
requirements for proving Theorem 4.12:

Lemma 4.11. Given the short exact sequence of finitely generated R-modules

0→ M′
f−→ M

g−→ M′′ → 0 (4.24)

there exist R-modules N′, N, N′′ and stably free modules E′, E, E′′ such that the following diagram

0

��

0

��

0

��
0 // N′ //

��

N //

��

N′′ //

��

0

0 // E′ //

��

E //

��

E′′ //

��

0

0 // M′ //

��

M //

��

M′′ //

��

0

0 0 0

(4.25)

is commutative and exact along its rows and columns.
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Proof. As the modules are finitely generated, it is clear that M′ and M′′ can each be rep-
resented as the image of a finite free module (which is stably free). Hence it is enough to
prove that the following diagram is commutative and exact along its rows and columns:

0

��

0

��

0

��
0 // Ker(φ1)

ī //

��

Ker(ϕ)
π̄ //

��

Ker(φ2) //

��

0

0 // Rm i //

φ1
��

Rm ⊕ Rn π //

ϕ

��

Rn //

φ2
��

0

0 // M′
f //

��

M
g //

��

M′′ //

��

0

0 0 0

(4.26)

where ϕ is the morphism such that, for (x, y) ∈ Rm ⊕ Rn, ϕ(x, y) = f (φ1(x)) + ϕ̄(y), and
ϕ̄ is defined over a basis ei of Rn so that g(ϕ̄(ei)) = φ2(ei) (which can be done because g is
surjective), and extended linearly. It is clear that ϕ is a morphism, and that it is surjective
(applying the well-known Five Lemma (Lemma A.16), with φ1, φ2 epimorhisms).
Once defined ϕ, it is immediate to verify that the restrictions ī and π̄ are well defined too,
and that the diagram is commutative. It’s also trivial that it is exact along all its columns
and rows except for the one above, which is also easy to prove:
ī is injective because i is injective, and clearly Im(ī) ⊆ Ker(π̄), as π̄ ◦ i = 0. Ker(π̄) ⊆ Im(ī)
because, if x ∈ Ker(π̄), its second component must be zero, and thus it is the image for
i of some x′ ∈ Rm, which will belong to Ker(φ1) as 0 = ϕ(i(x′)) = f (φ1(x′)) and f is
injective. Finally, π̄ is surjective because for x ∈ Ker(φ2), there exists x′ ∈ Rm ⊕ Rn with
π̄(x′) = x, and φ2(π(x′)) = g(ϕ(x′)) = 0 ⇒ ϕ(x′) ∈ Im( f ). As φ1 is surjective, taking
x̄ ∈ Rm with f (φ1(x̄)) = ϕ(x′), we have that 0 6= i(x̄)− x′ ∈ Ker(ϕ) with π̄(i(x̄)− x′) = x.
This concludes the proof.

Theorem 4.12. Let
0→ M′ → M→ M′′ → 0 (4.27)

be an exact sequence of R-modules. Then, if any two of these modules have a FR, so does the third.

Proof. By Proposition 4.4, the Theorem is equivalent to proving that if any two of these
modules have a SFR, so does the third:

• Suppose M′ and M verify that. Then M is finitely generated, which implies M′′ is
also finitely generated. We can then reason by induction on the stably free dimension
of M. Using the notation of the Lemma 4.11, both N′ and N have a SFR, with the
stably free dimension of N being ≤ n− 1. Thus, inductively and by Corollary 4.10,
we can reduce the problem to the case in which the stably free dimension of M is 0.
But then M is already stably free, so gluing a SFR of M′ on the left-hand side as we
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did in Corollary 4.10, one can trivially obtain a SFR of M′′

0→ Em → · · · → E0 → M→ M′′ → 0 (4.28)

• Suppose now M′ and M′′ verify that. Then both are finitely generated, and by
the construction in Lemma 4.11, we see that M is finitely generated too. If both
M′ and M′′ have stably free dimensions 0, then they are projective and one has
M ∼= M′ ⊕M′′. Thus, M is itself stably free and has the trivial finite SFR. Now it’s
enough to reduce to this case by induction: suppose n to be the maximum of the
stably free dimensions of M′ and M′′. Then, in the notation of Lemma 4.11, the
maximum of the stably free dimensions of N′ and N′′ is ≤ n − 1. Repeating this
process, one arrives finally to the case in which the stably free dimensions of both
N′ and N′′ are zero, and gluing the intermediate stably free modules all the way
down using Corollary 4.10, one can get a SFR for M.

• Finally, suppose M and M′′ verify that. This implies M′′ and M are finitely gen-
erated, and as they are Noetherian, M′ is also finitely generated. Now the result
follows by reducing, as done before, to the case in which the stably free dimension
of M is 0, so it is already stably free and we can use a SFR of M′′ and Corollary 4.10
to conclude that M′ admits a SFR.

4.3 Proof of the Hilbert-Serre Theorem

With all these previous results, we can finally prove the Hilbert-Serre Theorem, which
is a simple consequence of the following theorem:

Theorem 4.13. Let R be a commutative Noetherian ring and x a variable. Then every finitely
generated R-module admits a FR =⇒ every finitely generated R[x]-module admits a FR.

This is how:

Corollary 4.14. (Hilbert-Serre Theorem): If k is a field and x1, . . . , xn are independent variables,
then every finitely generated projective module over k[x1, . . . , xn] is stably free.

Proof. It follows from the previous theorem by simple induction: it is clear that a finitely
generated projective k-module is a finite-dimensional k-vector space, so it is naturally
finite free and thus stably free. As a field k is Noetherian, by the Hilbert’s Basis Theorem,
k[x1, . . . xr] is Noetherian ∀r ∈ N, so we can iterate this process by adding a new variable
at each step until we reach n, hence obtaining that every finitely generated projective
k[x1, . . . , xn]-module admits a FR and is thus stably free by Theorem 4.2.

To prove Theorem 4.13 we will use a tensor product argument at the end. We recall
that a flat module over a ring R is an R-module M such that taking the tensor product
over R with M preserves exact sequences. Also, when we use the tensor product with
R[x], the module obtained is naturally a R[x]-module by extension of scalars. We state the
following lemma, which will be apparent to those familiar with flat modules:
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Lemma 4.15. R[x] is a flat R-module and for any ideal I ⊂ R, I ⊗R R[x] ∼= I[x].

Proof. The first assertion is immediate for being R[x] R-free. The second follows from
tensoring the following short exact sequence with ⊗RR[x]

0→ I → R→ R/I → 0, (4.29)

and having in mind that R⊗R R[x] ∼= R[x] and R/I⊗R R[x] ∼= R[x]/IR[x] = R[x]/I[x].

The remaining pages of this chapter are devoted to the intricate proof of Theorem 4.13:

Proof. (Theorem 4.13): Let M be a finite R[x]-module. As we saw in Chapter 1, section 3
(Theorem 1.13), M admits a finite filtration:

M = M0 ) M1 ) · · · ) Mn = 0 (4.30)

with each Mi/Mi+1 isomorphic to R[x]/Pi for some prime Pi of R[x] ( Mn−1 is already
isomorphic to R[x]/P for some prime P). Applying Theorem 4.12 multiple times with the
short exact sequences of R[x]-modules

0→ Mn → Mn−1 → Mn−1/Mn → 0

. . .

0→ M1 → M0 → M0/M1 → 0

(4.31)

we obtain recursively that Mn−1, . . . , M0 = M will admit a FR if a R[x]-module of the
form R[x]/Pi for some prime Pi does. Thus, it suffices to prove it for M ∼= R[x]/P, with P
a prime ideal in R[x]. Now, in light of the exact sequence

0→ P→ R[x]→ R[x]/P→ 0 (4.32)

and Theorem 4.12 again, a R[x]-module M of this form will admit a FR if and only if P
(regarded as a R[x]-module) does, as R[x] clearly admits one (the trivial FR).
Observe that, with P prime in R[x], P ∩ R is prime in R (if for a, b ∈ R we have ab ∈
P ∩ R =⇒ ab ∈ P =⇒ a or b ∈ P (P prime) =⇒ a or b ∈ P ∩ R).

