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Abstract

The ability to translate genetic information into functional proteins is considered a landmark in 

evolution. Ribosomes have evolved to take on this responsibility and, although there are some 

differences in their molecular make-up, both prokaryotes and eukaryotes share a common 

structural architecture and similar underlying mechanisms of protein synthesis. Understanding 

ribosome function and biogenesis has been the focus of extensive research since the early days of 

their discovery. In the last decade however, new and unexpected roles have emerged that place 

deregulated ribosome biogenesis and protein synthesis at the crossroads of pathological settings, 

particularly cancer, revealing a set of novel cellular checkpoints. Moreover, it is also becoming 

evident that mTOR signaling, which regulates an array of anabolic processes, including ribosome 

biogenesis, is often exploited by cancer cells to sustain proliferation through the upregulation of 

global protein synthesis. The use of pharmacological agents that interfere with ribosome 

biogenesis and mTOR signaling has proven to be an effective strategy to control cancer 

development clinically. Here we discuss the most recent findings concerning the underlying 

mechanisms by which mTOR signaling controls ribosome production and the potential impact of 

ribosome bio-genesis in tumor development. This article is part of a Special Issue entitled: 

Translation and Cancer.
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1. Introduction

The complexity of life has been shaped by a large number of environmental and intrinsic 

factors, which have influenced the development of intricate biological mechanisms to adapt 

and to respond to external stimuli and internal signals [1]. Nutrient availability, diet 
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composition, developmental programs and many other elements have molded different 

species by means of selective processes that have provided a unique fitness to their 

respective niches. Notably, the maintenance of unicellular organisms and higher metazoans 

requires the same basic needs of nourishment, growth and reproduction. Indeed, bacteria 

utilize many of the same complex biological mechanisms employed by mammalian cells. 

Based on these observations many fundamental cellular questions have been addressed in 

simple model organisms. Indeed these more simple systems initially taught us a number of 

basic phenomena required for the maintenance of all species, including that nearly all 

physiological activities of a living organism depend on its ability to convert genomic 

information into functional proteins. The importance of protein synthesis becomes even 

more obvious in proliferating cells, which require a continuous supply of structural and 

catalytic proteins in order to feed, grow and duplicate. Similarly, cancer cells, characterized 

by uncontrolled proliferative potential, rely on the sustained upregulation of anabolic 

pathways, including the synthesis of nascent proteins. At the center of the protein synthetic 

supply chain is the ribosome, composed of 4 non-coding RNAs (rRNA) and ~80 distinct 

ribosomal proteins (RPs) [2], a molecular machine responsible for the conversion of 

information encoded by nucleic acids into functional proteins [3]. Of note, the ability of a 

cell to increase the rate of protein synthesis upon physiological demand, is largely mediated 

at the level of ribosome biogenesis [4]. This response is accomplished by a complex 

integrated, and not yet completely resolved, molecular signaling network. Moreover, 

ribosome biogenesis itself is a huge anabolic investment, a highly coordinated multistep 

process, involving more than 200 molecular components [5, 6]. Ribosome biogenesis is 

spatially and temporally organized, with quality control checkpoints to ensure the fidelity of 

synthesis and assembly of ribosomal subunits at different stages of their generation [2]. All 

three RNA polymerases, I II and III, contribute to the production of nascent ribosomes, by 

transcribing the different structural and catalytic molecular components required for their 

assembly [7]. The 47S precursor rRNA is transcribed by RNA polymerase I in the nucleolus 

and then processed by a specific set of enzymes and small non-coding RNAs into mature 

18S, 28S and 5.8S rRNA [8]. In contrast, 5S rRNA, synthesized by RNA polymerase III in 

the nucleus, must be first exported to the cytoplasm, processed, reimported to the nucleus 

and then to the nucleolus before being assembled into a nascent ribosomal subunit [9]. In 

contrast, RNA polymerase II is in charge of transcribing the subset of mRNAs that encode 

for RPs as well as the enzymes and small non-coding RNAs required for the processing of 

both the 40S and 60S ribosomal subunits [10]. RPs, themselves, are first translated in the 

cytoplasm and then like 5S rRNA shuttled to the nucleus and then to the nucleolus, where 

their specific association with nascent 47S rRNA is required for the processing and 

maturation of the 40S and 60S ribosomal subunits [11]. Given the considerable number of 

components and events involved in ribosomal biogenesis, it is clear that for such a complex 

process to efficiently respond to extrinsic demands, ribosome bio-genesis has to rely on the 

harmonic coordination among all different parts of the machinery, both in terms of 

stoichiometry and assembly. In this regard, over the last decade a growing body of evidence 

has supported the concept that multiple pathways modulate ribosome biogenesis in response 

to external stimuli [4] and that an impairment that leads to either hypo- or hyper-ribosome 

biogenesis is closely monitored by an intrinsic checkpoint, which is elicited when this 

delicate equilibrium is altered [12]. Moreover, most if not all of the enzymatic and structural 
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protein components that sustain ribosome biogenesis, are upregulated in cells, which 

overexpress or express deregulated protooncogenes including Myc, Ras, PI3K, AKT and the 

mammalian Target of Rapamycin (mTOR) [13–15]. Recent studies suggest that many of the 

signaling pathways utilized by these proto-oncogenes converge on mTOR, which acts as a 

key nexus to integrate their signals with the nutrient and energy status of the cell, in order to 

control cellular protein biosynthetic capacity. Novel observations have also revealed that 

