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RESUMEN 
 

 La mitosis es un proceso que asegura la distribución correcta de los 

cromosomas entre dos células recién generadas, está regulada por dos 

procesos principales, la degradación y la fosforilación de proteínas por 

diferentes quinasas mitóticas. CDK1 es el principal regulador de la mitosis, 

pero en las últimas décadas se ha demostrado que las proteínas de la familia 

Aurora o Polo o NIMA desempeñan un papel clave en la mitosis. 

 El objetivo de esta tesis es identificar nuevas funciones de Nek9, una 

quinasa de la familia NIMA, durante el ciclo celular y más específicamente 

durante las fases tardías de la mitosis. Nuestro objetivo es caracterizar 

nuevos sustratos y funciones de la quinasa mediante el uso de diferentes 

líneas celulares y ratones genéticamente modificados que nos permiten 

interferir con la expresión de Nek9. 

 El centrosoma actúa como el principal centro organizador de 

microtúbulos de la célula para mantener el citoesqueleto en interfase y para 

organizar el huso bipolar en la mitosis, su ciclo de duplicación va en sintonía 

con el ciclo celular. Cuando la célula entra en mitosis, los centrosomas 

duplicados se separan ensamblando el huso mitótico para segregar los 

cromosomas y para mantener la estabilidad genómica. Sin embargo, 

diferentes aberraciones ocurren con frecuencia en el centrosoma y a menudo 

conducen a la formación anormal del huso mitótico, que puede dar como 

resultado una segregación cromosómica anormal y, como consecuencia, 

tumorogénesis, microcefalia o ciliopatias. 

 Nek9 está inactiva en interfase y se activa en los centrosomas durante 

la mitosis mediante un mecanismo de dos pasos mediado por Plk1 y CDK1. 

Una vez activo, Nek9 se puede unir a Nek6 y Nek7 y fosforilarlas induciendo 

a su vez su activación. Nuestro grupo ha demostrado que Nek6/7 fosforilan 
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la quinesina Eg5, modulando la acumulación de Eg5 en los centrosomas y 

su separación durante la profase. Nek9 también fosforila el adaptador 

NEDD1 / GCP-WD, independientemente de Nek6/7, lo que contribuye a su 

reclutamiento en el centrosoma y, en consecuencia, al reclutamiento del 

complejo de nucleación de microtúbulos formado por y-tubulina.  

 Aquí mostramos que los animales con un único alelo Nek9 KO están 

sanos y son fértiles. Sin embargo, los cruces entre ellos no dan lugar a ningún 

animal KO homocigoto, lo que indica que la eliminación de Nek9 es letal 

durante el desarrollo embrionario. Además, los embriones procedentes de 

estos cruces tienen una mayor frecuencia de defectos mitóticos que provocan 

la muerte durante los primeros días de desarrollo. 

 Como Nek9 es importante para el correcto desarrollo de la mitosis, 

queríamos ver si la expresión en heterocigosis daba como resultado tumores 

que afectan la viabilidad de los animales. Se han observado algunas 

diferencias en la esperanza de vida libre de tumores entre los heterocigotos 

con cierta incidencia de cáncer y aneuploidía. 

Por otro lado, la eliminación de la expresión de Nek9 en células conduce a 

la aparición de mitosis anormales, aneuploidía y múltiples centrosomas, 

tanto en fibroblastos embrionarios de ratón genéticamente modificados 

como en células humanas teniendo como consecuencia la acumulación de 

centrobina, una proteína presente en los procentriolos. 

 En la presente tesis describimos posibles nuevas funciones y sustratos 

de Nek9 en el ciclo del centrosoma, íntimamente ligado al ciclo de división 

celular, tras interferir con su expresión de diferentes formas. 
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ABSTRACT 
 

 Mitosis is a process that ensure the correct distribution of the 

chromosomes between the two newly generated cells, is tightly regulated by 

two main processes, protein degradation controlled by the APC and protein 

phosphorylation by different mitotic kinases. CDK1 is the master regulator 

of mitosis but in the last decades proteins from the Aurora or Polo or the 

NIMA family have been shown to play key roles in mitosis.  

 The objective of this thesis is to identify new roles during the cell cycle 

and more specifically the late phases of mitosis of Nek9, a NIMA-related 

kinase. We aim to characterize new substrates and functions of the kinase by 

using different cell lines and genetically modified mice and interfering with 

Nek9 expression.  

 The centrosome acts as the major microtubule-organizing center 

(MTOC) of the cell to maintain cytoskeleton in interphase and to organize 

the bipolar spindle in mitosis, and its duplication cycle is coupled with the 

cell cycle. When the cell enters mitosis, the duplicated centrosomes separate 

to the spindle poles and assemble the bipolar mitotic spindle for accurate 

chromosome separation and to maintain genomic stability. However, 

centrosome aberrations occur frequently and often lead to abnormal mitotic 

spindle formation, which can result in abnormal chromosome segregation 

and as a consequence tumorigenesis, microcephaly or ciliopathies. 

 Nek9 is inactive during interphase and activated at centrosomes and 

spindle poles during mitosis by a two-step mechanism mediated by Plk1 and 

CDK1. Once active, Nek9 is able to bind Nek6 and Nek7 and directly 

phosphorylate these kinases inducing in turn their activation. Our group has 

shown that Nek6/7 phosphorylates the kinesin Eg5 at Ser1033 in the C-
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terminal domain, modulating the accumulation of Eg5 at or around 

centrosomes and their separation during prophase. Nek9 also phosphorylates 

the adapter NEDD1/GCP-WD, independently of Nek6/7, contributing to its 

recruitment to the centrosome and in consequence, to the recruitment of the 

microtubule nucleating complex formed by y-tubulin to the same organelle. 