We will reason by contradiction- a rather long one, actually:
Suppose there is some M = R[x]/P which does not admit a FR, which happens iff P does
not admit a FR, by formula (4.32) and Theorem 4.12. Among all of these M we can select
one for which the intersection R ∩ P = p is maximal in R- otherwise we could obtain an
infinite chain · · · ( pi ( pi+1 ( . . . , in contradiction with R being Noetherian.
Define now R0 = R/p (so R0 is an integral domain and Noetherian) and P0 = P/pR[x](=
P/p[x]). By the Hilbert Basis Theorem, R0[x] is Noetherian, and P0 is naturally a R0[x]-
module with λ · x = λ · x, also finitely generated because P is an ideal of R[x], which is
Noetherian. All this implies that P0 is a Noetherian R0[x]-module.

Thus, let f1, . . . , fn be a finite set of generators for P0, and let f be a polynomial of
minimal degree in P0. If we take K0 the quotient field of R0 (recall that R0 is an integral
domain), then K0[x] is an Euclidean domain, and by the Euclidean algorithm we can write

fi = qi f + ri for i = 0, . . . , n (4.33)
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with qi, ri ∈ K0[x] and deg(ri) < deg( f ). If we take d0 the product of the denominators of
all the coefficients in qi, ri ∀i, then d0 6= 0 because R0 is a domain, and

d0 fi = q′i f + r′i (4.34)

where q′i = d0qi and r′i = d0ri all lie in R0[x]. Since deg( f ) is minimal in P0 and deg(r′i) =
deg(ri) < deg( f ) ∀i (d0 is an scalar), it follows that r′i = 0 ∀i so, as R0[x]-modules,

d0P0 ⊆ R0[x] f = ( f ) (4.35)

Now let N0 = P0/( f ), so N0 is a module over R0[x]. N0 may also be viewed as a module
over R[x] with λ · x = λ · x, case in which we will denote it by N.
Let d ∈ R be any element reducing to d0 mod p. Then d /∈ p, since d0 6= 0. As P0 is a
Noetherian R0[x]-module, N0 is also a Noetherian R0[x]-module, and again by section 1.3
(Theorem 1.13), it admits a finite filtration such that each N′i /N′i+1 factor module of the
filtration is isomorphic to some R0[x]/Q, where Q is an associated prime of N0. Let Q′i be
the inverse images of Qi in R[x] via the natural morphism R[x] → R0[x]. Then the Q′i are
prime in R[x], and it is not hard to see that they are precisely the associated primes of N
in R[x] (recall Corollary 1.14), and each contains pR[x] = p[x], by construction of N0. Since
d0 annihilates N0 (that is, d0N0 = 0), it follows that d annihilates N and therefore d lies in
every associated prime of N. As we took d /∈ p, the inclusion Q′i ∩ R ) p is strict and, by
the maximality property in the selection of P, it follows by the same sequence in (4.32) and
Theorem 4.12 that every one of the factor modules in this filtration of N admits a FR, and
by the same argument as in (4.31), it follows that N itself admits a FR as a R[x]-module.

Now we just have to apply Theorem 4.12 repeatedly to the following exact sequences:
As p is an ideal of a Noetherian ring, it is finitely generated and by hypothesis has a FR
has a R-module, say

0→ En → · · · → E0 → p→ 0 (4.36)

Via the tensor product with the flat R-module R[x] (Lemma 4.15), we may simply form
the R[x]-modules Ei[x] = R[x]⊗R Ei to obtain a exact sequence of R[x]-modules which are
actually R[x]-free, and thus we have a FR for R[x]⊗R p ∼= p[x] = pR[x] as a R[x]-module.
Considering R0[x] as an R[x]-module, from the exact sequence

0→ pR[x]→ R[x]→ R0[x]→ 0 (4.37)

we conclude that R0[x] also admits a FR.
Now the principal ideal ( f ) in R0[x], seen as a R[x]-module, is isomorphic to R0[x] via the
R[x]-morphism f 7→ 1 (recall (4.35)), and therefore ( f ) admits a FR. Theorem 4.12 applied
to the short exact sequence of R[x]-modules

0→ ( f )→ P0 → N → 0 (4.38)

shows that P0 admits a FR; and further applied to the short exact sequence

0→ pR[x]→ P→ P0 → 0 (4.39)

shows that P admits a FR, contradicting our assumption that P did not admit one! This
proves that every M = R[x]/P admits a FR, and our proof of Theorem 4.13 is done.



Chapter 5

Proof of the Quillen-Suslin
Theorem

In this chapter we will finally give a proof of the Theorem this whole work is about.
Now that we know that finitely generated projective modules over k[x1, . . . , xn] are stably
free, we will use one of their key characterizations given in Chapter 3: we will see that
any unimodular row ( f1, . . . , fm) with fi ∈ k[x1, . . . , xn] is completable- that is, it can be
extended to an invertible matrix with coefficients in k[x1, . . . , xn] (Proposition 3.11).
Curiously, the proof we will explain in this chapter is neither from Quillen nor Suslin-
it was found by Vaserstein only three months after the conjecture was solved in 1976, in-
spired by the proof of Suslin and using a previous result by Horrocks. It is so considerably
shorter and simpler than the demonstrations provided by the former two that it is usu-
ally referred to as the "8-line proof of the Serre’s conjecture", although we will pleasingly
spend some more pages to explain it in detail.
Also, we will need to prove the case in one variable before, to start the inductive argument
in our final demonstration. Fortunately, this case is quite straightforward, although it will
take us some time, as we will provide a constructive proof that will be relevant when we
discuss some algorithm aspects of the Quillen-Suslin Theorem in Chapter 6.

5.1 The case of one variable k[x]

It is well known that k[x] is a PID- moreover, it is an Euclidean domain, with the well-
known Euclidean algorithm of division of polynomials in one variable. In fact, one could
ignore the "completability" of a unimodular row f ∈ Umn(k[x]) and prove directly that
any finitely generated projective module over a PID must be free. This could be deduced
from the following theorem, that we will not prove:

Theorem 5.1. In a PID, any submodule of a free module is a free module.

Observe that, if we assume this theorem, it follows immediately that any finitely gen-
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erated projective module P is free. Indeed, it is clear that there exists an exact sequence

0→ Ker( f )→ Rn f−→ P→ 0 (5.1)

which splits, so P ↪→ Rn and is thus naturally isomorphic to a submodule of Rn, and
hence is free.

However, we will take a different approach to the case k[x], a more constructive one-
we will provide an algorithm which will show how to extend to an invertible matrix n× n
any unimodular row f ∈ Umn(k[x]) using the division algorithm, thus proving affirma-
tively that any stably free module (and thus every f.g. projective module by Corollary
4.14) over k[x] is free. It goes without saying that this process can be carried out computa-
tionally, and in fact it will appear again as a necessary algorithm in Chapter 6, so we will
explain it in detail.

So, assume that f = ( f1, . . . , fn) ∈ Umn(k[x]). This means that there do exist gi ∈ k[x]
such that ∑n

i=1 gi fi = 1, and so ( f1, . . . , fn) = (1) or, equivalently,

gcd( fn, gcd( fn−1, gcd( fn−2, . . . gcd( f3, gcd( f2, f1)) . . . ))) = gcd( f1, . . . , fn) = 1 (5.2)

Recall that the gcd of two polynomials in one variable always exists for being k[x] an
Euclidean domain, and is unique up to scalar multiplication. Also, recall that gcd( f , g)
can be computed by doing recursive divisions until we reach zero, with the gcd being the
last non-zero element in that process. The gcd of more than two polynomials is obtained
recursively with the formula (5.2), though the order doesn’t matter at all.