RPs and rRNAs have unexpected extra-ribosomal functions, which monitor the status of the 

ribosomal apparatus in human pathological conditions including Diamond Blackfan Anemia 

(DBA), 5q− Syndrome as well as other “Ribosomopathies” [16]. Indeed hypomorphic 

lesions in RPs or monoallelic deletions lead to the upregulation of p53, which is argued to be 

the cause of many of these pathologies, rather than the impairment of global protein 

synthesis [17]. Indeed, these same components may participate in monitoring 

hyperactivation of ribosome biogenesis, such as in the case of Myc or Ras driven tumors. In 

this review we will cover the most recent findings with respect to (i) mTOR-signaling in 

ribosome biogenesis, (ii) the mechanisms controlling RP synthesis during this response, (iii) 

targeting the mTOR pathway in cancer and (iv) the role of RPs and noncoding rRNAs in 

extra ribosomal cell cycle checkpoints in disorders characterized by RP deficiencies and the 

onset of cancer.

1.1. mTOR and the control of ribosome biogenesis

In an effort to identify the underlying mechanism by which the antibiotic rapamycin 

inhibited cell growth, the Target of Rapamycin (TOR) was discovered in an elegant genetic 

study in Saccharomyces cerevisiae, where FKBP (FK506 binding protein), a proline/

isoleucine isomerase, was recognized as a critical component of a rapamycin gain-of-

function inhibitory complex with TOR1 and TOR2 [18]. Subsequently TOR1 was cloned 

and characterized as a phosphatidylinositol kinase in Saccharomyces cerevisiae [19]. Shortly 

after the mammalian homologue, mammalian Target of Rapamycin (mTOR) was purified 

and cloned in four other laboratories [20–23]. Although mTOR belongs to the 

phosphatidylinositol 3-kinase-related protein kinase, subsequent studies in mammalian 

systems showed that mTOR was a protein rather than a lipid kinase [24,25]. Since then 

considerable efforts have been invested in understanding the functions, mechanisms and 

contexts where this pivotal regulator of cellular metabolism exerts its effects. Many proteins 

have been found associated with mTOR, and distinct components define two mTOR protein 

complexes, mTOR Complex1 (mTORC1) and mTORC2 [26]. Common partners are found 

in both complexes, including mammalian lethal with SEC13 protein 8 (mLST8) [27] and the 

inhibitory protein DEP domain-containing mTOR-interacting protein (DEPTOR) [28], 

whereas specific components, differentiate the two complexes in terms of target specificity 

and sensitivity to external stimuli, such as Regulatory-associated protein of mTOR 

(RAPTOR) and Proline-rich AKT1 substrate 1 (PRAS40), in the case of mTORC1, or 

Rapamycin-insensitive companion of mammalian target of rapamycin (RICTOR) and 

mSIN-1 in the case of mTORC2 [29]. Although it has been argued that rapamycin is 

selective for mTORC1 and not mTORC2, recent studies provide evidence that it can also 

bind mTORC2 when combined with one of the novel mTOR ATP-site competitive 

inhibitors [29].
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The number of signaling pathways branching from mTORC1 and mTORC2, the cascade of 

events which control both complexes and the feedback mechanisms between effectors, have 

revealed an intricate network of regulatory events [30]. Seminal studies first in yeast and 

drosophila [31,32], then in mice, have demonstrated that mTOR is essential for cell growth 

and proliferation, as mTOR knockout mouse embryos fail to progress beyond the early step 

of pre-implantation, due to a defect in blastocyst inner-cell-mass proliferation and tropho-

blast differentiation [33,34]. Importantly, rapamycin administration to wild type blastocysts 

partially recapitulates the phenotype of mTOR−/− embryos, which suggested that loss of 

mTORC1 might be the culprit [33]. This was also supported by the effects of RAPTOR 

deletion, which recapitulated the phenotype of mTOR loss in mouse development [35]. The 

time at which mTORC1 comes into play during mouse development reflects a specific 

energetic need of the blastocyst, which at the early steps of embryogenesis is dependent on 

amino acids as an energy source. Of note, genetic ablation of RICTOR in the mouse 

unraveled a differential role for mTORC2, which is required at a later stage of gestation as 

embryos die at E10.5. In the same study Guertin et al. determined that the mLST8, although 

shared by both mTORC1 and mTORC2 complexes, has a more profound role in maintaining 

the functional and physical integrity of mTORC2, as confirmed by the finding that 

mLST8−/− mice die at the same stage as RICTOR null mice [35].

The two key substrates downstream of mTORC1 are the RP S6 kinases (S6K1/2) and the 

protein initiation factor 4E binding proteins (4E-BP1/2/3) [26]. Genetic ablation of the S6Ks 

or the 4E-BPs in mice have revealed specific roles in glucose and insulin homeostasis [36–

39], adipogenesis [40,41] and neurogenesis [42–46]. Moreover biochemical and cell biology 

approaches have deepened our understanding on basic cellular processes mediated 

downstream of the S6Ks and the 4E-BPs. Here we have focused on the role of these 

downstream effectors in protein synthesis and ribosome biogenesis [30].

