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Identifying key players in collective dynamics remains a challenge in several research fields, from the
efficient dissemination of ideas to drug target discovery in biomedical problems. The difficulty lies at several
levels: how to single out the role of individual elements in such intermingled systems, or which is the best
way to quantify their importance. Centrality measures describe a node’s importance by its position in a
network. The key issue obviated is that the contribution of a node to the collective behavior is not uniquely
determined by the structure of the system but it is a result of the interplay between dynamics and network
structure. We show that dynamical influence measures explicitly how strongly a node’s dynamical state
affects collective behavior. For critical spreading, dynamical influence targets nodes according to their
spreading capabilities. For diffusive processes it quantifies how efficiently real systems may be controlled by
manipulating a single node.

C
omplex networks are a groundbreaking concept that is helping to understand the behavior of many
chemical, biological, social and technical systems1,2. Network representations are particularly suitable
for systems where heterogeneity dominates and are crucial for dynamics3, where a few nodes are usually

considered as the most important. Oftentimes, node importance is correlated with centrality measures, local4,5 or
global6, which usually do not explicitly account for the dynamics as they are generally based on a purely
topological perspective. However, dynamics is fundamental in assessing the impact of individual elements in
global performance and in controllability problems7. Here, we show that dynamical influence is a centrality
measure able to quantify how strongly a node’s dynamical state affects the collective behavior of a system, taking
explicitly into account the interplay between structure and dynamics in complex networks. We prove that it
applies equally well to a variety of families of dynamical models, from spreading phenomena at the critical point to
diffusive processes and and continuous-time dynamical system such as the Kuramoto model and the Roessler
chaotic dynamics.

Classical centrality measures in complex networks –like the degree or number of neighbors a node interacts
with4,5, betweenness centrality8 counting the number of shortest paths through a certain node, eigenvector
centrality9 based on the idea that relations with more influential neighbors confer greater importance, or the
k-shell decomposition10 that correlates with the outcome of supercritical spreading originating in specific nodes11–13

– rely only on topology, even if an underlying process can be indirectly associated in some cases. In contrast, the
impact of individual elements in the global performance of the system inevitably depends on the specificities of the
dynamics. Targeting individuals for vaccination strategies in epidemic processes is not the same as selecting
electrical stimulation sites in the brain in order to suppress epileptic seizures. In this respect, a Laplacian-based
centrality measure14–16, closely related to PageRank17, has been proposed recently to assess the importance of
complex network nodes in specific dynamical models.

In this work, we provide a general and rigorous framework where dynamical influence is defined as a centrality
measure both on directed and on undirected complex networks and applies to a variety of families of dynamical
models, including epidemic spreading models like the susceptible-infected-removed (SIR), the susceptible-
infected-susceptible (SIS), and the contact process, the Ising model, and diffusive processes like the voter model
or phase coupled oscillators. In all cases, dynamical influence is calculated as the leading left eigenvector of a
characteristic matrix that encodes the interplay between topology and dynamics.

Results
Defining dynamical influence. We focus on systems of N time-dependent real variables x 5 (x1, …, xN) with
coupled linear dynamics specified by a N 3 N real matrix M
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_x~Mx: ð1Þ

A first classification of the dynamics is obtained by considering the
largest eigenvalue mmax of M. For mmax , 0, x(t) converges to a null
vector that represents a stable fixed point solution; for mmax . 0,
indefinite growth from almost all initial conditions is observed.
Suppose that M is such that a non-degenerate mmax 5 0 exists.
Then, the scalar product wc 5 c ? x is a conserved quantity, where
c is the left eigenvector of M for mmax,

dwc

dt
~c: _x tð Þ~ cM½ �:x tð Þ~0: ð2Þ

The existence of the conserved quantity allows to calculate the final
state in terms of the initial condition x(0) as

x ?ð Þ : ¼ limt??x tð Þ~ c:x 0ð Þ
c:e

e, ð3Þ

where e is a right eigenvector of M for mmax. This equation implies
that the projection of x(0) on c is all the system remembers at large
times about the initial condition x(0). The coefficient ci quantifies the
extent to which the initial condition at node i affects the final state.
Therefore, we call ci the dynamical influence (DI) of element i on the
dynamics under equation (1).