Now, recall that, at the end of Chapter 3, we saw that a unimodular row f ∈ Umn(R)
is completable ⇐⇒ f ∼GLn(R) e1, where e1 = (1, 0, . . . ) ∈ Rn. Note that, if f M = e1

with M ∈ GLn(R), then f = e1M−1, and so f is the first row of M−1, and thus finding M
is equivalent to completing f to an invertible matrix if we compute M−1 afterwards, for
example, using the adjugate formula (Remark 3.7). Thus, we will describe a way to obtain
a M ∈ GLn(k[x]) for which f M = e1. To do so, we will use what we call elementary
matrices:

Definition 5.2. In our context, an elementary matrix is a matrix with one of these three forms:

1) Eij(x), the identity matrix except for a y ∈ k[x] element in the entry ij, i 6= j.

2) Di(λ), a diagonal matrix with all ones except for a λ ∈ k\0 in the entry ii.

3) Pij, the identity matrix but with the rows (or columns) i and j permuted, i 6= j.

Example 5.3. Here are three examples of the three kinds of matrices in the case n = 3:

E12(x2 + 3x) =

 1 x2 + 3x 0
0 1 0
0 0 1

 D3(
3
4 ) =

 1 0 0
0 1 0
0 0 3

4

 P23 =

 1 0 0
0 0 1
0 1 0





5.1 The case of one variable k[x] 37

Remark 5.4. It is immediate to verify that these three kinds of matrices belong to GLn(k[x]), with
inverses Eij(−x), Di(

1
λ ) and Pij (itself) respectively in each case.

Remark 5.5. In general, the concept of elementary matrix refers only to the first kind of matrix
presented above. This is because they are the only ones which always have determinant 1. Note
that, in our case, Di is invertible because k is a field, but we could not define it over a more general
ring. The matrices Pij are usually omitted because they have determinant -1. Nevertheless, we will
include both kinds in our definition, as they will prove to be very useful in our case.

It is not hard to guess why these matrices are relevant- they encode the usual row
operations that can be done to f . That is:

f Eij(x) = ( f1, . . . , f j + x fi, . . . , fn)

f Di(λ) = ( f1, . . . , λ fi, . . . , fn)

f Pij = ( f1, . . . , f j, . . . , fi, . . . , fn) (with j > i, interchanged).

This proves that f is completable ⇐⇒ any of the f ′ obtained using this row operations
is completable, as they are done with matrices in GLn(k[x]). In our case, we will see that,
if f ∈ Umn(k[x]), we can obtain e1 directly using this elementary row operations, and so
f will be completable. This approach also has a remarkable consequence: we can "store"
all the multiplications by elementary matrices in the process, so at the end we will have
f M = e1, and to obtain the completion of f to an invertible matrix, M−1, one just has to
multiplicate the inverses of the stored elementary matrices (which have the simple form
of Remark 5.4) in the reverse order. This being said, we present here our algorithmic proof
using these row operations:

Theorem 5.6. Any unimodular row f ∈ Umn(k[x]) satisfies f ∼GLn(k[x]) e1.

Proof. (algorithmic):

1) We will start with f1 and f2. First, we bring to the first position the one with max-
imal degree, by permuting them, if necessary (we will always do this, to clarify the
explanation). If they have the same degree, no permutation is necessary.

2) If f2 has leading coefficient α 6= 1, we multiply f by D2(
1
α ), so it now has leading

coefficient 1. Again, this is just in order to clarify the explanation.

3) We start now the division algorithm: if r =deg( f1) and s =deg( f2), we can now get
f1 := f1 − LT( f1)xr−s f2 (by multiplying f by E21(−LT( f1)xr−s f2)). This reduces the
degree of f1 at least by one, and we obtain a new f1.

4) We repeat steps 1-3 until we get f1 = gcd( f1, f2) (which coincides with the gcd of the
original f1 and f2). This will always happen, as in the third step the degree of f1 always
decreases and, independently of how many times we do the steps, one will eventually
reach zero.

5) If f1 6= 1, we permute f3 (which has not intervened so far) with f2, and do again the
steps 1-4 until we get f1 = gcd( f3, gcd( f1, f2)).
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6) If f1 6= 1, we permute f4 with f2 and start the whole process again...

7) We do this with all the remaining fi.

By the end, we must for sure have f1 = 1, as gcd( f1, . . . , fn) = 1. This may have
happened well before having to do the process for all the fi. In either case, it is clear
that, as soon as f has the form f = (1, f ′2, . . . , f ′n), the last step is

8) Multiply f by E1i(− f ′i ) for each i, to obtain f = (1, 0, . . . , 0).

Though this algorithm may not be the most efficient one, it clearly works and gives a
constructive way to extend any unimodular row f to an invertible matrix, so our case in
one variable is done.

Remark 5.7. Note that the algorithm can be used with polynomial rows which are not unimodular,
that is, with gcd( f1, . . . , fn) = p(x) 6= 1, to reduce them to the form (p(x), 0, . . . , 0). In Chapter
6, section 2 we may found this situation, and we will use this algorithm exactly as it is described.

5.2 Horrock’s Theorem

Let us head now to our theorem in more than one variable. To do so, we will need
first another result, the Horrock’s Theorem, which proves that a unimodular row f always
satisfies f ∼GLn(R) e1 in the case in which R is a local ring and f has one component with
leading coefficient 1 (recall from Definition 1.5 that a local ring is a ring which only has
one maximal ideal). We state before two little remarks:

Remark 5.8. In the same spirit as in the case of one variable shown before, we can permute the
components of f or add a multiple g fi to f j (j 6= i), so f will be completable ⇐⇒ any one of
its transformations by these row operations is completable, which correspond to the matrices Eij(x)
and Pij introduced in the previous section. Observe that, as we are in a more general ring, we
will not use the matrices Di (Remark 5.5). Anyway, we will not need them, as, by hypothesis, one
component will have leading coefficient 1.

Remark 5.9. Recall from Remark 2.5 that, in a local ring (A,m), x /∈ m ⇐⇒ x is a unit.

With this in mind,

Theorem 5.10. (Horrock’s Theorem): Let (A,m) be a local ring and let A[x] be the polynomial
ring in one variable over A. Let f be a unimodular row in A[x]n such that some component has
leading coefficient 1. Then f is completable.

Proof. (Suslin): If n = 1 and 2 the theorem is obvious even without assuming that A is
local. Assume now n ≥ 3, and we will proceed by induction on the smallest degree d of
a component of f with leading coefficient 1. First we note that, by permuting if necessary
and by the Euclidean algorithm and row operations, we may assume that f1 has leading
coefficient 1, degree d and that def( f j)< d for j 6= 1. Since f is unimodular, there exists a
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relation ∑n
i=1 gi fi = 1. This expression actually shows that not all coefficients of f2, . . . , fn

can lie in the maximal ideal m because in this case, if we read that expression mod m[x],
we would have ∑n

i=1 gi fi = 1 = g1 f1 = 1, but this is impossible because f1 has leading
coefficient 1, and g1 f1 can not reduce to a constant mod m[x]. Without loss of generality,
we may assume, permuting if necessary, that some coefficient of f2 does not lie in m and
is so a unit, since A is local (Remark 5.8). Write now

f1(x) = xd + ad−1xd−1 + · · ·+ a0 with ai ∈ o,
f2(x) = bsxs + · · ·+ b0 with bi ∈ o, s ≤ d− 1,

so that some bi is a unit. Let a be the ideal generated by all the leading coefficients
of polynomials g1 f1 + g2 f2 of degree ≤ d − 1. Then a contains all the coefficients bi,
i = 0, . . . , s. One can see this by descending induction, starting with bs, which is obvious
(0 · f1 + 1 · f2), and then using repeatedly a linear combination like

xd−s f2(x)− bs f1(x) = (bs−1 − bsad−1)xd−1 + . . . . (5.3)

(and then by adding bsad−1xd−1 + . . . to (5.3), which will be of the form g1 f1 + g2 f2 by
descending induction). Therefore a contains a unit and is thus the total ideal A, so there
exists a polynomial g1 f1 + g2 f2 of degree ≤ d − 1 and leading coefficient 1. By row
operations, we may now get a polynomial of degree ≤ d− 1 and leading coefficient 1 in
the i-th place of f , for some i 6= 1, 2. We can now start the process all over again, ultimately
getting d = 0, case in which f has 1 in some component and all the others are in A, and it
is obvious that f ∼ e1 using elementary row operations. This concludes the proof.