1.1.1. S6Ks: control of protein synthesis and ribosome biogenesis—
Phosphorylation of S6K1 on T389 by mTORC1 creates a docking site for the 3-

phosphoinositide-dependent protein kinase 1 (PDK1), allowing phosphorylation at T229, 

resulting in S6K1 activation [47,48]. With respect to the control of translation it has been 

suggested by Holz et al. that S6K1 associates with eukaryotic Initiation Factor-3 (eIF3) at 

the 5′ m7G cap of the mRNA, in an inactive state [49]. It is important to note that initiation 

of translation is thought to be the most rate-limiting step of protein synthesis [50]. Following 

mitogen or amino acid stimulation, mTORC1 is recruited by eIF3 to the site of translational 

initiation, which is composed of multiple components required for initiation of protein 

synthesis, including the 40S subunit, and is referred as the 43S Pre-Initiation Complex. Here 

mTORC1 activates S6K1, which in turn is argued to dissociate from the 5′ m7G cap and 

phosphorylate key targets, including 40S RPS6, eIF4B, and programmed cell death protein 4 

(PDCD4). EIF4B, in its phosphorylated state, binds eIF4A at the Pre-Initiation Complex and 

stimulates its mRNA helicase activity, which is important for efficient translation of mRNAs 

with a highly structured 5′ untranslated regions (5′UTRs) [50] (Fig. 1). However, subsequent 

studies have shown that mTORC1 is recruited to the lyso-some by the Ras-Related GTPases 

(RAG), where it is activated by the small GTPase Ras homologue enriched in brain (Rheb) 

Gentilella et al. Page 4

Biochim Biophys Acta. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[51] (see, below). How lysosomal mTORC1 localization is integrated with the model of 

protein synthesis initiation proposed by Holz et al. [49], has yet to be elucidated.

The role of S6K1 in m7G cap-dependent translation is not limited to eIF4B. EIF4A, who 

interacts with both eIF4G and PDCD4, is an indirect target of S6K1. When cells are devoid 

of a mitogenic input, PDCD4 binds to eIF4A hampering its association with eIF4G. Dorrello 

et al. have demonstrated that mitogen stimulation leads to PDCD4 degradation, which is 

triggered by S6K1-mediated phosphorylation at serine 67 (S67). Phosphorylation at this site 

leads to the recruitment of E3-ubiquitin ligase SCFTRCP to PDCD4, followed by PDCD4 

ubiquitination and degradation [52]. This releases eIF4A, allowing it to bind to eIF4G at the 

Pre-Initiation Complex and promote the activation of protein synthesis [52]. S6K1 also plays 

an important role in the elongation phase of protein synthesis, which mediates the rate of 

translation of an mRNA, directly affecting the amount of nascent protein over time. The 

activity of the eukaryotic elongation factor-2 (eEF2), which catalyzes the GTP-dependent 

tRNA translocation step during elongation, is suppressed by eEF2 kinase (eF2K) 

phosphorylation. In turn, in a rapamycin-sensitive manner, activated S6K1 can 

phosphorylate and inhibit eEF2K, increasing the rate of eEF2-mediated translation [53] (Fig. 

1).

One of the major downstream anabolic targets of the mTORC1 pathway is increased 

ribosome biogenesis. It is clear that S6K1 can contribute at the level of RP synthesis due to 

its general impact on translation. However, a number of studies show that it can directly 

impact rRNA synthesis. At one level it was recently shown that S6K1 can mediate increased 

pyrimidine biosynthesis, through phosphorylation of a novel substrate, the carbamoyl-

phosphate synthetase 2 aspartate transcarbamylase, and dihydroorotase (CAD) complex, 

which catalyzes the first three steps of de novo pyrimidine biosynthesis [54,55]. In an 

anabolically growing cell the biggest consumer of pyrimidines is rRNA synthesis (Fig. 1) 

[56]. Moreover, Meyer et al. have shown that the mTORC1/S6K1 axis, through an 

undefined mechanism, activates transcription initiation factor 1A (TIF-1A), an indispensable 

component of the RNA polymerase I complex, which drives rRNA transcription under 

favorable growth conditions [57]. In a separate study Hannan et al., have used reporter 

constructs that mirror the transcriptional activity of rDNA locus, and have demonstrated that 

proliferating cells require mTORC1 and S6K1 activity to boost the demand for increased 

rDNA transcription, and that this event is tightly linked to the phosphorylation of Upstream 

Binding Factor (UBF) at the rDNA locus [58]. Finally, S6K1/2 were shown to be required 

for the transcription of a number components involved in ribosome biogenesis in a 

starvation-re-feeding experimental paradigm in mouse liver, although the underlying 

mechanism that controls this regulatory loop has not been defined [59]. Thus, mTORC1 

through S6K1/2 can impact ribosome biogenesis at multiple levels of RP and rRNA 

production. However, which of the two biosynthetic pathways has a more profound impact 

on ribosome biogenesis? While direct evidence has linked S6K activity and rRNA synthesis, 

this link is less clear for 5′TOP mRNA translation. Although 5′TOP translational regulation 

does not appear to be altered in an S6K1/2−/− genetic background [38], the many protein 

synthetic mechanisms in which S6K1 is implicated may impact 5′TOP mRNA translation, 

since it is accountable for about 20% of total cellular mRNAs.
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1.1.2. 4E-BPs: control of translation and ribosome biogenesis—5′ m7G cap-

dependent translation is the most utilized mechanism of protein synthesis initiation and is 

shared by the vast majority of cellular mRNAs [50]. The early steps of this process involve 

the assembly of a multiprotein complex, termed eIF4F, at the 5′ m7G cap of the mRNA. 