One advantage of DI is that it is easily calculated without expensive
numerical simulations. In fact, a simple way to calculate c furthers the
understanding why this object quantifies the role of nodes in spread-
ing dynamics. The power method (also called power iteration)18

approximates c by applying higher and higher powers of M to a
uniform vector w(0) 5 (1, 1, …, 1). For general exponent l [ N, the
i-th entry w lð Þ

i of

w lð Þ~ 1, . . . ,1ð ÞMl ð4Þ

is the number of all possible walks of length l departing from node i
or, in other words, the number of ways an item can spread for l steps
when originating at node i. At the first iteration this yields

w 1ð Þ~ 1, . . . ,1ð ÞM~ d1,d2, . . . ,dnð Þ ð5Þ

where di is the sum over the i-th row of M. When M is the adjacency

matrix of a network, then w 1ð Þ
i ~di is the (out-)degree, the number of

(outgoing) connections of node i. For exponent 2, the i-th entry w 2ð Þ
i

is the sum of the (out-)degrees of all neighbors of i. This is the same as
the number of possibilities (walks) to depart from node i following
two links. Now in the limit l??, the direction of the eigenvector c is
approached by

lim
l??

w lð Þ

w lð Þk k~
c
ck k ð6Þ

when the largest eigenvalue of M is non-degenerate and larger in
magnitude than the other eigenvalues. Hence, the dynamic influence
ci of element i is its ability to serve as the origin of many arbitrarily
long walks on the network.

Epidemic spreading. Let us first apply these insights to critical
phenomena like spreading processes19. In the SIR model20–22, each
node is either susceptible, infected or removed. An infected node i
transfers the epidemic along each of its outgoing arcs independently
with probability b; node i itself relaxes to the removed state at unit
rate. We study small perturbations to the stationary state with all
nodes susceptible and approximate the dynamics by the linearization

_x~{xzbATx: ð7Þ

Here xj(t) is the probability of node j to be infected at time t. The first
term is the relaxation from the infected to the removed state at unit
rate. The second term quantifies the transmission of the epidemic
where the network enters by the transpose of its adjacency matrix A.

Equation (7) can be rewritten as equation (1) with M 5 bAT – I,
and I being the identity matrix. Matrix M has largest eigenvalue mmax

5 0 when the spreading probability b is the inverse of the largest
eigenvalue of A, that is b 5 bc 5 1/amax. We take again c as a left
eigenvector of M at mmax 5 0 or, equivalently, a right eigenvector for
maximum eigenvalue amax of A. Then the expected outbreak size
from an initial infection described by the probability vector x(0) is
proportional to c ? x(0).

Now we ask how well c may forecast the actual SIR spread-
ing dynamics, measured as the spreading efficiency (details in
Methods) of node i that we define as the expected fraction of nodes
reached by an epidemic outbreak initiated with node i infected (seed
node), all others susceptible. Figure 1 shows that ci is a good predictor
of SIR spreading efficiency at critical parameter value b 5 bc in a
small social network. Dynamical influence ci outperforms the pre-
dictions made by degree, shell index and betweenness centrality.
Predictive power is quantified by the rank order correlation (see
Methods).

Figure 2 shows the predictive power of dynamical influence for
spreading efficiency as a function of the infection probability in
larger real-world networks and the Barabasi-Albert model. The
results are as anticipated by the theory. Dynamical influence is a
good predictor of spreading efficiency in the critical regime where
b/bc < 1. Predictions by dynamical influence outperform those by
other quantities that are supposed to provide information about
expected outbreak size in a broad interval of infection probabilities.
This still holds for values of b that lead to average outbreak sizes of up
to 10% of all nodes in the network, as indicated by the vertical dashed
lines in Figure 2.

The approximation w(l) for finite length l in Eq. (4) is useful as a
predictor of spreading efficiency as well. Even when the interaction
network is not completely available, local information counting the
number of walks of length l 5 2 or l 5 3 emanating from a node
is enough to estimate dynamical influence. Figure S1 in the
Supplementary Information shows that the count of these short
walks yields a prediction of spreading efficiency in the critical regime
that is as good as dynamical influence itself. The predictive power of
these walk counts, too, reaches a maximum in the critical regime.

