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(RI) barriers in plants

Pre-zygotic: - pre-pollination barriers
- pollen recognition

Post-zygotic: - polyploidy
- large chromosome rearrangements
- epistatic interactions between parental alleles
(Dobzhansky-Muller genetic incompatibilities)




bzhansky-Muller (D-M) model of genetic incompatibilities
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THE PROBLEM

HE causation of hybrid sterility has long been one of the unsolved
problems of biology. To date, probably the greatest advance in this

field has been made by FEprrLEY who discovered a failure of the meiotic
chromosome pairing in the sterile hybrids between moths of the genus
Pygaera. This finding has since been amply corroborated by other investi-
gators in sterile hybrids both in animals and in plants. Naturally enough
it became tempting to suppose that the failure of the meiotic pairing is
the cause of hybrid sterility. The restitution of the normal meiotic pairing
as well as of fertility following the reduplication of the chromosome com-
plement in allotetraploid hybrids seems to be further evidence in favor of
this view. And yet, this view proves to be inadequate as a general explana-
tion of hybrid sterility. Two difficulties deserve particular attention. First,
some hybrids arc sterile despite the fact that the meiotic pairing in their
gametogenesis is apparently normal (MicraerLis 1933 in Epilobium,
Doszuansky 1934 in some crosses in Drosephile pseudoobscura); while in
other sterile hybrids the gametogenesis does not reach the meiotic stages
(KEerKi1s 1933,in Drosophila melanogasier X D, simulans). Second, the failure
of the meiotic pairing in sterile hybrids is usually attributed to an “incom-
patibility” of the chromosomes of species or races entering the cross.
This, clearly, is a restatement of facts and not a causal explanation. It
remains possible that suppression of meiotic pairing may be caused by
different mechanisms in different cases, and that sometimes there is no
cause and effect relation between the failure of pairing and the sterility.
In my previous publications (Dopzransky 1933, 1934) a hypothesis
was suggested according to which there exist at least two different types
of hybrid sterility—the chromosomal type and the genic type. The chro-
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model of genetic incompatibilities
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The study of Rl in plants: from crops to model species

Blat, Trigo, Wheat

Problem for the development
of new varieties (by crossing).
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Euphytica 16 (1967) : 134-162




Seed and Agrochemical Industry Market distribution

La major part de la industria de les llavors (biotecnologia vegetal) és farmacéutica.
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The study of Rl in plants: from crops to model species

Blat Arabidopsis thaliana

Uk-1/Uk-3 F, hybrid

Bomblies et al., 2007 PLoS Biology

Ler/Kas-2 F, hybrid

Euphytica 16 (1967) : 134-162

Alcazar et al., 2009 PNAS 106:334-339
Alcazar et al., 2010 Nature Genetics 42:1135-1139



Reproductive isolation between Landsberg erecta (Ler) and Kashmir-2 (Kas-2)
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Causal loci for the Ler/Kas-2 hybrid incompatibility
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Molecular models of pathogen recognition

Plant immune system: Plant immune system
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Molecular models of pathogen recognition

Plant immune system: Plant immune system
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RPP1-like genes: what do they do?

The Plant Cell, Vol. 10, 1847-1860, November 1998, www.plantcell.org © 1998 American Society of Plant Physiologists

Three Genes of the Arabidopsis RPP1 Complex Resistance
Locus Recognize Distinct Peronospora parasitica
Avirulence Determinants

Miguel A. Botella,' Jane E. Parker,? Louise N. Frost,2 Peter D. Bittner-Eddy,® Jim L. Beynon,®
Michael J. Daniels,? Eric B. Holub,® and Jonathan D. G. Jones?:2

aSainsbury Laboratory, John Innes Centre, Colney Lane, Norwich, NR4 7UH, United Kingdom
bHorticulture Research International, Wellesbourne, Warwickshire, CV35 9EF, United Kingdom
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Ler/Kas-2 incompatibility requires EDS1 and salicylic acid (SA) competence
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EDS1: enhanced disease susceptibility 1
SID2: isochorismate synthase 1




Yes! we can Ups! we can’t.

restore keep resistance
growth against pathogens.



ial microRNA (amiRNA) silencing of RPP1-like Ler genes

. _ non-transformed
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RPP1-like locus
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Variable transgene expression in different Col RPPI-like Ler [jnag

PR1 is a marker for SA-pathway activation



R3 overexpression (> 3-fold) induces incompatible phenotypes



Overexpression of other RPP1-like genes in Col-0 does not induce incompatible phenotypes.




R3 overexpressor lines are resistant to Hyaloperonospora arabidopsidis (Noco)



R3 expression conditions the balance between growth and disease resistance

GROWTH
RESISTANCE

R3

TO GROW OR TO RESIST

but we want to GROW and TO RESIST



... but R3 is not sufficient to trigger incompatibility with Kas-2 when expression is at
wild-type levels

Co-action of two or more RPP1-like Ler genes
is required for incompatibility.




Screen for suppressors of Ler/Kas-2 incompatibility (sulki) mutants

25.000 seeds Ler/Kas-2 NIL
l EMS (mutagenesis)

M, Population

l

M, Population
20 sulki mutants identified

lx 5 backcrosses to NIL

11 intragenic mutations, 10 allelic
BC.F,

Whole genome sequencing

lllumina _ _
9 extragenic mutations

Next generation sequencing



Screen for suppressors of Ler/Kas-2 incompatibility (sulki) mutants
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Screen for suppressors of Ler/Kas-2 incompatibility (su/ki) mutants

RPP1-like locus
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Not only the phenotype is restored, but also the transcriptional (RNA-seq)
and primary metabolism (GC/MS) changes induced by the hybrid incompatibility.




Screen for suppressors of Ler/Kas-2 incompatibility (sulki) mutants

RPP1-like locus
sulki2-1 sulkil-1/10 o,
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Directed mutagenesis by CRISPR/Cas9
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CRISPR/CAS9 - based mutagenesis of RPP1-like Ler genes in Ler/Kas-2 NIL
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T: TIR (Toll Interleukin Receptor), N: NB (Nucleotide binding), L: LRR (Leucine Rich Repeat).



Current genetic model
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CRISPR/Cas9 or sulki mutations suppressing incompatibility do not compromise Hpa
disease resistance

CRISPR/Cas9 mutants

sulki mutants

edsl, sid2, NahG



Yes! we can Yes! we can

restore maintain resistance
compatibility against pathogens.

Random and CRISPR/Cas9 directed mutagenesis enables the suppression of
Dobzhansky-Muller genetic incompatibilities



) model of genetic incompatibilities
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Main conclusions

Speciation events can be triggered by single nucleotide mutations.
The hybrids exhibit fitness loss associated with constitutive activation of defense.
Suppression of defense rescues compatibility, but induces susceptibility.

Through random or directed (when genes are known) mutagenesis, artificially-
induced mutations can be selected that restore compatibility at no cost on defense.

This should enable the development of new varieties for which speciation (triggered
by D-M incompatibilities) is a barrier.