EIF4E plays an essential role in the complex by independently binding both the 5′ m7G cap 

and eIF4G, the latter serving as a scaffold for the binding of the 40S ribosomal subunit, 

eIF4A, the MAP kinase signal-integrating kinases (MNK1/2) and the Poly A Binding 

Protein (PABP) [50]. In contrast, the ability of eIF4E to bind to eIF4G is dictated by the 4E-

BPs, which compete for the binding of 4E at the same site that eIF4G binds, ablating the 

assembly of the eIF4F complex and inhibiting mRNA translation. However, both the 

phosphorylation status and the abundance of the 4E-BPs dictate their ability to suppress 

translation [50]. When hyper-phosphorylated by mTORC1 the binding of the 4EBPs to 

eIF4E is disrupted [60,61]. mTORC1 controls 4EBPs activity by multiple site hierarchical 

phosphorylation of at least five residues that are essential for relieving the inhibitory binding 

of 4E-BP to eIF4E [62–64]. Intriguingly, mTORC1 signaling sustains its impact on global 

protein synthesis by exerting opposite effects on its two most characterized substrates, the 

S6Ks and the 4E-BPs, an activator and an inhibitor of this response, respectively. 

Importantly, 4E-BP1/2 double knockout MEFs grow at the same rate as the parental wild 

type MEF, however their rate of growth, unlike their wild type counterpart, is not effected 

by pharmacological or genetic inhibition of mTORC1 [65]. Since ribo-some biogenesis 

defects are mirrored by inhibition of cell proliferation, this suggests that in 4E-BP1/2 

deficient cells, ribosome production remains unaltered. Indeed acute inhibition of mTOR, by 

ATP-site competitive inhibitors, severely compromises ribosome production. In this regard 

it should be noted that rapamycin, an allosteric inhibitor of mTOR binds at the FKBP/

rapamycin-binding (FRB) domain, just upstream of the kinase domain [66]. Thus although it 

is a potent inhibitor of the S6K1 T389 phosphorylation, it does not completely suppress or 

sustain 4E-BP dephosphorylation [67–69].

In an attempt to identify mRNAs that may escape rapamycin inhibition, Hsieh et al. 

discovered 144 translationally regulated transcripts that were more selectively suppressed by 

ATP site inhibitors [70]. Strikingly, the majority of this subset of mRNAs falls in a family of 

mRNAs, which include the RPs, termed 5′ Terminal Oligopyrimidine tract (5′ TOP) 

mRNAs, characterized by a polypyrimidine tract at their 5′ m7G cap transcriptional start site 

[71] and under the translational control of mTORC1 [72,73]. Employing an analogous 

approach involving a different mTOR ATP-site competitive inhibitor, coupled to ribosome 

profiling, Thoreen et al. came to a similar conclusion [74]. Of note, in both studies, 

overexpression of dominant-negative form of 4E-BP [70] or 4E-BP deletion [74] relieved 

the translational inhibition of the mTOR ATP-site competitive inhibitors. This observation 

led to the conclusion that suppression of the 4E-BP branch of mTORC1 signaling pathway 

is a permissive prerequisite for RP translation and for the production of ribosomes (see 

below).

1.1.3. Other mTOR-dependent mechanisms—Unlike the 47S rRNA precursor, which 

gives rise to 28S, 18S and 5.8S rRNA, 5S rRNA is transcribed in the nucleus by RNA 

polymerase III. Maybe not unexpectedly mTORC1 has been directly implicated in the 
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regulation of RNA polymerase III. By employing a phosphoproteome approach to cells 

treated with an mTOR ATP site competitive inhibitor, Maf1, was identified as a target of 

mTORC1 [75]. Maf1 is a known repressor of RNA polymerase III transcription, and its 

phosphorylation at S75 by mTORC1 at 5S rDNA and tRNA loci, relieves this inhibitory 

loop and stimulates transcription. Interestingly mTORC1 is tethered to RNA polymerase III 

promoters by interacting with TFIIIC [76]. Although ribo-some biogenesis appears to be 

largely regulated by the mTORC1, rather than mTORC2, it should be noted that Zinzalla et 

al. have coupled mTORC2 activation with the physical interaction of mature ribosomes 

[77]. In proliferating cells mTORC2 promotes AKT signaling and, as a consequence, 

activated AKT is known to sustain survival pathways. This mechanism is of particular 

importance in cancer settings harboring either PI3K gain-of-function mutations or PTEN 

loss-of-function mutations [77]. In this regard, AKT signaling not only activates ribosome 

bio-genesis via mTORC1 (see below), but it is also required for RNA polymerase II 

transcriptional elongation and for cooperation with c-Myc, a master regulator of all three 

RNA polymerases [78].