For infection probabilities b far above or below the critical value bc,
however, the degree di of a node i is a better predictor of spreading
efficiency. In the subcritical regime, spreading is sparse and typically
confined to the neighborhood of the seed node i, while in the super-
critical regime, the epidemics rarely fails to spread to the whole
system. In the critical regime in-between these extremes, infectious
seeds are perturbations that trigger relaxation dynamics at all scales.
This is reflected in a dynamics dominated by a marginal linear mode
and a variety of possible final states. Dynamical predictions at crit-
icality require then a global view of the network structure (and the
final state is determined by the conservation law associated with the
leading eigenvector c-removed). The scale-free distribution of epi-
demic outbreaks in real populations23,24 is a sign of criticality and
suggests that this regime is most relevant in practice.

In order to check the robustness of the results we consider two
modifications of the epidemic spreading dynamics. First, we study
the SIR model with a stochastic rather than deterministic transition
from the infected to the removed state. Specifically, the transition
occurs with a probability m independently for each infected node at
each time step. Thus the time spent in the infected state (recovery
time) has a geometric distribution with mean m–1. This modification
does not qualtitatively change the results of Figure 2 up to rescaling of
b with m. In fact, the curves of predictive power for different values of
m collapse when plotted as a function of the average outbreak size, see
Figure S2. Second, prediction by dynamical influence may also be
applied to the SIS model (see Materials and methods) yielding very
similar results (Supplementary Information, Figure S3). The contact
process25 can also be considered, with A replaced by the stochastic
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adjacency matrix, the adjacency matrix after normalization such that
each row sums up to 1.

To facilitate intuitive understanding of the predictive role of cent-
rality measures in spreading dynamics, let us consider small net-
works. In each of the three cases in Fig. 3, a different subset of the
measures yields the correct ranking by spreading efficiency at the
critical point. The most efficient spreader is not necessarily the node
with the largest degree. Being adjacent to several nodes with large

degree may lead to large spreading efficiency despite a smaller degree,
cf. panel (a). This second order effect is reflected by dynamical influ-
ence. When all degrees are equal as in panel (c), also dynamical
influence and shell index are homogeneous. In this case, between-
ness centrality captures the subtle effect of nodes having different
positions in the network. We speculate that centrality measures
based on unconstrained walks and shortest paths can do best in
predicting spreading efficiency at the critical point. Then, a suitable

Figure 1 | SIR spreading efficiency compared to centrality measures in a social network. The network of Zachary’s karate club50 has 77 edges connecting

34 nodes, here ordered according to decreasing spreading efficiency. A monotonic decay of a centrality measure in the diagram indicates large predictive

power for spreading efficiency. The rank order correlation of spreading efficiency is of 0.97 with dynamical influence, 0.86 with degree, 0.82 with shell

index, and 0.79 with betweenness centrality. Indexing of nodes is the same as in ref.50. In the network drawing, circles and squares represent the primary

partitioning of the node set found by Girvan and Newman51. Spreading efficiency has been estimated at b 5 bc 5 0.15 performing 106 independent runs of

the SIR model per seed node. The largest eigenvalue of the network adjacency matrix is 6.65.

www.nature.com/scientificreports
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Figure 2 | Predictive power of different centrality measures for SIR spreading efficiency. Symbols are values of the rank order correlation coefficient of

spreading efficiency with influence (squares), degree (triangles) and shell index (circles). The choice of the spreading parameter b controls the average

outbreak size (horizontal axis), being the average number of nodes infected when choosing the seed node uniformly. The vertical dashed line indicates

average outbreak size at the critical value of the spreading parameter b 5 bc. The predictive power of betweenness centrality is below that of degree in all

cases. The following networks have been used. E-mail interchanges between employees of a university52, bc 5 0.0482; unweighted neural circuitry of the

roundworm C. elegans53,54, bc 5 0.0654; snapshot of the Internet at Autonomous Systems level of Nov 08, 1997, see http://moat.nlanr.net, bc 5 0.0315; a

realization of the Barabási-Albert (BA) model of scale-free networks4 with 1000 nodes and m 5 2 edges added per node, bc 5 0.0945. Other realizations of

the BA model yield qualitatively the same result. For the BA model, shell index is not a predictor because its value ki 5 m is the same for all nodes. For the

neural network, being directed, out-degree instead of degree is used as a predictor and for calculating the shell index.