Note that, for f ∈ A[x]n, we can write f = f (x), and there is a natural "constant" vector
f (0), formed by the constant coefficients. Implicitly in the proof of Horrock’s Theorem,
we get the following corollary:

Corollary 5.11. Let (A,m) be a local ring. Let f be a unimodular vector in A[x]n such that some
component has leading coefficient 1. Then f ∼ f (0) over A[x].

Proof. As there exists ∑n
i=1 gi fi = 1, there must be at least one constant term of some fi

which does not lie in the maximal ideal m and is thus a unit, so f (0) ∼ e1 (by elementary
row operations). By the proof provided before, f ∼ e1 and, by transitivity, f ∼ f (0).

5.3 The proof

Horrock’s Theorem being proven, we are interested in getting a similar descent over
non-local rings. To do so we just need the following two results, both generalizing the ar-
guments shown above. To prove them, it is necessary to recall the notions of multiplicative
subset and localization introduced in Chapter 1, section 2:

Lemma 5.12. Let R be an integral domain, and S a multiplicative subset. Let x, y be independent
variables (that is, there is no polynomial relation between them). Then, if f (x) ∼ f (0) over
(S−1R)[x], then there exists c ∈ S such that f (x + cy) ∼ f (x) over R[x, y].
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Proof. As R is an integral domain, S−1R is also an integral domain and so is (S−1R)[x].
Thus, N ∈ GLn((S−1R)[x]) ⇒ det(N) ∈ (S−1R)∗, and det(N(x)) is constant regarded as
a function in x. Now let M(x) ∈ GLn((S−1R)[x]) be such that f (x) = M(x) f (0). Then the
expression M(x)−1 f (x) is constant as a function in x, as M(x)−1 f (x) = f (0), and is thus
invariant under translation x 7→ x + y. Consider now the matrix

G(x, y) = M(x)M(x + y)−1. (5.4)

Then G(x, y) f (x + y) = M(x) f (0) = f (x). Also, we have G(x, 0) = Id, whence

G(x, y) = Id + yH(x, y), (5.5)

where H(x, y) has its coefficients in (S−1R)[x, y]. R being an integral domain, clearly there
exists c ∈ S such that cH has its coefficients in R[x, y] (the product of all the denominators,
for example). Then G(x, cy) also has its coefficients in R[x, y]. Since det(M(x)) is constant
in S−1R, it follows that det(M(x + cy)) is equal to this same constant and therefore that
det(G(x, cy)) = 1. Hence, there exists G(x, cy) ∈ GLn(R[x, y]) with G(x, cy) f (x + cy) =

f (x), which proves the lemma.

This lemma allows us to prove the equivalent of the Corollary 5.11 of the Horrock’s
Theorem for a general integral domain, our last but necessary step before proving the
Quillen-Suslin Theorem:

Theorem 5.13. Let R be an entire ring, and let f be a unimodular row in R[x]n, such that one
component has leading coefficient 1. Then f (x) ∼ f (0) over R[x].

Proof. Let J be the set of elements c ∈ R such that f (x + cy) is equivalent to f (x) over
R[x, y]. Lets see that J is an ideal:

• If c ∈ J and a ∈ R, replacing y by ay in the definition of equivalence shows that
f (x + cay) is equivalent to f (x) over R[x, ay], and thus over R[x, y] (as R[x, ay] ⊆
R[x, y]), so ac ∈ J.

• Analogously, if c, c′ ∈ J, f (x + (c + c′)y) is equivalent to f (x) over R[x, (c + c′)y],
and thus over R[x, y] (as R[x, (c + c′)y] ⊆ R[x, y]), so c + c‘ ∈ J.

Now let p be a prime ideal of R. By Corollary 5.11, we know that f (x) is equivalent to
f (0) over Rp[x], and by Lemma 5.12, it follows that there exists some c ∈ R and c /∈ p such
that f (x + cy) is equivalent to f (x) over R[x, y]. Hence J is not contained in p. Repeating
this argument ∀p ∈ Spec(R) shows that J is not contained in any maximal ideal, and is
thus the total ideal R. Hence, f (x + y) is equivalent to f (x) over R[x, y], so there exists an
invertible matrix M(x, y) over R[x, y] such that

f (x + y) = M(x, y) f (x). (5.6)

Since the homomorphic image of an invertible matrix is invertible, we have M(y) =

M(0, y) ∈ GLn(R[y]), and we can substitute x with a 0 in (5.6) to get

f (y) = M(y) f (0), (5.7)

which concludes the proof of the theorem.
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We can now see how this last result, together with the arguments used in our proof
of the Noether’s Normalization Theorem in Chapter 1 (section 4, Theorem 1.19, Remark
1.20), allow us to prove our desired theorem:

Theorem 5.14. (Quillen-Suslin Theorem): Let k be a field and let f be a unimodular row in
f [x1, . . . , xr]n. Then f is completable.

Proof. We proceed by induction on r. If r = 1, then we have k[x1], just one variable, and
this case was proved in the first section of this chapter, Theorem 5.6.
Take now f ∈ Umn(k[x1, . . . xn]), and assume that the theorem holds for r − 1 variables,
with r ≥ 2. We write

R = k[x1, . . . , xr−1]

We may view f as a vector of polynomials in the last variable xr, that is, over R[xr], and
we want to apply Theorem 5.13. Note that we will be able to do so if some component
of f has leading coefficient 1 in the variable xr. We reduce the theorem to this case as
follows. The proof of the Noether’s Normalization Theorem (Theorem 1.19, Remark 1.20)
shows that there exists a change of variables

yr = xr yi = xi − xmi
r (5.8)

with certain mi such that the polynomial vector g obtained by substitution

f (x1, . . . , xr) = g(y1, . . . , yr) (5.9)

has one component with yr-leading coefficient equal to 1. Now, by Theorem 5.13, there
exists a matrix N(y1, . . . , yr) invertible over R[yr] such that

g(y1, . . . , yr) = N(y1, . . . , yr)g(y1, . . . , yr−1, 0). (5.10)

As g(y1, . . . , yr−1, 0) is clearly unimodular and in k[y1, . . . , yr−1]
(n), it can be completed to

an invertible matrix by induction hypothesis. Doing this repeatedly concludes the proof
by induction and we are done.

So, with all the results proved previously in this work, it is clear that we can restate
Theorem 5.14 in more familiar words- particularly, in the way the Quillen-Suslin Theorem
is usually formulated:

Let k be a field. Then every finitely generated projective module over the polynomial ring
k[x1, . . . , xr] is free.



Chapter 6

Algorithms for the Quillen-Suslin
Theorem

We have seen that the Quillen-Suslin Theorem has the rather satisfying consequence
that every unimodular row f with its components in k[x1, . . . , xn] can be extended to an
invertible matrix. Though in Chapter 5 (section 1, Theorem 5.6) we explained in detail an
algorithm for doing so in the case of one variable k[x], the proof of the general case in
Chapter 5 (section 3) was not constructive at all. The goal of this chapter is to provide an
algorithm for the general case with k = C, that is, given f ∈ Umm(C[x1, . . . , xn]), finding
a way to extend it to an invertible matrix.