Thus, Nek9, Nek7 and Nek6 regulate different aspects of the centrosome 

machinery during the entry in mitosis and have a role in spindle organization 

and correct mitotic progression.  

 Here we show that animals with a single Nek9 KO allele are healthy 

and fertile but intercrosses between them have not resulted in any 

homozygous null animals among born offspring indicating that the deletion 

of Nek9 is embryonic lethal. Also  embryos obtained from these intercrosses 

had a higher frequency of mitotic abnormalities that result in death during 

the first days of development. 

 As Nek9 is important for the proper development of mitosis we 

checked whether the expression in heterozygosity of Nek9 results in tumors 

affecting the viability of the animals. Some differences in tumor-free lifespan 

between heterozygous and wild type animals have been observed, with the 

appearance of tumors and aneuploidy. In addition, elimination of Nek9 

expression lead to the apparition of abnormal mitosis, aneuploidy and 

multiple centrosomes both in genetically engineered MEFs and human cells, 

resulting in accumulation of centrobin, a protein mostly associated with the 

daughter centrioles, in the amplified centrioles. 

In the present thesis we describe possible new functions and substrates of 

Nek9 in the centrosome cycle, closely linked to the cell division cycle, after 

interfering with its expression using different strategies. 
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The Cell Cycle and mitosis 

 The cell cycle can be divided into two different periods, interphase (I) 

and M phase. Interphase is the period between two mitosis and can be 

subdivided in G1, S and G2. G1 starts just right after cell division and is 

considered the first growth phase. The S phase is the period comprising DNA 

and centrosomes duplication. G2 is the second stage of cell growth and also 

the moment when cells prepare for division. On the other hand, the M phase 

is subdivided in two stages: mitosis and cytokinesis. Mitosis, first described 

by Walther Flemming in the late 1870’s (Paweletz, 2001), is the process of 

chromosome segregation and nuclear division, while cytokinesis refers to 

the physical division of the cell in two daughter cells with exact genetic 

copies (Morgan, 2007). 

 Traditionally, it is considered that mitosis starts with chromosome 

condensation in prophase. The subsequent breakdown of the nuclear 

envelope (NE) initiates prometaphase, and at this stage the chromosomes 

become attached to and positioned on the mitotic spindle. Then, at 

metaphase, all chromosomes are aligned forming a plate at the middle of 

the spindle. At anaphase the two sister chromatids of the replicated 

chromosome migrate towards the opposing spindle poles. They do so in two 

steps, anaphase A, in which chromosomes are pulled toward the spindle 

poles by contraction of the kinetochore microtubules (MTs), and anaphase 

B, in which the spindles are pushed away from each other by the elongation 

of inter-spindle-pole microtubules. During telophase chromosomes 

decondense and the NE is reformed (Figure 1) (Maiato, 2010; Rhind and 

Russell, 2012). 
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 However, (Pines and Rieder, 2001) argued against the idea that mitosis 

starts with the initiation of chromosome condensation, because in some cells 

the chromosomes never condense and in others condensation takes place at 

the beginning of interphase. In addition, in many protists, ciliates, algae and 

fungi there is no nuclear envelope breakdown (NEB), whereas in other 

systems such as Caenorhabditis elegans the nucleus persists until anaphase. 

Furthermore, the formation of a metaphase plate is not a requirement for 

anaphase to begin even in higher organisms. In base of this, they suggested 

that mitosis can be subdivided into five transitional phases (Figure 2) 

independent of chromosome alignment and nuclear envelope breakdown 

Figure 1: A) Cartoon of different mitotic phases, adapted from (Rhind and Russell, 2012);  
B) Fluorescence micrographs of mitosis in fixed cells showing microtubules (green) and 
chromosomes (blue) (Rieder and Khodjakov, 2003). 
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(NEB), characterized by the activity of defined cell-cycle regulators, the 

mitotic cyclin-dependent kinases (CDKs) and the anaphase-promoting 

complex/cyclosome (APC).   

 Transition one is characterized by the activity of CDK/cyclin A, Plk1 

and Aurora A and is when chromatin condensate and centrosomes maturate. 

In this phase, entry into mitosis can be arrested by the DNA damage 

checkpoint. Transition two or entry into mitosis is defined by the 

activation of CyclinB/CDK1, and at this moment cells cannot revert mitosis. 

Transition three is characterized by the presence of activated CDK1/cyclin 

B and Anaphase Promoting Complex (APC) being modulated by the 

kinetochore attachment checkpoint. In this stage the APC, promote 

degradation of cylin A but not of cyclin B or securin. This corresponds to 

prometaphase. Transition four or mitotic exit in defined by APCCdc20 

activation and in consequence cyclin B and securin are degraded. Finally, in 

transition five or return to interphase Cdc20 is degraded and replaced by 

Cdh1, which is then phosphorylated and degraded before DNA replication. 