Figure 3 | Comparison between spreading efficiency (diamonds), dynamical influence (squares) and betweenness centrality (stars) in small networks.
In panel (a), the ranking of nodes with respect to spreading efficiency is rendered both by dynamical influence and betweenness. Note that the most

efficient spreader is not a node with maximum degree but the node on the right connected to those maximum degree nodes. In the case of panel (b), the

strongest spreaders are the nodes of maximum degree 3. However, the degree does not uniquely reveal the second strongest spreaders. Dynamical

influence renders the full ranking of spreading efficiency. In panel (c), nodes are indistinguishable both by degree and dynamical influence. The small

differences in spreading efficiency —note the scale on the axis—on this regular graph are rendered correctly by the betweenness centrality. The shell index

is not usable as a node discriminator here. It takes value 1 on each node in panels (a) and (b) and the value 3 in panel (c). Spreading efficiency is calculated

at the critical value b 5 bc for each network, being 0.408 for (a), 0.463 for (b),and 0.333 for (c). For easier comparison, values of dynamical influence and

betweenness centrality have been rescaled and shifted such that their mean and standard deviation are identical to that of the spreading efficiency in each

network.
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combination of dynamical influence with betweenness depending on
network topology might be close to the optimal predictor.

Nodes with large shell index are contained in highly connected
neighborhoods that facilitate spreading. In many cases, the shell
index may serve as a satisfactory predictor of spreading effi-
ciency13. Here, however, we find situations where its use for pre-
diction is limited due to the degeneracy of the values shell index
assumes. It has a constant value m across nodes of each network
that can be built up by iterative attachment of a node with exactly
m edges. This includes all trees (m 5 1) and networks from
growth models such as the one by Barabasi and Albert4. A signifi-
cant lack of resolution is also observed in real-world networks.
Shell index assumes only few (< 10) discrete values, cf. Figure S4
in Supplementary Information. On the Internet graph, the same
maximum shell index value is observed for the strongest spreader
as well as nodes with spreading efficiency a factor of five below.
Thus, even though the overall correlation between spreading effi-
ciency and shell index is positive, lack of resolution limits the
predictive power. Such limitations have been identified also in
an empirical study of epidemic spreading in a social group26, in
a detailed comparison between SIR and SIS models27 and in
dynamics of rumour propagation28.

We remark that the most efficient spreaders are not necessarily the
same as those targeted by efficient vaccination strategies in order to
contain epidemics. At the network level, the aim of vaccination is to
increase the epidemic threshold b in order to render the spreading
dynamics subcritical. The set of nodes by whose removal this shift
of threshold is achieved29 is different in general from the set of
nodes with the largest dynamical influence. The Supplementary
Information provides further results (Figure S5) and a brief discus-
sion of vaccination.

Ising model. The Ising model is a paradigmatic binary state model of
critical phenomena. The Ising model30,31 on a network32 describes the
dynamics of N coupled spins si g {21; 11} placed on the nodes. The
zero temperature (T50) version of the Ising model implements
a majority rule for state updating. This is the same dynamics
considered in threshold models of collective behavior for a 50%
value of the threshold33,34, and its dynamics is also related to
Schelling’s model of urban segregation35,36; the finite temperature
version has been considered in the context of strategic inter-
actions37. Finite temperature effects (noise), as considered here,
are essential to escape from frozen configurations and to establish
the robustness of transitions found in Ising-like models38. Also
in the theory of neural computation, Ising-like systems play an
essential role39.

In the context of the Ising model, we define spreading efficiency of
node i as the correlation between two measurements: the state of
node i at time t and the magnetization (see Methods) of the whole
system at a later time, formally

fi bð Þ~ si tð Þm tztNð Þh i: ð8Þ

The parameter t measures the time lag between the two measure-
ments. Figure 4 shows to which extent the ranking of nodes by Ising
spreading efficiency is correlated with the ranking by various cent-
rality measures. At the transition between order and disorder, Ising
spreading efficiency has larger correlation with dynamical influence
than with the other centrality measures.