6.1 The paper by Logar and Sturmfels

The content of this chapter is extracted from a famous paper by A. Logar and B.
Sturmfels called Algorithms for the Quillen-Suslin Theorem. This paper is quite ambitious:
knowing, by the Quillen-Suslin Theorem, that projective modules over polynomial rings
are free, they provide algorithms for computing such a free basis for an arbitrary projective
module P over R := C[x1, . . . , xn] given in one of the following three ways:

(1) as a cokernel, i.e. we have an explicit exact sequence

Rm A−→ Rl → P→ 0

(2) as a column space, i.e. we have an explicit exact sequence

Rm A−→ P→ 0

(3) as a kernel of a l ×m-matrix A, i.e. we have

0→ P→ Rm A−→ Rl

42
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Like many articles dealing with algorithmic/ computational algebra, the paper relies heav-
ily on Gröbner basis techniques, in the sense that many of the steps of these algorithms
are thought to be carried out by using them- we recommend the reader who is unfamiliar
with these to read the introductory but illustrative exposition written by Sturmfels himself
[12], which provides a general idea on how do they work. Nonetheless, the tone of Al-
gorithms for the Quillen-Suslin Theorem is kept general on the whole, and not many details
are given on how to actually implement these techniques- the authors content themselves
with only specifying when a certain step of the process can be accomplished using Gröb-
ner basis, referring the reader to other papers where these particular techniques are more
explicit and detailed.

Finally, the paper remarks how polynomial projective modules and the problem of ex-
tending certain matrices to invertible matrices appear in some branches of applied math-
ematics, and how these algorithms have a number of interesting potential applications,
being control theory, the study of modules of splines (or piecewise polynomial functions)
over polyhedral cell complexes and computational geometry some of them.

6.2 Extension of unimodular rows to invertible matrices

However, the algorithms for the three cases described above are complex and studying
them here exceeds the aim of this chapter. Fortunately for us, a key subroutine for each
of them is an algorithmic and constructive proof of the following theorem, also present in
the paper, which should sound very familiar to us by now:

Theorem 6.1. (Unimodular row completion): Let f = ( f1, . . . , fm) ∈ Umm(C[x1, . . . , xn]).
Then there exists an invertible m×m-matrix U over C[x1, . . . , xn] such that f ·U = e1.

As U−1 has f as its first row, this is equivalent to giving a constructive way of extending
f to an invertible matrix (computing U−1 afterwards), so the result is quite interesting on
its own. The rest of this chapter will be devoted to understanding this algorithmic proof.
In general terms, it proceeds by induction on the number n of variables, and it consists of
two main parts. The first one is a "local loop" which generates solutions for finitely many
suitable local rings. In the crucial second phase, it passes from the local to the global by,
in some way, "patching together" the previously computed local solutions. In the spirit of
the paper, we will be more interested in the procedure than in its implementation, so we
shall just indicate with the upper index GB the steps that can be executed using Gröbner
basis, without entering in many details if not necessary.

First, we remark that it is computationally "cheap" to test whether a given polynomial
row is unimodular or not: as in this case the fi generate the total ring, ( f1, . . . , fm) is
unimodular iff the reduced Gröbner basis of the ideal ( f1, . . . , fm) is {1}. Also, the case
n = 1 was solved in Chapter 5, section 1 (Theorem 5.6), and the case m = 2 is easy as
well- we just have to computeGB h1, h2 ∈ C[x1, . . . , xn] such that h1 f1 + h2 f2 = 1 and take
U =

( h1 − f2
h2 f1

)
. For our proof with n ≥ 2 and m ≥ 3 we have to introduce two new tools,
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being the first one a simple consequence of the Nullstellensatz, though we provide a much
more straightforward proof:

Lemma 6.2. If the ideal (g1, . . . , gr) generates the whole ring, the ideal (gn
1 , . . . , gn

r ) also generates
the whole ring ∀n ∈N.

Proof. As we have an expression like ∑r
i=1 higi = 1, also (∑r

i=1 higi)
rn = 1rn = 1, and

expanding the sum in the left hand side all its terms contain at least one power gn
i , so it

can be rewritten in the form ∑r
i=1 h′ig

n
i = 1 and our claim follows.

Secondly, we state some properties of the resultant of two polynomials in several vari-
ables. For f , g ∈ C[x1, . . . , xn−1][t], their resultant with respect to t is defined as the deter-
minant of their Sylvester matrix (with respect to t). It is a polynomial in k[x1, . . . , xn−1],
and it can be expressed as a linear combination of f and g. It satisfies Res( f , g, t) = 0 iff
f , g have a common factor in k[x1, . . . , xn−1, t] which has positive degree in t.
In general, one has to be cautious with substituting c ∈ C[x1, . . . , xn−1] before or after
computing the determinant, as it can give different results. However, if c does not vanish
the first coefficient of f , one has, for h = Res( f , g, t) ∈ C[x1, . . . , xn−1]:

h(c) = 0 ⇐⇒ Res( f (c, t), g(c, t), t) = 0 (6.1)

The observant reader will notice that the demonstration of the general case below
is greatly inspired by the arguments presented in section 5.3, when we gave our non-
constructive proof of the Quillen-Suslin Theorem and its necessary previous results:

Proof. (Theorem 6.1, algorithmic):
We will proceed by induction on the number n of variables. Assume that n ≥ 2 and

m ≥ 3 and that we know how to find such a matrix for n− 1 variables. Using Noether’s
Normalization TheoremGB (Theorem 1.19, Remark 1.20), we can change variables and
permute the fi’s in order to have f1(x1, . . . , xn−1, t) monic in t = xn. Now we abbreviate
R := C[x], where x = (x1, . . . , xn−1), and let k := 0.

At this point we enter the local loop. Let us discuss the first loop through it:
Set k := k + 1 = 1, take any a1 ∈ Cn−1 and let M1 := {g ∈ R| g(a1) = 0}. Note
that M1 is a maximal ideal of R. Now define f̄i(t) := fi(a1, t) for i = 1, . . . , m. Since
f (a1, t) = ( f̄1, f̄2, . . . , ¯fm) is clearly a unimodular row over C[t], we have

(p) + ( f̄1) = C[t], (6.2)

where p generates the principal ideal ( f̄2, . . . , ¯fm) in C[t]. Note that, as p = gcd( f̄2, . . . , ¯fm),
we can use the Euclidean algorithm (section 5.1, Theorem 5.6, Remark 5.7) to find it and
also store the (m− 1)× (m− 1)-matrix E(t) over C[t] such that

( f̄2(t), . . . , ¯fm(t)) · E(t) = (p(t), 0, . . . , 0). (6.3)

It follows from the definition of the f̄i that fi(x, t)− f̄i(t) ∈ M1[t]. This and (6.3) imply

f (x, t) ·
(

1 0
0 E(t)

)
= ( f1(x, t), p(t) + q2(x, t), q3(x, t), . . . , qm(x, t)) (6.4)
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with q2, . . . , qm elements of M1[t] and q2(a1, t) = 0.

We next computeGB the resultant r1(x) of the two polynomials f1 and p + q2 with
respect to the variable t, and findGB v, w ∈ R[t] such that

v(x, t) f1(x, t) + w(x, t)(p(t) + q2(x, t)) = r1(x) (6.5)

As f1 is monic in t, by (6.1) the resultant has the property that r1(x0) = 0 if and only if
there exists t0 ∈ C with f1(x0, t0) = p(t0) + q2(x0, t0) = 0. In view of this observe that,
if r1(a1) = 0, we would have f1(a1, t̄) = f̄1(t̄) = 0 = p(t̄) for some t̄ ∈ C, and any linear
combination of p and f̄1 would be a multiple of (t− t̄), in contradiction with (6.2), where
we saw they generate C[t]. This implies r1(a1) 6= 0, hence r1 is a unit in the corresponding
local ring RM1 = { f

g | f , g ∈ R, g(a1) 6= 0} and we set r−1
1 = 1

r1
1
. Now, note that the

m×m-matrix

U1(x, t) :=
(

1 0
0 E(t)

)


vr−1
1 −(p + q2) 0 . . . 0

wr−1
1 f1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1




1 0 −q3 . . . −qm
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


(6.6)

is clearly invertible over RMk [t] (the two matrices on the right have determinant 1, while
the first one is invertible by construction) and, by (6.4), (6.5) and (6.6), we have

f (x, t) ·U1(x, t) = (1, 0, . . . , 0) (6.7)

Finally, if r1 ∈ C, we exit the local loop; if not, we return to its beginning.