 

Figure 2: Comparison of the traditional phases of mitosis (top) and Pines and Rieder, 
2001 proposed transitions (bottom). 
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Mitotic kinases 

 Protein phosphorylation was discovered as a regulatory mechanism by 

Krebs and Fischer in the late 1950s through their classic studies of glycogen 

phosphorylase (Cohen, 2002). Phosphorylation is considered one of the most 

important types of post-translational modification (PTM). The size and 

charge of covalently attached phosphates can induce conformational changes 

in the modified protein, and also allow specific and inducible recognition of 

phosphoproteins by phosphospecific-binding domains in other proteins, 

resulting in protein–protein interaction, essential for transducing signals 

intracellularly. However, phosphorylation can also cause a change in the 

subcellular location of a protein or create a phosphodegron, leading to 

ubiquitin-dependent protein degradation (Hunter, 2012). Attesting to the 

importance of kinases for eukaryotic cell signal transduction and 

metabolism, there are more than 500 human protein kinases recognized 

through their conserved sequence motifs. Deregulation of protein kinase is 

associated with a several disorders and the enzymes have become essential 

targets for cancer therapies, but to make them selective and specific is 

important to consider the structures of the kinase (Endicott et al., 2012). 

 All eukaryote protein kinases share a conserved core that contains 

twelve subdomains that were originally defined by Hanks and Hunter (Hanks 

and Hunter, 1995). Thereby, the structure of the catalytic domain is highly 

conserved, formed by an N-terminal and a C-terminal lobe with the substrate 

binding pocket located between them. The N-lobe is in charge of ATP 

coordination and proper positioning at the substrate-binding pocket. This 

domain includes the phosphate-binding loop (P-loop). The C-lobe contains 

the activation loop (T-loop), which has a function in ATP binding, and the 

catalytic loop, which include an acidic amino acid (proton acceptor) that 
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incorporates the remaining proton from the attacking substrate. (Endicott et 

al., 2012; Hunter, 2012; Kornev and Taylor, 2015; Taylor and Kornev, 

2011). 

 Phosphate groups can be added to one of the three hydroxylated amino 

acids (Serine, Threonine and Tyrosine) through ATP hydrolysis. Serine and 

threonine, both aliphatic amino acids, are phosphorylated by the action of 

Ser/Thr kinases and dephosphorylated by Ser/Thr phosphatases. 

Phosphorylation of tyrosine, which contains an aromatic ring, requires 

enzymes with a larger catalytic site, which are the Tyr kinases and Tyr 

phosphatases. Only in a few cases enzymes present dual reactivity and can 

(de)phosphorylate both serine/threonine and tyrosine residues (Endicott et 

al., 2012). 

 Together with ubiquitin-mediated protein degradation, mitosis is 

guided by protein phosphorylation. In mammals, there are four families of 

kinases involved in mitosis: Cyclin Dependent Kinases (CDKs), Polo like 

kinases (Plks), Aurora kinases and NIMA kinases. 

The CDK family 

 The CDKs are Ser/Thr protein kinases that bind cyclin subunits. CDKs 

activity is controlled by this binding as the catalytic pocket of CDKs is only 

accessible after it. Mammals contain 20 CDKs (CDK1 to 20) and 29 cyclin 

subunits. CDKs preferentially modify serine and threonine residues directly 

followed by a proline (S/TPX). In addition to their well-known function in 

cell cycle control, it is now evident that mammalian CDKs and cyclins play 

indispensable roles in processes such as transcription, epigenetic regulation, 

metabolism, stem cell self-renewal, neuronal functions and spermatogenesis 

(Lim and Kaldis, 2013; Malumbres and Barbacid, 2005). 
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Figure 3: CDKs and respective 
cyclins involved in cell cycle 
 

 

 

 Mitotic signals initially induce in G1 the synthesis of the D-type 

cyclins and possibly the proper folding and transport of CDK4 and CDK6 

to the nucleus. Active complexes phosphorylate members of the 

retinoblastoma (Rb) protein family, which includes pRb, p107 and p130, that 

repress transcription by distinct mechanisms. In human cells, pRb contains 

13 conserved sites that are phosphorylated by CDKs. CDK4 and CDK6 

phosphorylate residues Ser807 and Ser811, priming it for further 

phosphorylation by these or other CDKs at other sites. pRb inactivation 

results in de-repression of multiple genes encoding proteins required for 

DNA synthesis or mitosis, such as E-type cyclins (E1 and E2), which in turn 

bind and activate CDK2. 

 CDK2–cyclin E complexes further phosphorylate these proteins, 

leading to their complete inactivation. CDK2 is subsequently activated by 

cyclin A2, and this complex is known to phosphorylate numerous proteins  

that are thought to be required for proper completion and exit from S phase 

(Malumbres and Barbacid, 2005; Sherr and Roberts, 2004). At the 

centrosome, CDK2 phosphorylates centrosomal NPM/B23 to promote 

centrosome licensing for S-phase duplication through still unknown 
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mechanisms. In fact, centrosome separation and duplication occur 

prematurely in Cdk2−/− MEFs and are compromised in Cdk4−/− MEFs. 

Additionally, ablation of Cdk4 or Cdk2 suppress centrosome amplification 

and chromosome instability in p53-null MEFs by abrogating excessive 

centriole duplication. Furthermore, hyperactive CDK2 and CDK4 promote 

the licensing of the centrosome duplication cycle in p53-null cells by 

hyperphosphorylating nucleophosmin (NPM) (Adon et al., 2010). 

 CDK1 binds to cyclin A at late G2 and cyclin B at mitosis, allowing 

phosphorylation of different substrates and the correct progression of 

centrosome maduration and separation, as well as entry into mitosis through 

the control of chromosome condensation, Golgi dynamics, nuclear envelope 

breakdown (NEB) and spindle formation. In addition to binding to the cyclin 

subunit, phosphorylation and dephosphorylation of CDK1 play a role in the 

control of kinase activity. Thus, phosphorylation at residues T14 and Y15 by 

the Wee1 and Myt1 kinases inhibits CDK1 whereas phosphorylation at T161 

by CDKs Activating Kinases (CAKs) promotes the activation. During 

mitotic entry dephosphorylation by Cdc25 phosphatase rescues CDK1 

activity. Once CDK1 is active, it phosphorylates cyclin B resulting in 

CDK1/cyclin shuttling to the nucleus. At metaphase CDK1 activity is shut 

down, due to cyclin B degradation by the APC complex, and its substrates 

begin to be dephosphorylated to allow chromosome segregation, 

chromosome decondensation, re-assembly of the NE and cytokinesis 

(Malumbres, 2014). 