Diffusive processes: the voter model. Coming back to the general
framework equation (1), there is a class of dynamical processes in
networks in which the property of M having a zero maximum
eigenvalue appears naturally without the need of adjusting any

Figure 4 | Predictive power of different centrality measures for Ising spreading efficiency at time lag t 5 10 as a function of average absolute
magnetization Æ | m | æ. Symbols are values of the rank order correlation coefficient of spreading efficiency with influence (squares), degree (triangles) and

shell index (circles). The vertical dashed lines indicate the value of Æ | m | æ at the critical parameter value b 5 bc. Details on networks and the values of bc are

given in the caption of Figure 2.
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parameter. This is the case of diffusive processes defined by equation
(1) with M 5 2L and the Laplacian matrix entries

Lij~{Kijzdij

XN

k~1

Kik: ð9Þ

The zero eigenvalue of L is non-degenerate under mild
assumptions40. For these processes our general analysis of equation
(1) becomes exact. A prominent example of diffusive dynamics is the
voter model41 in which node i is in a spin state si g {21, 11}. For this
model, xi stands for the ensemble average of spin i, xi 5 Æsiæ, and Kij

gives the rate at which node i copies the state of node j. Different
definitions of the voter model dynamics provide clear examples
of how the concept of dynamical influence takes into account the
interplay between topology and dynamics: For link update dynamics
in an undirected network, an ordered pair of nodes (i, j) is chosen in
each step and node i copies the state of node j. The rate matrix K
becomes proportional to the transpose of the adjacency matrix A. As
a consequence ci 5 1/N, the average magnetization

PN
i~1 cixi is

conserved, and all nodes have the same dynamical influence
independently of the topological features of the network. In the
more standard node update voter dynamics, at each step one node
i (having degree di) is selected at random and copies the state of one
of its neighbors j, also selected at random. In this case Kij / Aji/di, so
that Kij is no longer a symmetric matrix, the conserved quantity is a
weighted magnetization42 and the dynamical influence of node i is
proportional to its degree di.

For diffusive processes, the system is driven towards a homogen-
eous final state with x*:5 xi(‘) 5 xj(‘) for all i and j. Although x*
takes continuous values, each realization of the voter dynamics in a
finite system eventually reaches a homogeneous absorbing state with
either all nodes in the state 11 or all in the state 21. The influence ci

of a node weights the initial state of node i in the exit probability P1,
that is, the probability to reach the absorbing configuration 11: P1 5

(wc 1 1)/2 5 (x* 1 1)/2. When all nodes are equivalent (e.g., link
update) x* is just the average of the initial values of the nodes, but
otherwise (e.g. node update) x* is given by a weighted average of the
initial condition. The value ci has an alternative interpretation as a
stationary density of a random walk15.

Efficient driving of complex systems. The meaning of dynamical
influence also manifests itself in the practical task of driving a system
efficiently. In the context of the voter model, this task might be
phrased in terms of the zealot problem43. One considers a special
directed network in which a given node (the zealot) does not copy the
state of any of its neighbors. The question is the efficiency of the
zealot in driving all other nodes to the zealot state. To show the broad
applicability of the dynamical influence concept, we address this
question of driving efficiency considering the problem of phase-
coupled oscillators described by the Kuramoto model44. Assuming
all oscillators have the same intrinsic frequency v (without losing
generality, we choose v 5 0), the phase variable xi of oscillator i
advances as

_xi~vz
XN

j~1

Kij sin xj{xi

� �
: ð10Þ

with a matrix K of non-negative coupling strengths. Around the
synchronized state, phase differences are small. By approximating
each sin-term with its argument, a linear homogeneous system as in
equation (1) is recovered.

We study a scenario with initially all oscillators i in phase xi(0) 5 0.
An additional node a with constant phase xa 5 p/2 is added to the
system and linked through an additional edge to a chosen node i. We
measure the time Ti the system takes to reach the new homogeneous
state with si 5 p/2 for all nodes i. The dynamical evolution of these
systems is illustrated by studying the motif in the inset of Fig. 5a. The

global phase y(t) converges faster to the external forcing when the
driving is applied to the nodes with higher influence, and the con-
vergence of the different nodes depends on their relative network
position in relation to the driver. In Fig. 5(b), we show the results on a
directed network of phase oscillators connected as the network of
regions in the macaque cortex45. Dynamical influence has extremely
high predictive power. The rank order correlation of driving effi-
ciency with dynamical influence is 0.97, while 0.66 with degree ratio,
20.14 with shell index and 20.09 with betweenness. Similar results
are obtained on randomly grown directed networks and for coupled
chaotic oscillators, see Figures S6 and S7 in Supplementary
Information. These findings clearly show that dynamical influence
is an excellent proxy to identify better targets for controlling global
behavior, even in strongly non-linear dynamical systems.