1.2. RP synthesis and ribosome biogenesis

For ribosome biogenesis, the fact that ~80 distinct RPs are required for the maturation of the 

two subunits and that they can represent up to 20% of the total mRNA in the cell, 

underscores an intimate interdependence between ribosome biogenesis and protein 

synthesis. Given the central importance of protein synthesis, it is reasonable to hypothesize 

that translation of RP mRNAs should occupy a hierarchical layer of common control distinct 

from other mRNAs. As described above, this assumption has been validated by the 

identification of the 5′TOP at the transcriptional start sites of RP mRNAs [71,79]. In earlier 

studies it was demonstrated that addition of rapamycin to mitogen stimulated cells 

selectively inhibited 5′TOP mRNA translation [72]. Moreover, further studies employing 

either a wild-type or mutated 5′TOP demonstrated that the effects of rapamycin on 

translation were dictated by an intact 5′TOP and that this effect was mediated downstream 

of mTORC1 by S6K1, based on results obtained with either a rapamycin resistant or a 

dominant negative allele of the kinase [72]. However, it was later found that mouse embryo 

fibroblasts from mice deficient for S6K1/2, were not affected in 5′TOP mRNA translation, 

suggesting compensatory mechanisms [38]. Mutation of RPS6 phosphorylation sites 

demonstrated that altering one of the multiple substrates of S6K1/2 was also permissive for 

5′TOP translational regulation, however other substrates were not considered [80]. As 

mentioned above two independent groups have shown by global ribosome profiling that, 

upon acute mTOR inhibition, 4E-BPs, through its interaction with eIF4E are critical for 

5′TOP translation [70,74]. The inhibitory role of 4E-BPs on the assembly of eIF4G1 at the 

m7G cap of mRNAs appears to be sufficient to inhibit the early step of 5′TOP translation. 

However, the interactions between the 4E-BPs and eIF4E, and eIF4G1 and eIF4E, are 

common players utilized by a wide spectrum of cell transcripts for translational initiation. 

Moreover, although their role in 5′TOP translation is necessary, it may not assure 

specificity. In addition, the 5′TOP mRNAs are highly abundant transcripts and their 

selective inhibition of translation by the 4E-BPs, could be explained by the number of reads 

in the ribosome profiling analyses, as previously discussed [81]. Consistent with such an 

explanation, overexpression of 4E was reported to have no effect on 5′TOP translation [82]. 
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From the studies of Damgaard et al., it is clear that 5′ TOP translation may require other 

molecular components [83]. They demonstrated that when cells are placed in unfavorable 

growth conditions, such as amino acid deprivation, translation of RPs are inhibited by means 

of RNA binding proteins TIA-1 and TIAR, through a GCN2-mediated mechanism [83]. 

Again, mTORC1 inhibition may operate as a permissive mechanism in this setting, as a 

constitutively active Rheb mutant rescued the amino acid-mediated translational repression 

[83] (Fig. 2). Of note co-knockdown of TIA-1 and TIAR by Sabatini's group did not rescue 

the pharmacological inhibition of mTORC1 over 5′TOP translation, excluding an 

implication of these players and potentially suggesting that other actors might come into 

play when mTOR activity is halted [74].

Other potential candidates have also recently arisen. In an attempt to identify targets of 

microRNA-10a, Orum et al. showed that this non-coding RNA retains the ability to bind in a 

non-canonical manner to the RP mRNAs just downstream of the 5′TOP motif and to 

stimulate their translation [84]. Competitive inhibition or overexpression of microRNA-10a 

either diminished or sustained RP synthesis, respectively and consequently de novo 

synthesis of ribosomes and global protein synthesis. In line with these observations, the 

same experimental setting reflected the ability of mir10a to induce oncogenic transformation 

[84]. However, a better characterization on the underlying mechanisms is required to 

understand the role of mTORC1 signaling in mir-10a-regulated ribosome biogenesis and 

transformation, potentially offering a novel therapeutic window. In this regard mir-10a 

expression appears to counteract the effect of amino acid starvation over RP translation, and 

it has been hypothesized that mir-10a association with the 5′TOP competes for the binding 

site of TIA-1 and TIAR [85] (Fig. 2). However, it should be noted that others showed that 

depletion of Drosha or Dicer, two enzymes required for microRNA maturation, had no 

effect on 5′ TOP mRNA translation [86]. Again, this observation suggests that the 

underlying network connecting translational regulation of RPs, mTOR signaling and 

microRNA might be more complex than originally thought.

Finally, in a recent phospho-proteome screen for mTORC1 candidate substrates another 

target emerged that could potentially connect 5′TOP translation to mTOR signaling, the 

RNA binding protein LARP1, belonging to the La-related family of proteins [87,88]. Two 

studies have pointed out a specific role of LARP1 in 5′TOP biology. While LARP1 has a 

basal affinity for the poly A of all mRNAs, Aoki et al. have observed that only 5′ TOP 

mRNAs steady state levels are affected by LARP1 expression [89]. It is still debated 

whether LARP1 interacts directly with poly A tail or utilizes PABP as a specific companion 

to associate with poly A+ transcripts. In this regard Tcherkezian et al. have verified that 

LARP1 is associated with eIF4E utilizing the 5′ m7G cap bound to sepharose in the presence 

of RNAse, by its co-immunoprecipitation in the eIF4F complex. Moreover the interaction 

correlated positively with mTORC1 activation state [90]. Stable depletion of LARP1 in 

HEK293 cells resulted in less association of 5′TOP mRNAs with polysomes when compared 

to control cells [90]. This data suggests that LARP1 could be a translational activator of 

5′TOP mRNAs. However, LARP1 depletion is also accompanied by a drop in 5′TOP 

mRNA levels, an effect that Tcherkezian et al. did not observe [90]. Hence it is still 

unresolved which of the two mechanisms prevails and whether the change in polysomal 
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distribution is a consequence of the fall in 5′TOP mRNA total levels (Fig. 2). Despite this 

lack of knowledge, the direct interaction of LARP1 with raptor positions it in a unique 

branch of the mTORC1 signaling pathway, compatible with the observation that rapamycin 

is able to inhibit 5′TOP translation. However, uncoupling the 5′TOP- vs. non-5′TOP-

specific functions of LARP1 will be critical in understanding the mechanisms that mediate 

RP synthesis and ribosome biogenesis. Moreover, the importance of nascent 5′TOP 

translation may also play a critical role in cell cycle checkpoint, which monitors the status of 

ribosome biogenesis, as described below.