 Tumour-associated cell cycle defects are often mediated by alterations 

in cyclin-dependent kinase (CDK) activity. Recent studies have revealed that 

CDK1 is the only CDK essential for cell cycle (Santamaría et al., 2007) and 

interphase CDKs are only essential for proliferation of specialized cells, but 

in normal conditions different CDK/cyclin pairs control different phases of 
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the cell cycle (Figure 3). Thus, selective CDK inhibition may provide 

therapeutic benefit against certain human neoplasias (Malumbres and 

Barbacid, 2009). 

The Polo-like kinase family 

 The polo-family serine/threonine kinases were first described in 

mutants that failed to undergo a normal mitosis in Drosophila 

melanogaster (polo) (Llamazares et al., 1991; Sunkel and Glover, 1988). 

They have been shown to have key roles in cell cycle progression, the 

response to genotoxic stress and neuron biology and are controlled at the 

level of protein synthesis and stability, by the action of upstream kinases and 

phosphatases, and by localization to specific subcellular structures 

(Archambault and Glover, 2009; Barr et al., 2004; de Cárcer et al., 2011; 

Zitouni et al., 2014). 

 Plks are characterized by the presence of an N-terminal protein kinase 

domain and a C-terminal polo-box domain (PBD) which is composed 

usually of two Polo-Box (PB) motifs involved in substrate binding and 

regulation of kinase activity. The family can be divided into three different 

subfamilies. Plk1 subfamily which contains the mammalian Plk1 and 

Drosophila polo, the Plk2 subfamily containing Plk2, Plk3 and Plk5 and 

finally the SAK subfamily that contains Drosophila SAK and mammalian 

Plk4 (Figure 4) (de Cárcer et al., 2011; Weerdt and Medema, 2006).  
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Figure 4:  A) The human Plk family and its domains; B) Schematic representation of the 
functions of the Plk family members along the cell cycle. Adapted from (de Cárcer et al, 
2011b).  

 The founding member of the family, Plk1, is a master regulator of cell 

division. This kinase controls centrosome maturation, mitotic entry, spindle 

assembly, correct microtubules attachment to kinetochores, the regulation of 

the APC/C, cytokinesis and centrosome disengagement. Accordingly, to its 

functions, Plk1 localizes to the cytoplasm and centrosomes in interphase and 

accumulates at centrosomes during prophase, at kinetochores in 

prometaphase and metaphase, is recruited to the central spindle in anaphase 

and accumulates at midbody during telophase.  

 Plk1 promotes mitotic entry by activating Cyclin B/Cdk1 in different 

ways. First, Plk1 phosphorylate the phosphatase Cdc25C in a nuclear export 

signal sequence, thereby leading to its nuclear translocation and activation. 

At the same time, Plk1 phosphorylates Cyclin B/CDK-inhibiting kinases 

Wee1 and Myt1 promoting their degradation. Furthermore, Plk1 

phosphorylates Cyclin B at centrosomes, the first site at which Cyclin 

B/CDK1 is activated, on a serine residue (Ser147) that is located within a 

nuclear-export signal, thereby promoting the nuclear accumulation of cyclin 
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B (Barr et al., 2004). Afterwards it is required for centrosome maturation 

controlling the recruitment of γ-tubulin and other PCM proteins, such as 

Nedd1, pericentrin, Cep192, Kizuna or CDK5RAP2 to the centrosomes, 

required for spindle formation (Haren et al., 2009; Oshimori et al., 2006).  

 Binding of Plk1 to PBIP1 is crucial for localizing Plk1 to the 

kinetochores where it can phosphorylate BubR1, thus stabilizing 

kinetochore-microtubule interactions, or PICH, required for the spindle 

assembly checkpoint (Baumann et al., 2007; Elowe et al., 2007; Kang et al., 

2006). Finally, some cytokinetic substrates of Plk1, such as Rock2, Mlkp2 

or NudC, a component of the dynactin complex have been described (Barr 

et al., 2004). 

 Inhibition of Plk1 function by RNA interference or small-molecule 

inhibitors such as BI2536 results in failure to establish a bipolar spindle and 

to properly attach kinetochores to microtubules. Plk1 is an essential gene as 

Plk1-null mice die at the morula stage due to a massive mitotic arrest (Lu et 

al., 2008a; Wachowicz et al., 2016).  

 Similar to many other protein kinases, Plks are activated by 

phosphorylation within a short region of the catalytic domain, the so-called 

T-loop (or activation-loop) (Barr et al., 2004). Plk1 is activated at the G2/M 

transition and its activity reaches peak levels in mitosis. Plk1 activation 

requires phosphorylation at Thr210. During G2, Aurora-A, in complex with 

its cofactor hBora, phosphorylates Plk1 at Thr-210. Activated Plk1 

phosphorylates Cdc25C and Wee1, which induces activation of cyclin B-

Cdk1 complexes and promotes mitotic entry. (Macůrek et al., 2008; Seki et 

al., 2008). Plk1 is then degraded at the start of anaphase after ubiquitination 

by the anaphase promoting complex (APC) (Weerdt and Medema, 2006). 
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 The PBD contributes to substrate specificity and to the changes in 

subcellular localization of Plk1. The PBD of Plk1 binds sequence motifs of 

phosphorylated serine or threonine followed by a proline [pS/pT]PX with 

some preference for S[pS/pT]PX (Elia et al., 2003).Two models for how 

PBD might function to direct Plk1 kinase activity have been described. In 

the first one, called “processive phosphorylation model”, the PBD binds to 

one extreme of the protein and Plk1 phosphorylates at another site of the 

same protein. On the other hand, in the “distributive phosphorylation model” 

the PBD binds to a protein that acts as scaffold and then Plk1 phosphorylates 

a different protein (Lowery et al., 2005). 