Discussion
Dynamical influence is a centrality measure applicable to a wide
range of dynamical processes on complex networks that takes into
account the interplay between topology and dynamics. While the
motivation and rigorous analysis of dynamical influence employ
the context of linear systems, its practical use for understanding
and controlling networked dynamics extends to several inherently
non-linear systems.

We have demonstrated that dynamical influence is applicable to
stochastic equilibrium (Ising model) and nonequilibrium systems
(epidemic and voter models) as well as deterministic state-continu-
ous systems such as the Kuramoto model and the chaotic Roessler
attractor. For critical epidemic spreading and the Ising model,
dynamical influence is a good predictor of spreading capabilities.
In the context of chaotic Boolean dynamics46, a similar spectral cent-
rality is highly correlated with a node’s impact on the attractor
reached47. For diffusion, dynamical influence quantifies the impact
of the dynamical states of single nodes on the asymptotic homogen-
eous state. Beyond that, it proves to be a high-quality proxy for
driving efficiency, uncovering which are the best target nodes in real
networks to be forced in order to drive the system towards specific
states. In a broader context, the identification of these targets has
fundamental implications and practical applications on strategies
with an interest in controlling collective behavior, from social influ-
ence to biomedical responses.

Methods
Epidemic models. We simulate the SIR model of epidemic spreading in the time-
discrete version. Transitions between the three states (S,I,R) are as follows. If node i is
in the S (susceptible) state and has n infected (I) neighbors at time t, then node i
remains susceptible with probability (1 2 b)n, otherwise i is infected at time t 1 1. If
node i is in the infected state at time i then i is in the R (removed) state at time t 1 1. In
the SIS model, at difference with SIR, a node infected at time t is susceptible again at
time t 1 1. The probability of being removed in the SIR model does not enter in the
linearized equation (7) because it appears only in a second order term in the equation
for x. Therefore equation (7) gives the same linear description for the SIR and SIS
models.

The system is in an absorbing configuration if none of the nodes is infected. For
both models, outbreak size is the number of nodes having been infected at least once
before reaching an absorbing configuration. The spreading efficiency of node i is the
average outbreak size when initiating the dynamics with node i infected and all others
susceptible.

Ising model. The spin values si g {21, 11} are updated asynchronously as follows.
At each time step t, a node i g {1,…,N} is drawn uniformly. The field

hi tð Þ~
XN

j~1

Kijsi tð Þ ð11Þ

is calculated. The state of node i is flipped with probability

min exp {bsi tð Þhi tð Þ½ �,1f g: ð12Þ

Flipping the state of node i means si(t 1 1) 5 2si(t). Otherwise the state of node i
remains unchanged. All other nodes j ? i retain their state, sj(t 1 1) 5 sj(t).

The parameter b (inverse temperature) controls the order in the system. For large b
(small temperature), spins tend to align and there is long-range order seen as large
clusters of nodes sharing the same spin value. For small b (high temperature),
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long-range order is absent. The magnetization

m tð Þ~N{1
XN

i~1

si tð Þ: ð13Þ

is used to quantify the order of the system. Disordered systems have Æjmjæ < 0, while a
finite positive value is obtained in ordered systems.

Rank order correlation. For a vector x g Rn , the rank of component i is given by

ri xð Þ~1z j=ijxjwxi
� ��� ��z 1

2
j=ijxj~xi
� ��� �� ð14Þ

The rank order correlation coefficient r(x, y) between two such vectors x and y is the
Pearson correlation coefficient between the rank vectors r(x) and r(y). Thus r(x, y)

takes values in [21, 1] with r(x, y) 5 11 (21) if and only if x and y are in a strictly
increasing (decreasing) relation.

Degree and degree ratio. The degree di of node i is the number of nodes i is connected
to. In directed networks, in- and out-degree din

i and dout
i are distinguished. For the

matrix averaging over all adjacency matrices of networks with fixed node degrees, ci 5

di is a left eigenvector for the largest eigenvalue. Likewise, the degree ratios dout
i

�
din

i
form a left eigenvector of the Laplacian matrix averaging over all networks with given
node degrees48,49.
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XN

i~1
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quantity is rescaled by a factor to obtain an average value of 1. The empirical network serves as a testbed for prediction of driving efficiency. We do not aim to

mimic real dynamics of the cortex.
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