1.3. mTOR pathway and cancer

In most solid tumors the mTORC1 pathway has been found to be up-regulated, consistent 

with the number of tumor suppressors monitoring this signaling pathway [30]. The 

molecular network upstream mTORC1 is an intricate complex of multiple signaling 

components that integrate extracellular signals and intracellular cues. Growth factors such as 

IGF and insulin, which signal through either PI3K and/or RAS, eventually converge on and 

inhibit a negative regulator of mTORC1 the Tuberous Sclerosis Complex (TSC1/2-

TBC1D7) [91]. Inhibition is mediated by TSC2 phosphorylation at distinct sites by either 

PKB/Akt or the mitogen activated protein kinase (MAPK) and ribosomal S6 kinase (RSK), 

respectively [26]. TSC1/2 act as a tumor suppressor complex, which is mutated in a rare 

multisystem, autosomal dominant disorder in both children and adults, characterized by the 

formation of benign tumors that in rare cases can lead to metastatic tumors of the lung [92]. 

Downstream the GTPase stimulating activity of TSC2, drives the small GTPase Rheb into 

the inactive GDP-bound state, preventing it from directly binding and activating mTORC1 

[26]. Rheb is constitutively localized to the lysosomal membrane, whereas mTORC1, 

through raptor is recruited to this location by the RAG GTPases. Thus activating mutations 

in key components of the Ras/MAPK or PI3K/Akt pathways drives constitutive mTORC1 

signaling. In this regard, many tumors associated with either PI3K gain-of-function 

mutations or PTEN loss-of-function mutations, stimulate the AKT/mTORC1 regulatory axis 

[93]. Accordingly, an important numbers of PI3K/Akt and mTORC1 pathway inhibitors 

have been developed and investigated as cancer therapeutics [94]. In the recent years, the 

allosteric mTORC1 inhibitor rapamycin (everolimus) has been approved for advance kidney 

cancer, subependymal giant cell astrocytoma (SEGA), pancreatic neuroendocrine tumor and 

for breast cancer in post-menopausal women with advanced hormone-receptor positive, 

HER2-negative type cancer, in conjunction with aromatase inhibitor. As in the case of the 

latter cancer indication, combination therapies including everolimus and/or dual mTOR 

inhibitors show promise in cancer trials [94,95]. However, as with other targeted-therapies, 

drug resistance develops with time and the aim now becomes to detect the cancer cell's 

oncogenic addiction profile, to circumvent resistance [96]. Among other ribosomal-

biogenesis regulating molecules, the RNA binding protein LARP1 was recently shown to 

promote the stability of mTOR mRNA and sustain downstream mTOR signaling, a 

mechanism that appears to correlate with cancer progression as shown in human specimens 

from cervical and non-small cell lung cancers [97]. Similar evidence has been also observed 

in hepatocellular carcinoma [98]. The anabolic and catabolic processes regulated by 

mTORC1 span from protein, ribosome, lipid and nucleotide biosynthesis to autophagy and 

cell survival, respectively. Moreover it appears that many tumor types are addicted to high 
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rates of ribosome biogenesis and protein synthesis. Seminal studies by Ruggero and 

collaborators have demonstrated that restoring physiological levels of protein synthesis 

capacity in an Eμ-Myc-lymphoma mouse model, by crossing these mice with RPL24+/−, 

strongly reduces lymphomagenesis and extend the lifespan and disease-free survival of the 

Eμ-Myc mice [99]. 5′ m7G cap-dependent translation, which is usually suppressed during 

mitosis, is abnormally upregulated in Eμ-Myc B cell lymphocytes, compromising the 

physiological switch to m7G cap-independent translation, which is critical for progression 

through mitosis. Indeed, an important regulator of cell cycle progression, Cdk11, which is 

translated only during mitosis by means of an IRES element present in its mRNA, was 

shown to be translated at lower levels in Eμ-Myc B cell lymphocytes, potentially 

contributing to mitotic catastrophe [99]. Finally, the genetic background of RP 

haploinsufficiency (RPL24+/− or RPL38+/−) or rapamycin treatment were shown to 

reestablish normal levels of the 5′ m7G cap-dependent translation during mitosis in the Eμ-

Myc-lymphoma mouse model, highlighting the importance of ribosome biogenesis, protein 

synthesis and mTORC1 in the cancer phenotype. Of note, in a similar experimental 

paradigm, where lymphomagenesis is driven instead by an oncogenic allele of AKT, the 

importance of the upregulation of m7G cap-dependent translation has further underscored, as 

inhibition of the eIF4E/4E-BP branch of mTORC1 signaling pathway suppressed 

lymphomagenesis [100].

Attacking the liaison between two master regulators of ribosome biogenesis, c-MYC and 

mTOR, has demonstrated to be a promising strategy for treating c-MYC-driven tumors. 