 In mammals, an altered expression of Plk1 is associated with 

tumorigenesis. For this reason, Plk1 has been proposed as a cancer 

therapeutic target, being tested some of its inhibitors in clinical trials. 

Interestingly, despite Plk1 known role during mitotic entry, these inhibitors 

arrest cells in prometaphase but not in G2, showing the kinase is dispensable 

for the G2/M transition. However, although PLK1 displays some oncogenic 

activity, all Plks may also function as tumor suppressors (de Cárcer et al., 

2011; Strebhardt and Ullrich, 2006) 

 

 Plk2 (also known as SNK) has a very similar structure to Plk1. It 

contains a kinase domain and two polo-boxes in the polo-box domain. It only 

differs in the Pbind domain, a domain that it uses to bind to some of its 

substrates in non- proliferative tissues where the priming kinases may not be 

present. Plk2 is broadly expressed in different tissues, proliferating and non- 

proliferating, such as post-mitotic neurons. Its expression increases in G1 

and early S phase at centrosomes, where it acts as a regulator (de Cárcer et 

al., 2011). Overexpression and depletion of Plk2 lead to an increase and 

decrease of centrosome numbers, respectively, indicating that Plk2 is 
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required for centriole duplication during S phase. Plk2 is a nonessential gene, 

as Plk2-/- embryos are viable. However, Plk2 does play a role in cell cycle 

progression since Plk2-/- embryos do show slightly retarded growth and 

skeletal development. Cultured Plk2-/- embryonic fibroblasts grow less and 

show delayed entry into S phase (Weerdt and Medema, 2006). In adittion, 

Plk2 binds and phosphorylates NPM/B23 (Nucleophosmin) on serine 4 in S-

phase, which is necessary for centriole duplication (Krause and Hoffmann, 

2010). Plk2 indirectly activates ROCK2 via phosphorylating nucleophosmin 

(NPM), and Plk4 functions downstream of ROCK2 to drive centrosome 

amplification in the arrested cells (Ling et al., 2015). 

 Plk3 (also named FNK or PRK) is required at the G1-S phase 

transition, where it promotes the accumulation of cyclin E and activation 

of Cdc25A, favoring DNA replication. It has also been proposed that Plk3 

might sense genotoxic stress (de Cárcer et al., 2011). 

 Plk4 (also known as SAK) structurally differs from the other members 

of the Plk family, because it does not have the canonical two polo-boxes 

conforming a polo-box domain. Instead, Plk4 possesses a unique central 

region called the “cryptic polo box”, with two tandem, homodimerized polo 

boxes, PB1-PB2. This C-terminal polo box (PB3) is required for binding the 

centriolar protein Cep152 as well as robust centriole targeting. Thus, it 

facilitates oligomerization, targeting, and promotes trans-

autophosphorylation, limiting centriole duplication to once per cell cycle 

(Slevin et al., 2012). Plk4 plays an essential role in centrosome duplication. 

Overexpression of Plk4 leads to an excessive formation of centrioles and 

depletion of Plk4 by RNAi prevents centriole formation causing mitotic 

defects (Bettencourt-Dias et al., 2005). Plk4 -/- mice die at E7.5 showing 



INTRODUCTION 
 

 37 

Plk4 as essential for post-gastrulative embryonic development (Hudson et 

al., 2001).  

 Abnormal expression of Plk4 has been linked with genomic 

instability and a predisposition to tumorigenesis and thus Plk4 abundance 

must be tightly regulated in order to correctly control centrosome number 

and maintain genome integrity.  Plk4 is a low-abundance kinase whose 

stability is directly linked to the activity of the enzyme, with active Plk4 

phosphorylating itself to promote its own destruction through the 

ubiquitin–proteasome pathway. The SCF (Skp/Cullin/F-box) E3 ligase 

associates with phosphorylated Plk4 through the F-box protein β-TrCP. 

Phosphorylation of two residues within the β-TrCP-binding motif of Plk4 

promotes the binding of β-TrCP and subsequent ubiquitylation and 

destruction of the kinase (Cunha-Ferreira et al., 2009; Holland et al., 2012; 

Sillibourne et al., 2010) 

 It was recently described that ROCK2, Plk2 and Plk4 induce 

centrosome amplification in arrested cells by a lineal pathway. Plk2 

phosphorylates NPM on Ser4, which promotes phosphorylation of NPM on 

Thr199 by CDK2-cyclin E (or cyclin A). NPM acquires a high binding 

affinity to ROCK2 by Thr199 phosphorylation, which leads to facilitation of 

NPM to interact with ROCK2 at centrosomes. ROCK2 then either directly 

or indirectly acts on Plk4, which in turn acts on its targets, leading to 

induction of centrosome re-duplication  (Ling et al., 2015). 