How does the procedure change for the following iterations of the main loop? We
could want to find (and store) more matrices Ui(x, t), but certifying some extra conditions.
Fortunately for us, the process is almost identical: the only changes are, if assume we have
already gone through it k times and we set now k := k + 1,

1) At the beginning we must findGB a common zero ak ∈ Cn−1 of the polynomials
r1, r2, . . . , rk−1 (remember that in the first iteration we took a1 ∈ C arbitrary), and take
Mk := {g ∈ R| g(ak) = 0}, obviously maximal too.

2) At the end of the case k = 1, we exited the loop if r1 ∈ C. Now we have to checkGB

whether the ideal (r1, . . . , rk) is equal to the whole ring R. If yes, then we exit the local
loop; if not, we return to its beginning and start the procedure all over again.

Observe that in each loop, also the first one, we test whether the {r1, . . . , rk} generate
the whole ring R. This is because, for the second part of our algorithm, we are really
interested in obtaining an expression like (6.8). As ri(ak) = 0 ∀i < k and rk(ak) 6= 0, this
guarantees rk /∈ (r1, . . . , rk−1) in each step, and the termination criterion "(r1, . . . , rk) = R"
will be satisfied after a finite number of iterations by Hilbert’s basis theorem. Then, for our
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m = number of elements in the unimodular row, the powers {rm
1 , . . . , rm

k } also generate
the unit ideal in R by Lemma 6.2, and we can findGB elements g1, . . . , gk ∈ R such that

g1rm
1 + g2rm

2 + · · ·+ gkrm
k = 1 in R. (6.8)

We arrive now to the second part of the algorithm. In the following we abbreviate
Ui(t) := Ui(x, t). We introduce now two new variables s and z, and define the matrices

∆i(s, z) := Ui(s) ·U−1
i (s + z) for i = 1, . . . , k. (6.9)

The matrix ∆i(s, z) has entries in RMk [s, z] and is clearly still invertible over this ring.
Remember that the coefficients of the matrices Ui(t) are fractions (they belong to RMk [t])
and, by construction, ri ∈ R is a common denominator for Ui(s) and Ui(s + z), as ri is
independent of the variable. The inverse of Ui(s + z) equals its adjugate up to scalar, and
thus simple computation shows that rm−1

i is a common denominator for Ui(s + z) and, in
consequence, rm

i is a common denominator for ∆i(s, z).
Now expand ∆i(s, z) as a polynomial in z with matrix coefficients over RMk [s]:

∆i(s, z) = ∆i0(s) + ∆i1(s)z + ∆i2(s)z2 + · · ·+ ∆idi
(s)zdi . (6.10)

It follows directly from (6.9) and (6.10) that ∆i0(s) = ∆i(s, 0) equals the identity matrix Im.
Replacing z by zrm

i we get

∆i(s, zrm
i ) = Im + rm

i ∆i1(s)z + r2m
i ∆i2(s)z2 + · · ·+ rdim

i ∆id1(s)z
di . (6.11)

Since rm
i is a common denominator for ∆i(s, z), it is a common denominator for all the

summands in the expansion (6.10). Hence all summands on the right hand side of (6.11)
are denominator-free, and ∆i(s, zrm

i ) is an invertible matrix over the polynomial ring R[s, z].
Observe furthermore that, having in mind (6.7) and (6.9), we have

f (s) · ∆i(s, zrm
i ) = f (s + zrm

i ) in R[s, z]. (6.12)

Finally, define

U(t) := ∆1(t,−tg1rm
1 ) · ∆2(t− tg1rm

1 ,−tg2rm
2 ) · ∆3(t− tg1rm

1 − tg2rm
2 ,−tg3rm

3 )·

. . . · ∆k(t−
k−1

∑
i=1

tgirm
i ,−tgkrm

k ), (6.13)

where the gi are the polynomials of the expression (6.8). These matrices in (6.13) are
obtained from ∆i(s, zrm

i ) by polynomial specializations R[s, z] → R[t], so they are all in-
vertible over R[t] and, consequently, U(t) is invertible over R[t]. By repeated application
of (6.12) and in light of the expression (6.8), we get

f (t) ·U(t) = f (t−∑k
i=1 tgirm

i ) = f (0).

Now, the row f (0) ∈ Rm = C[x1, . . . , xn−1]
m is unimodular in n− 1 variables. By induction

on the number of variables, the algorithm can be carried out reducing all the variables and
our constructive proof of Theorem 6.1 is done.



Appendix A

Basic concepts and definitions

The following notions are fundamental in modern algebra and will appear constantly
throughout the whole text. The results will be stated without proof:

A.1 Modules

Modules are ’vector spaces over rings’, i.e., the concept of a module generalizes that of
a vector space, replacing the underlying field by a general ring:

Definition A.1. Let R be a (non necessarily commutative) ring. A left R-module M is an
abelian group (always written additively) together with a map R × M → M, (a, x) 7→ ax (the
scalar multiplication) satisfying:

1. a(x + y) = ax + ay, ∀a ∈ R, ∀x, y ∈ M

2. (a + b)x = ax + ay, ∀a, b ∈ R, ∀x ∈ M

3. (ab)x = a(bx), ∀a, b ∈ R, ∀x ∈ M

4. 1Rx = x, ∀x ∈ M, where 1R is the multiplicative identity in R

Remark A.2. A right R-module is defined nearly the same way, but with ’scalars’ operating on
the right side, so we write xa instead of ax, where a ∈ R and x ∈ M, in the conditions above. The
only remarkable change is in 3), where we would obtain 3′) (ab)x = b(ax), ∀a, b ∈ R, ∀x ∈ M
(with the right side notation, x(ab) = (xa)b, the usual associative law).

Remark A.3. The distinction between left and right modules is necessary if we don’t assume R to
be commutative. However, over commutative rings, there is no difference between both definitions,
and we simply call them R-modules (our case).

From now on R will denote a commutative unitary ring.
In the same spirit as for vector spaces, we can define for any module M the natural
concepts of a submodule, generating set and linear independence.
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Definition A.4. If U is a submodule of an R-module M, then the factor group M/U is also an
R-module, namely the factor module M module U. If x ∈ M and z̄ denotes the residue class of
any z ∈ M, then ax̄ = āx, which is well defined.

Also:

Definition A.5. We say that an R-module M is finitely generated if there exist m1, . . . , mn ∈ M
such that for any x ∈ M, there exist a1, . . . , an ∈ R with x = a1m1 + · · ·+ anmn.

However, in contrast with vector spaces, modules do not necessarily have a basis, that
is, a linearly independent set of generators. This motivates the notion of a free module:

Definition A.6. We say that an R-module F is free if it admits a basis. In this case, if E is a basis
of F, then every element f ∈ F can be written uniquely as

∑
e∈E

aee, ae ∈ R, ae = 0 for almost all ae (i.e. all except a finite number of them),

and F is isomorphic (Definition A.10) to R(E) (direct sum of |E| copies of R).

Finally:

Definition A.7. Let (Mi)i∈I be a family of modules, not necessarily finite.

• Their direct sum, written ⊕
i∈I

Mi

is defined to be those families (xi)i∈I where xi = 0 for all but finitely many i ∈ I.

• Their direct product, written
∏
i∈I

Mi

is defined to be all families (xi)i∈I .