Mitigation of 4E-BP1 phosphorylation, which is a hallmark of c-MYC-driven lymphomas, 

by mTOR ATP site competitive inhibitors or by exploiting a dominant nonphosphorylatable 

allele of 4E-BP1, has shown lethality not only in mouse model of lymphoma but also 

myelomas where c-MYC is hyperactivated [101]. As discussed earlier, based on the 

inhibition of 4E-BP1 phosphorylation/signaling, these studies have also provided a rationale 

for understanding the differential response of tumors to allosteric as compared to ATP site 

competitive mTOR inhibitors, the former not durable in terms of maintaining 4E-BPs in the 

dephosphorylated state. The model of c-MYC-induced tumorigenesis has demonstrated that 

the role of ribosome biogenesis is not only confined in sustaining protein synthetic capacity, 

as explained in the last section.

1.4. Ribosome biogenesis checkpoints

Ribosome content determines the growth capacity and the proliferative potential of the cell. 

This implies that the cell is able to monitor the ribosome biogenesis and evaluate whether 

the protein synthesis capacity is adequate to face demand. The first in vivo evidence of a 

crosstalk between ribosome biogenesis and cell cycle checkpoints was identified in a mouse 

model of liver regeneration. Following hepatectomy, the hepatocytes of mice in which both 

alleles of an essential RP, RPS6, had been deleted, were unable to de-differentiate and re-

enter a round of cell cycle progression to replace the lost liver mass [102]. Later studies 

demonstrated that deletion of RPS6 in the liver led to the stabilization of p53, which was 

associated with the failure of hepatocytes to reenter the cell cycle [103]. Parallel studies also 

showed that deletion of one allele of RPS6 in the whole embryo was sufficient to halt mouse 

development at day E5.5, a blockade that was relieved when the RPS6−/+ mice were crossed 
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into a p53−/− mouse background, allowing embryos to develop to E12.5 stage [104]. A 

hypomorphic mouse strain of RPS24, with milder upregulation of p53 during 

embryogenesis, as compared to RPS6 heterozygous mice, is able to survive to adulthood, 

although displaying a complex scenario of defective developmental phenotypes. Again, 

absence of p53 rescued the majority of embryonic aberrant phenotypes, suggesting that 

congenital malformations are not only due to an insufficient protein synthesis capacity [99], 

but also to the stabilization of p53 [105]. The importance of this checkpoint is also 

evidenced in the survival of mice carrying Eu-Myc-driven B cell lymphomas, the same 

model used by Barna et al. [99], where its abrogation increased lymphomagenesis [106]. It 

is difficult to rationalize, though, the contribution of protein synthesis versus the p53-driven 

ribosome biogenesis checkpoint in the tumor development as Barna et al. observed no 

differences in tumor-free survival, when they crossed the p53−/− strain into an L24+/+ or 

L24+/− background [99].

Over the last decade, a large effort has been invested in understanding and characterizing 

both the insults and the molecular players that trigger the p53 stabilization in response to 

impaired ribosome biogenesis (see [107–109]). Interfering at any step of ribosome 

production can potentially activate the control mechanisms that regulate this process. The 

potential role to p53 was first shown in cell culture studies where a dominant negative 

mutant of Bop1, a critical component in the maturation of 28S and 5.8S rRNA, induces p53-

mediated cell cycle arrest [110]. Subsequently, perturbation of rRNA synthesis by 

pharmacological agents such as actinomycin D [111], 5-fluorouracil (5-FU) [112] and 

mycophenolic acid (MPA) [113] or depletion of other essential components required for 

rRNA synthesis, such as of TIF-1A, a cofactor of RNA polymerase I [114] and depletion of 

RPs [103,105,115] all appear to pheno-copy Bop1 mutant overexpression with respect to the 

stabilization of p53. However, not all RPs are equipotent, with respect to the activation of 

p53. Ablation of either RPL11 or RPL5, inhibits the production of the large ribosomal 

subunit, as seen for other large RPs, albeit without effecting p53 stabilization [12,116] 

Moreover, as shown in co-depletion studies, the role of RPL11 and RPL5 is dominant over 

other RPs whose depletion stabilizes p53 levels. A selective role for RPL5 and RPL11 

emerged with seminal observations from a number of laboratories (see [107–109]), which 

have only been clarified over the last 5 years. From a series of studies, this checkpoint has 

been identified as a nascent preribosomal complex made up of RPL5, RPL11 and non-

coding 5S rRNA, which upon ribosome impairment is redirected from assembly into 60S 

ribosomes to the binding and inhibition of the E3-ligase, human double minute 2 (Hdm2), 

leading to p53 stabilization, cell cycle arrest and apoptosis [103,115–118]. Unexpectedly, 

impairing the synthesis of any single RP of either the 40S or 60S ribosomal subunit did not 

alter the production of the other subunit [12,102,103,115,116]. In the case of impaired 40S 

ribosome biogenesis this effect leads to the apparent translational upregulation of RPL5 and 

RPL11 mRNA, required to produce sufficient precursor RPL5/RPL11/5S rRNA complex to 

bind to Hdm2 in the face of continued 60S ribosome biogenesis and a sharp decrease in 

global translation [103]. In contrast, impaired 60S ribosome biogenesis leads to the apparent 

inhibition of RPL5 and RPL11 mRNA translation, since in the absence of 60S ribosome 

biogenesis, there is seemingly sufficient precursor RPL5/RPL11/5S rRNA complex to bind 

to Hdm2 [103]. As discussed earlier, the pathological consequences of activating this 
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pathway have been shown to be causal in two hemato-logical disorders, Diamond Blackfan 

Anemia and 5q- syndrome, characterized by heterozygous loss of function mutations in RP 

genes or a monoallelic deletion of RPS14, respectively [17,109]. Although in mouse models 

of Diamond Blackfan Anemia and 5q- syndrome the anemia is rescued by deletion of p53, 

this finding is controversial in zebra fish models of Diamond Blackfan Anemia [119,120]. 