 

Finally, Plk5, which lacks kinase activity, is only expressed in a few non-

proliferative tissues, as in the central nervous system. It is mostly transcribed 

in cerebellum where is functionally important (de Cárcer et al., 2011).  
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The Aurora family 

 The original aurora allele was identified in a screen for Drosophila 

mutants that were defective in spindle-pole behavior (Glover et al., 1995). 

The mammalian genomes contain three genes encoding Aurora kinases 

called Aurora A, B and C. The three Aurora kinases are serine/threonine 

kinases and have a N-terminal domain, a kinase domain and a C-terminal 

domain. Aurora A and B share 71% identity in the C-term catalytic domain. 

Despite the similarity, the three mammalian Aurora kinases have very 

distinct localizations and functions. The expression levels of human Auroras 

are high in certain types of cancer, which has increased the interest to this 

family of kinases as potential drug targets for the development of new anti-

cancer therapies (Carmena and Earnshaw, 2003). 

 Aurora A levels increases during late S/early G2 reaching a peak in 

early mitosis. Low levels of Aurora A have also been reported on the 

midbody late in mitosis. The APC initiates Aurora-A degradation in 

anaphase B but only completes it in G1 phase. Aurora A is present on 

duplicated centrosomes from late S phase until early G1 phase and it is also 

detectable on spindle microtubules during mitosis. It participates in several 

crucial mitotic processes, such as the mitotic entry, by activation of Plk1 and 

CDK1, through phosphorylation and activation of Cdc25, the phosphatase 

that reverts CDK1/cyclin B inactivation by phosphorylation, but is also 

necessary for proper centrosome maturation and separation (Barr and 

Gergely, 2007; Vader and Lens, 2008). Aurora A also has roles in 

microtubule organization and it coordinates centrosome independent and 

chromatin dependent spindle assembly (Meunier and Vernos, 2015). 

The kinase activity of Aurora A is regulated by autocatalytic 

phosphorylation of Thr288 in its T-loop but this is facilitated by cofactors. 

At centrosomes, two proteins bind Aurora A and facilitate its activation and 
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its centrosomal localization: Ajuba and Bora. Bora is nuclear during 

interphase, but during the G2/M transition is translocated to the cytoplasm 

in a CDK1 dependent manner.  Bora interacts with Plk1 and controls the 

accessibility of its activation loop for phosphorylation and activation by 

Aurora A. Phosphorylation of Plk1 lead to the activation of cyclin-dependent 

kinase 1 and mitotic entry. Aurora-A can also directly activate Cdc25B by 

phosphorylation at Ser-353. During mitosis, active Cdk1 primes hBora for 

interaction with and phosphorylation by Plk1, which, in turn, leads to 

proteasomal degradation of Bora. Aurora-A is now free to interact with 

TPX2, a complex that is necessary for bipolar spindle assembly (Chan et al., 

2008; Hutterer et al., 2006; Seki et al., 2008).  

 

 Moreover, TPX2 is another important Aurora A cofactor. TPX2 is a 

Microtubule Associate Protein (MAP) regulated by the RanGTP pathway 

that has a role in microtubules stabilization and Aurora A activation (see 

below). After NEBD Ran–GTP releases TPX2 from importin that then binds 

Aurora A at the centrosome and targets it to the microtubules proximal to the 

pole. Binding of TPX2 to Aurora-A not only induces it to adopt an active 

conformation by autophosphorylation but also prevents dephosphorylation 

of Thr288 by protein phosphatase 1 (PP1). TPX2 is also required for 

localization of the kinase to the spindle after NEB (Bayliss et al., 2003; Gruss 

et al., 2001; Neumayer et al., 2014). 

 Aurora B, together with INCENP, Survivin and Borealin, forms the 

Chromosomal Passenger Complex (CPC). These subunits bind to Aurora B 

promoting its autophosphorylation and thus, its activation and recruitment to 

the centromeres at early mitosis. The kinase moves to the spindle midzone 

and finally, during cytokinesis accumulates at the midbody. Aurora B has a 
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role in controlling chromosome-microtubule interaction, cohesion, spindle 

stability and cytokinesis (Carmena et al., 2009; Vader and Lens, 2008). 

 Aurora C is a chromosomal passenger protein localizing first to 

centromeres and then to the midzone of mitotic cells that cooperates with 

Aurora B to regulate mitotic chromosome segregation and cytokinesis in 

mammalian cells (Bolanos-Garcia, 2005). It is differentially expressed in 

testis, with an important role in meiotic cells (Vader and Lens, 2008).  

 Thus, mitotic entry is conformed by a network of events in which 

every kinase supports the activation of the other ones (Figure 5). Cells decide 

to enter or not into mitosis in late G2. Mechanisms as the G2 checkpoint 

ensure that the cells are ready to start mitosis without damage. Mitotic entry 

is defined by an increased activity of CDK1/cyclin B and therefore, this 

protein complex is the final target of G2 checkpoint pathways. CDK1 

activation is supported by the action of Aurora A and Plk1. Plk1 promotes 

the degradation of the CDK1 inhibitor Wee1 and the activation of the CDK1 

activating phosphatase Cdc25C. At the same time Plk1 activity induces 

Aurora A accumulation at centrosomes at late G2. On the other hand, Aurora 

A activates Plk1 by phosphorylation at Thr210 and promotes the activation 

of Cdc25B phosphatase and cyclin B recruitment. Finally, Aurora A 

activation is also affected by CDK1 activity (Lens et al., 2010). 
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The NIMA family 

 The NIMA-family of serine/threonine kinases is named after the 

NIMA kinase, identified in Aspergillus nidulans as the product of a gene 

that when mutated abrogated proliferation, arresting cells in G2 (hence the 

name nimA never in mitosis A). Overexpression of NIMA induced a 

pseudo-mitotic state with condensed chromosomes and aberrant spindles. 