• Let I be some set and M a module. Then

M(I) :=
⊕
i∈I

Mi and MI := ∏
i∈I

Mi, where Mi = M ∀i ∈ I

Remark A.8. Both the direct sum and the direct product of R-modules have an obvious structure
of R-module. Also, for I finite, the two definitions coincide.

A.2 Module homomorphisms

Homomorphisms of modules, i.e. linear maps, are defined as for vector spaces:

Definition A.9. Let M and N be R-modules. A map f : M → N is called an R-module
homomorphism or R-linear if:

f (x + y) = f (x) + f (y), f (ax) = a f (x),

where x, y ∈ M and a ∈ R.
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The concepts of mono/ epi/ iso /endo /automorphism between modules are defined in
the obvious way. In this sense:

Definition A.10. M and N are isomorphic (M ∼= N) if there is an isomorphism f : M → N. In
this case, there exists an isomorphism f−1 : N → M such that f−1 ◦ f = idM, f ◦ f−1 = idN .

It’s easy to see that:

Proposition A.11. Given a R-module homomorphism f : M→ N, Ker( f ) and Im( f ) (naturally
defined) are submodules of M and N, respectively.

The usual Homomorphism Theorem and Isomorphism Theorems hold. We state the
first one, commonly used in our text:

Theorem A.12. (Homomorphism Theorem): Let f : M→ N be a module homomorphism and
U ⊂ Ker( f ) a submodule. Then f factorizes through the canonical map π : M → M/U, i.e. f is
the composition of linear maps

M π−→ M/U
f ′−→ N

where f ′ is (well-)defined by f ′(x̄) = f (x) (we say f ′ is induced by f ). Especially, f induces an
isomorphism M/ Ker( f ) ∼= Im( f ).

At this stage:

Proposition A.13. Let M, N be R-modules. The set of all R-module homomorphisms from M to
N, denoted by HomR(M, N), is an abelian group, addition defined by ( f + g)(x) := f (x)+ g(x).

Moreover, if R is commutative, HomR(M, N) has the structure of an R-module: (a f )(x) :=
a f (x). (Caution: in the case R is not commutative, the earlier map is not always R-linear).

Remark A.14. HomR(Rm, Rn) can be identified with the additive group of all m × n-matrices
with entries in R, addition defined componentwise.

Finally, "chains" and commutative diagrams of modules and homomorphisms will
appear a lot. We state now some definitions involving them and a very famous result:

Definition A.15. Let (Mi)i∈I be a (not necessarily finite) family of modules.

• A sequence of linear maps between the Mi

· · · → Mn+1
fn+1−−→ Mn

fn−→ Mn−1 → . . .

such that Im( fn+1) ⊂ Ker( fn) ∀n is called a complex of modules.

• When we have the equality Im( fn+1) = Ker( fn) ∀n, we call the complex an exact sequence.

• An exact sequence of the form 0 → M
f−→ N

g−→ L → 0 is called a short exact sequence.
Here exactness means: f is injective, g is surjective and Im( f ) = Ker(g).
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Lemma A.16. (The Five Lemma): Suppose we have the following commutative diagram of mod-
ules and homomorphisms, where the rows are exact

M1 //

ϕ1

��

M2 //

ϕ2

��

M3 //

ϕ3

��

M4 //

ϕ4

��

M5

ϕ5

��
N1 // N2 // N3 // N4 // N5

Then:
1. If ϕ2, ϕ4 are injective and ϕ1 surjective =⇒ ϕ3 is injective.
2. If ϕ2, ϕ4 are surjective and ϕ5 injective =⇒ ϕ3 is surjective.
3. If ϕ2, ϕ4 are isomorphisms, ϕ1 is surjective and ϕ5 is injective =⇒ ϕ3 is an isomorphism.

A.3 Noetherianity

Noetherian rings and modules play a huge role in commutative algebra and in this
work, as polynomial rings with a finite number of variables are Noetherian:

Definition A.17. We say that a ring R is Noetherian if it satisfies the ascending chain condition.
That is, every chain of ideals {Ii}i∈N with Ii ⊆ Ii+1 eventually stabilizes (∃In tq Ii = In∀i ≥ n).

Remark A.18. It is not hard to show that this is equivalent to the fact that every ideal of R is
finitely generated.

Remark A.19. One can see easily that any field k is Noetherian, as it only has two ideals, the zero
ideal and the total ideal.

This is probably the most famous result involving them:

Theorem A.20. (Hilbert’s Basis Theorem): If R is a Noetherian ring and x a variable, then
R[x] is a Noetherian ring.

Corollary A.21. If k is a field, then k[x1, . . . , xn] is a Noetherian ring.

The concept of Noetherianity can be generalized in a natural way to modules:

Definition A.22. For a commutative ring R, we say that a R-module M is Noetherian if it satisfies
that every chain of submodules {Mi}i∈N with Mi ⊆ M and Mi ⊆ Mi+1 eventually stabilizes.

Remark A.23. Again, this is equivalent to the fact that every R-submodule of M, M itself in-
cluded, is finitely generated.

Remark A.24. It follows that if f : M → N is an homomorphism between Noetherian modules,
Ker( f ) and Im( f ) are again Noetherian modules and thus finitely generated.

Finally, this proposition and its consequence will be used extensively in our work:

Proposition A.25. If R is a Noetherian commutative ring and M a finitely generated R-module,
then M is Noetherian.

Remark A.26. The proposition above shows that every finitely generated projective or stably free
k[x1, . . . , xn]-module is Noetherian.



Appendix B

Proof of Proposition 2.14

This appendix has the purpose of providing a comprehensive proof of the interesting
Proposition 2.14, stated in the second section of Chapter 2. The demonstration exposed
here is mainly extracted from the famous book Algèbre Commutative by Bourbaki.

In its full generality, the Proposition says:

Proposition B.1. Suppose a finitely generated R-module P satisfies:

(i) Pp is Rp-free ∀p ∈ Spec(R).

(ii) With rp := rankRp(Pp), the function p 7→ rp is locally constant in the topological space
Spec(R) ( every point of Spec(R) admits a neighbourhood in which this function is constant).

Then P is a finitely generated projective R-module.

As it was anticipated in Chapter 2, its proof is difficult, but delightful. Although we
will expose many of the previous notions and results necessary to fully understand it, the
most elementary/ standard ones will be left out and just stated below due to lack of space.
Thus, we will assume that the reader is at least familiar with these well-known facts:

– An R-module M is projective iff HomR(M,−) is exact (section 2.1).

– For any R-module M, the functor HomR(M,−) is left-exact if and only if the original
sequence is exact.

– The functor of localization commutes with finite direct sums (Lemma 2.11)

– A complex being exact is a local property- that is, N′ → N → N′′ is exact if and only
if N′p → Np → N′′p is exact ∀p ∈ Spec(R).

– An R-morphism being injective/ surjective/ bijective is also a local property- that is,
u : M→ N is a mono/epi/isomorphism iff up : Mp → Np is ∀p ∈ Spec(R).

– For M an R-module, S−1M = 0 ⇐⇒ S ∩ AnnR(M) 6= ∅

– With M and N R-free modules and u : M → N an homomorphism, u is an isomor-
phism⇔ M and N have the same rank and u is surjective ( ∼ Proposition 3.5).

– The basic properties of the Zariski topology in Spec(R).
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We start with what it means for a R-module to be finitely presented:

Definition B.2. We say that an R-module M is finitely presented if there exists an exact sequence
Rm → Rn → M→ 0, for suitable natural numbers m and n.

Intuitively, a finitely presented module is a finitely generated module with a finite
number of relations on some generating set. It is immediate that a projective R-module P
is finitely generated iff it is finitely presented. One direction is trivial, while the other can
be deduced from the the split R-morphism Rn � Ker(ϕ), where ϕ : Rn � P.

Now, Lemma B.4 shows us that, in some way, Hom and localization commute with
each other in the case M is finitely presented, but first:

Remark B.3. For a R-module M, any R-linear morphism ϕ : R → M is completely determined
by ϕ(1), thus Hom(R, M) ∼= M.