Importantly boosting mTOR activity by leucine or arginine administration partially rescues 

the erythropoiesis in these animals, potentially through the up-regulation of 5′TOP mRNA 

translation, suppressing the effects of p53 stabilization [119,121].

Critically, in parallel while elucidating the components involved in mediating the p53 

response to impaired ribosome biogenesis, others showed that this same checkpoint may be 

also activated under conditions that drive hyperactivation of ribosome biogenesis, in 

oncogenic Eμ-Myc driven lymphomas [106]. In this case persistent Eμ-Myc overexpression, 

may lead to increased levels of the precursor RPL5/RPL11/5S rRNA complex, beyond those 

required for 60S ribosome biogenesis, triggering inhibition of Hdm2, p53 stabilization and 

suppression of tumor progression [106]. Consistent with this finding, inhibition of ribosome 

biogenesis, at a point downstream of the formation of the precursor RPL5/RPL11/5S rRNA 

complex, leads to its liberation and almost the complete squelching of Hdm2, driving 

selective Eμ-Myc lymphoma cell death [122]. These studies are consistent with earlier 

hypothesis that the “Achilles heel” of c-Myc-driven tumors is ribosome biogenesis and 

protein synthesis [4,99]. In this case, it is worth speculating that the precursor RPL5/

RPL11/5S rRNA complex may be a constituent of what is termed the intrinsic tumor 

suppressor response [123].

1.5. Conclusions and perspectives

Attacking a fundamental cellular process like protein synthesis, based on structural 

differences between eukaryotes versus prokaryotes, has been demonstrated to be a powerful 

strategy for bacteria in sustaining their biological niche. For the cancer cell to sustain its 

biological niche it is dependent on aid from anabolic pathways, with protooncogene 

deregulation often associated with a metabolic switch that boosts global protein synthetic 

capacity. Many studies have demonstrated the central role of mTOR in controlling ribosome 

content of the cell and this property, has turned it into appealing target for adjuvant therapy. 

The immunosuppressant drug rapamycin and rapalogs have had success in cancer, having 

been approved over the last 6 years by FDA in the treatment of renal cell carcinoma, 

subependymal giant cell astocytomas, pancreatic neuroendocrine tumors and ER positive, 

HER2 negative breast cancers. However they have had limited effectiveness in other 

cancers, potentially dependent on their incomplete inhibition of mTORC1, such as signaling 

to 4E-BP1, a master regulator of protein synthesis [124,125], and the potentiation of 

mTORC2 signaling. This has led to develop a new generation of compounds designed to 

better inhibit mTORC1 and mTORC2, the ATP-site competitive inhibitors [126]. Preclinical 

studies have demonstrated, as a proof of concept, that mTOR active site inhibitors are 

powerful tools in treating cancers where mTOR activity is upregulated. However, whether 

they will have the clinical efficacy of the rapalogs is awaited [70].
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A critical caveat for the introduction of active site inhibitors in the clinic is represented by 

the many functions assisted by mTOR signaling in the physiological contexts, which are 

crucial for the homeostasis of different tissues and organs [30]. Moreover, selectively 

targeting the signaling to ribosome biogenesis and protein synthesis versus other metabolic 

functions of mTOR could potentially open a new window of intervention for mitigating 

global protein synthesis in tumor cells and, on the other hand, limiting general toxicity to 

normal tissues. To this end, isolation and characterization of the translational modulators of 

RP synthesis is a novel and promising approach, which could disclose new targets for 

pharmacological intervention. RP mRNA translation is controlled by mTOR pathway 

through the 5′TOP motif. A global analysis of 5′TOP-binding partners and a drug screen for 

inhibitors of 5′TOP translation, could be key strategies to employ in order to gain more 

insights into tumors addicted to ribosome biogenesis.
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Fig. 1. 
Schematic representation of mTOR pathways and ribosome biogenesis. mTORC1 

phosphorylates and activates S6K1 which in turn positively regulates mRNA translation 

initiation, elongation, pyrimidine biosynthesis and rDNA transcription. mTORC1 

phosphorylation on 4E-BPs relieves the inhibitory effect on translation initiation (see text). 

Straight lines and dotted lines indicate direct or indirect functional interactions respectively.
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Fig. 2. 
mTORC1 signaling to 5′TOP translation. Translational mediators of 5′TOP translation 

controlled by mTORC1: (a) LARP1 affects the steady state and the polysomal association of 

5′ TOPs. (b) TIA1 and TIAR are translational inhibitors of 5′TOPs. (c) 4E-BPs are negative 

effectors of 5′TOP translation. (d) mir-10a stimulates translation of RPs mRNAs. Straight 

lines and dotted lines indicate direct or indirect functional interactions respectively.
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