Thus, NIMA was characterized as an essential protein for mitotic entry and 

progression in Aspergillus, regardless of cdc2 activation. Later on, NIMA 

was shown to control the nuclear import of Cdc2/cyclin B, chromatin 

condensation, spindle and nuclear envelope organization and cytokinesis 

in Aspergillus (O’Connell et al., 2003a)(O’regan et al., 2007). 

  

 

Figure 5: Localization of Plk1 (green), 
aurora A (purple) and aurora B (red) in 
mitosis and crosstalk between them 
(Lens et al., 2010). 
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 NIMA-related kinases, or Neks are conserved across most eukaryotes. 

The number of Neks encoded within the genome varies from organism to 

organism with a correlation with complexity of the molecular structures that 

contribute to formation of cilia and flagella. Plant cells have around six Neks, 

Drosophila only two Neks (Nek2 and Niki), while C. elegans has four (Nekl-

1-4). Fungi and yeast have only one member of the NIMA related kinase 

(Neks), but the family is expanded in ciliated organisms where it has been 

suggested to coordinate cilia with cell cycle. Examination of different 

genomes shows that there is a correlation between number of Neks in 

organisms and whether or not it has ciliated cells that divide (Quarmby and 

Mahjoub, 2005). 

 Mammalian cells contain 11 NIMA-family members (Figure 6)  (Fry 

et al., 2012; O’Connell et al., 2003a) that have a N-terminal catalytic domain 

with high identity (40-50%) with the kinase domain of NIMA and a C-

terminal regulatory domain, which is the most divergent part among them. 

Hence, they may share at least some of NIMA functions during mitosis but 

have also acquired novel regulatory roles, and different members of the 

family have been proposed to be involved in the control of the microtubule 

and ciliary machineries (Nek1, Nek8) and the response to DNA damage 

(Nek1, Nek10, Nek11). Nek2, Nek5, Nek9 and the highly similar Nek6 and 

Nek7 are involved in the control of the centrosomal cycle and of mitotic 

spindle formation (Fry et al., 2012, 2017; O’Connell et al., 2003b; O’regan 

et al., 2007). 
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Figure 6: The NIMA-related kinases family (modified from O’Connell et al.,2003) 

 

Neks in ciliogenesis and the DNA Damage Response 

 Nek1 is important for efficient DNA damage checkpoint control and 

for proper DNA damage repair (Chen et al., 2008) and its overexpression 

leads to abnormal chromatin condensation (Feige et al., 2006). On the other 

hand, Nek1 depletion in mice suggests a role of this protein in the kidney, as 

mice devoid of the kinase developed polycystic kidney disease (PKD), in 

addition to other defects like dwarfism and facial dysmorphism (Upadhya et 

al., 2000). Nek1 is localized to the centrosome or the basal body region of 

the cilia and its overexpression inhibits ciliogenesis while its depletion 

causes defects in cilia assembly (Shalom et al. 2008). This strongly suggests 

a ciliary role for Nek1  and may  explains the mice phenotype (Shalom et al., 

2008). 
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 Nek8, also localizes at centrosomes and basal body of primary cilia 

and defects in its function or localization result in ciliopathy, including 

kidney disorders (Otto et al., 2008). Nek8 targeted disruption in mice is lethal 

and causes defects in left-right asymmetry (Manning et al., 2013). In 

addition, may regulate local cytoskeletal structure in kidney tubule epithelial 

cells (Liu et al., 2002). 

 Nek10 is implicated in DDR by promoting MEK/ERK activation and 

G2/M arrest in response to UV radiation (Moniz et al., 2011).  

 Nek11 is an important component of the pathway enforcing the G2/M 

checkpoint. Under DNA damage is activated by direct Chk1 phosphorylation 

and when active it phosphorylates Cdc25a and triggers it for degradation, 

thus preventing entry into mitosis (Melixetian et al., 2009).  

 

Other Neks 

 Nek3 is highly expressed in neurons and it may have some role in 

disorders where axonal degeneration is an important component, as Nek3 

mutants results in a decrease of microtubule stability (Chang et al., 2009). 

 Nek4 has a role in microtubule regulation and a recent work on the 

Nek4 interactome indicates that this kinase could also be associated with the 

DDR or ciliogenesis (Basei et al., 2015; Doles and Hemann, 2010)  
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Mitotic Neks 

Nek2 

 Nek2 is the most closely related Nek to Aspergillus NIMA, localize to 

centrosomes Nek2 and is a cell cycle- regulated kinase with maximal 

expression and activity in S and G2 (Fry et al., 1995, 1998a). Nek2 function 

is to disassemble the proteinaceous linker that connects the duplicated 

centrosomes at the onset of mitosis, called centrosome disjunction, to 

facilitate centrosome separation and the establishment of the mitotic spindle 

(Fry et al., 2012; O’Regan et al., 2007). 

 At the G1/S transition vertebrates express two major splice variants, 

Nek2A and Nek2B that differ in their extreme C termini, which has 

important implications for their regulation, as the C terminus of Nek2A, but 

not Nek2B, contains both a binding site for protein phosphatase 1 and motifs 

that target the protein for ubiquitin-mediated degradation after mitotic entry. 