Lemma B.4. Let M be a finitely presented R-module and N a R-module. Then, for a multiplica-
tively closed subset S of R we have

S−1 HomR(M, N) ∼= HomS−1R(S
−1M, S−1N) (B.1)

Proof. Take a presentation Rm → Rn → M → 0. This yields an exact sequence 0 →
HomR(M, N) → HomR(Rn, N) → HomR(Rm, N) and, using Remark B.3 and Lemma
2.11, we have HomR(Rn, N) ∼= ⊕n

i=0N, so we obtain the exact sequence

0→ HomR(M, N)→ ⊕n
i=0N → ⊕m

i=0N (B.2)

and applying the exact functor of localization, we obtain

0→ S−1 HomR(M, N)→ S−1(⊕n
i=0N)→ S−1(⊕m

i=0N)

= 0→ S−1 HomR(M, N)→ ⊕n
i=0S−1N → ⊕m

i=0S−1N
(B.3)

In parallel, applying first S−1 to the finite presentation and then Hom, we obtain

0→ HomS−1R(S
−1M, S−1N)→ ⊕n

i=0S−1N → ⊕m
i=0S−1N (B.4)

and, as the last S−1R-morphism in both exact sequences (B.3) and (B.4) is the same,
by exactness the first S−1R-module of both sequences is its kernel and we have that
S−1 HomR(M, N) and HomS−1R(S

−1M, S−1N) are isomorphic as S−1R-modules.

In section 1.2 we only explained localization at a prime p, as it is the only one we use
in the main exposition, but there obviously exist plenty of other multiplicatively closed
subsets not of the form R\p. For example, one could consider what is called the local-
ization at f , constructed by taking S f = { f n, n ∈ N}, which is obviously multiplicatively
closed, with f 0 = 1. This kind of localization will be crucial in the following.

Recall that the Zarisky topology is defined on Spec(R) as the one for which its closed
sets are given by V(I) = {p ∈ Spec(R)|p ⊇ I, I ⊆ R ideal}. Thus, a basis of open sets is
given by the sets

D( f ) = {p ∈ Spec(R)| f /∈ p, f ∈ R}, (B.5)
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Remark B.5. Note that the Zariski topology on Spec(R) is always quasi-compact- that is, every
open covering of Spec(R) contains a finite open subcovering of it: if one takes a family of basic
open sets D( fα) covering Spec(R), the family fα must then generate the unit ideal, and so a finite
number of these generate R.

Proposition B.6. Suppose we have f1, . . . , fn ∈ Spec(R) such that Spec(R) = ∪n
i=1D( fi) and

0→ N′ → N → N′′ → 0 a complex of R-modules. Then, if 0→ N′fi
→ N′fi

→ N′fi
→ 0 is exact

for all fi, 0→ N′ → N → N′′ → 0 is exact.

Proof. Note that the hypothesis Spec(R) = ∪n
i=1D( fi) implies that every p ∈ Spec(R) is

contained in some D( fi), so fi /∈ p and S fi
⊆ R\p. As localization is an exact functor,

the complex being exact at each S fi
implies that, localizing further, the induced sequence

0 → N′p → Np → N′′p → 0 is exact for all p ∈ Spec(R) and, as being exact is a local
property, the claim follows.

Our final previous result is Lemma B.7, quite straightforward:

Lemma B.7. Let M and N be R-modules such that N is finitely generated. Let u : M→ N be an
R-morphism and p ∈ Spec(R). Then, if up : Mp → Np is surjective, there exists f ∈ R\p such
that u f : M f → N f is surjective.

Proof. Take Q the cokernel of u. As localization is exact, for any g ∈ R the cokernel of
ug (resp. up) is Qg (resp. Qp), so by hypothesis Qp = 0. As N is finitely generated, Q is
finitely generated, which implies that there exists some f ∈ R\p such that f Q = 0 and so
Q f = 0, proving that u f is surjective.

All this being said, we can finally prove Proposition B.1. We will divide its complex
proof in two steps, Propositions B.8 and B.9. In the first one, more technical, we kind of
"reduce" the problem to a finite family of fi ∈ R whose associated open sets in the Zarisky
topology cover all Spec(R). In the second one, we make use of this powerful setting to
finally prove our assertion.

Proposition B.8. Under the hypotheses of Proposition B.1, there exists a finite family f1, . . . , fn ∈
R generating the unit ideal such that Pfi

is R fi
-free of finite rank ∀i.

Proof. Let m be a maximal ideal of R; write rm = n and let {xi}1≤i≤n be a Rm-basis of
Pm. Multiplying them by invertible elements of Rm if necessary, we can assume the xi
are canonical images of elements pi ∈ P, the pi forming thus a finite generating set for P.
Now let {ei}1≤i≤n be the canonical basis of Rn and u : Rn → P the homomorphism such
that u(ei) = pi for 1 ≤ i ≤ n. As um is clearly surjective and P is finitely generated, it
follows from Lemma B.7 that there exists f ∈ R\m such that u f : Rn

f → Pf is surjective.
Now, it is clear that u f g = (u f ) g

1
is also surjective for all g ∈ R\m and, as the rank is

locally constant, there exists g ∈ R\m satisfying rp = n for p ∈ D(g). Thus, replacing f by
f g, f := f g, we may assume that rp = n ∀p ∈ D( f ).
In this context, up : Rn

p → Pp is a surjective Rp-morphism and Pp and Rp are both free Rp-
modules of the same rank, which implies up is bijective for all p ∈ D( f ). Now let p′ be any
prime ideal of R f and let p be its inverse image in R under the canonical mapping R→ R f ;
this way, (Rn

f )p′ and (Pf )p may be identified with Rn
p and Pp localizing further (under the
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canonical isomorphisms), and so (u f )p′ is identified with up and is consequently bijective.
As this is valid for all prime ideals in R f and being bijective is a local property, u f is thus
bijective and Pf is a free R f -module of finite rank.

The whole argument above holds for any maximal ideal in R, so we have that ∀m ∈
Max(R), there exists f ∈ R\m such that Pf is a free R f -module of finite rank.
If we consider now E = { f ∈ R| Pf is a finitely generated free R f -module}, the previous
argument shows that E is not contained in any maximal ideal of R, hence E generates the
whole ring R so, by Remark B.5, there exists a finite family { fi}1≤i≤n of elements of E and
ai ∈ R such that ∑n

i=1 ai fi = 1, which concludes the proposition.

Finally,

Proposition B.9. If f1, . . . , fn ∈ R is a family like the one in Proposition B.8, then P is a finitely
generated projective module.

We just have to show that HomR(P,−) is exact. Let 0 → N′ → N → N′′ → 0 be
any short exact sequence of R-modules. By hypothesis, there exist f1, . . . , fn such that
Spec(R) = ∪n

i=1D( fi) and Pfi
is R fi

-free of finite rank. Now, as localization is exact, we
have

0→ N′fi
→ N fi

→ N′′fi
→ 0 (B.6)

exact ∀ fi, and as Pfi
is R fi

-free and thus projective for all fi, we obtain a short exact
sequence

0→ HomR fi
(Pfi

, N′fi
)→ HomR fi

(Pfi
, N fi

)→ HomR fi
(Pfi

, N′′fi
)→ 0 (B.7)

∀ fi. By Lemma B.4, the exact sequence of (B.7) is equivalent to an exact sequence

0→ HomR(P, N′) fi
→ HomR(P, N) fi

→ HomR(P, N′′) fi
→ 0 (B.8)

∀ fi. Finally, applying Proposition B.6, we obtain that

0→ HomR(P, N′)→ HomR(P, N)→ HomR(P, N′′)→ 0 (B.9)

is exact and thus P is projective, which concludes the proof of Proposition B.9 and Propo-
sition B.1 at once.
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