Importantly, Nek2A and Nek2B exhibit distinct patterns of cell-cycle-

dependent expression. Both are present in low amounts in G1, which 

increased in the S and G2 phases. However, Nek2A disappears in 

prometaphase cells, whereas Nek2B remains elevated. APC/C mediated 

destruction of Nek2A occurs in early mitosis resulting in low Nek2A levels in 

M/G1. The degradation of Nek2B does not occur during this time allowing 

Nek2B to persist throughout mitosis (Fletcher et al., 2005; Hames and Fry, 

2002). 

 

 Nek2A activates by autophosphorylation in G2, and it has been 

described that homodimerization of the protein is essential for this 

autophosphorylation and subsequent activation of the kinase (Fry, 2002). 

Interaction of Nek2A with protein phosphatase 1 (PP1) can lead to 
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dephosphorylation and inhibition of Nek2, suggesting that Nek2 may only 

become fully activated once PP1 is inactivated at the onset of mitosis. 

Besides autophosphorylation, Nek2 may be regulated by upstream kinases. 

The kinase can in fact be inactivated during interphase by a complex 

composed by Mst2 and PP1-γ. During the G2/M transition Mst2 is 

phosphorylated by Plk1, which liberates Mst2/Nek2A from the inhibitory 

effect of PP1-γ. Once liberated, Mst2 phosphorylates Nek2A promoting its 

activation. Finally, this phosphorylation allows Nek2 translocation to the 

centrosomes, where Mst2/Nek2A complex is stabilized by hSav1 (Mardin et 

al., 2010). Once it is activated at late G2, Nek2 phosphorylates proteins that 

constitute the intercentrosomal linker, such as C-Nap1 (Fry et al., 1998a) , 

Rootletin, Centlein, Cep68 (Fang et al., 2014) and ß- Catenin (Bahmanyar et 

al., 2008) promoting its dissolution. Cells lacking Nek2 fail to remove C-

Nap1 from centrosomes upon mitotic entry (Mardin et al., 2010). 

 In addition, Nek2 also phosphorylates centrobin, that can bind 

microtubules  promoting microtubules  stabilization and thus allowing 

organization of the microtubule network in interphase and bipolar spindle in 

mitosis (Jeffery et al., 2010a; Jeong et al., 2007a).  

 Besides its functions in centrosomes, Nek2A is associated to the 

kinetochores and is necessary for faithful chromosome segregation. Nek2A 

phosphorylates Hec1 and this phosphorylation is essential for a faithful 

chromosome attachment to spindle microtubule, which prevents 

chromosome instability during cell division (Du et al., 2008). Nek2A also 

phosphorylates human Sgo1 and such phosphorylation is essential for 

faithful chromosome congression in mitosis (Fu et al., 2007) Nek2A plays a 

defining role in spindle assembly checkpoint control by binding and 

phosphorylating Mad2 and Cdc20. In this way, Nek2 deregulation may 
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promote aneuploidy by disrupting the control of the mitotic checkpoint (Liu 

et al., 2010). 

 

 Nek2B is involved in maintenance of centrosome structure and 

spindle assembly since its depletion results in a delay in centrosome 

maturation, microtubules aster formation and mitotic delay. Upon exiting 

mitosis, cells exhibit mitotic defects such as the formation of multinucleated 

cells. Such phenotypes are not observed in cells that exit mitosis in the 

absence of Nek2A. These observations suggest that Nek2B may be required 

for the execution of mitotic exit (Fletcher et al., 2005; Uto and Sagata, 2000). 

 Additionally, a third Nek2 isoform has been identified in vertebrates. 

Nek2C is the result of an alternative splicing of Nek2A mRNA. Its function 

is unclear, but due to its nuclear localization in interphase, it may contribute 

to chromatin condensation during mitosis (Wu et al., 2007). 

Nek5  

 Nek5 localizes to the proximal ends of centrioles and contributes not 

only to the loss of the centrosome linker but also to the integrity of the 

pericentriolar material (PCM) and centrosomal microtubule nucleation. 

Upon mitotic entry, Nek5-depleted cells retained centrosome linker 

components and exhibited delayed centrosome separation and defective 

chromosome segregation. Disassembly of the centrosome linker may be 

achieved through cooperation with Nek2, although how this happens 

remains to be determined (Prosser et al., 2015). 
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Nek9 

 Nek9 was originally identified by two independent works. It was 

purified during a search for protein kinases induced by IL-1, although it is 

not physiologically activated by the interleukin, and named Nek8 by error 

(Holland et al., 2002); and through coimmunoprecipitation with Nek6 from 

cultured cell lines and originally named Nercc1 (Roig et al., 2002a). 

 Nek9 is a 120 KDa protein with a 979 amino acids sequence. It is 

highly conserved in mammals, birds and amphibians. In fish and 

invertebrates it exist but is shorter and only 20 to 50% similar to human Nek9 

(Parker et al., 2007). Nek9 has three main domains, an N-terminal kinase 

domain (residues 52- 308 in humans), a RCC1 domain (residues 347-726) 

that acts as an autoinhibitory domain and a non-catalytic C-terminal domain 

(761-979) containing different motifs and features, including a putative 

coiled coil (891-940) that is necessary for the oligomerization of Nek9 

resulting in autophosphorylation and activation in vitro  (Figure 7) (Roig et 

al., 2002a). This kinase domain is followed by a functional NLS with two 

classical nuclear localization motifs, although Nek9 is cytoplasmic. It 

follows the RCC1 domain, followed by nine consecutive glycine residues 

that possibly conform a flexible hinge, encompassed within a PEST 

sequence. An acidic serine/threonine/proline-rich segment (761–890) 

follows next, which includes two motifs that conform to the SH3-domain-

binding sequence PXXP, and seven SP and TP sites motifs, putative Cdk1 

phosphorylation sites (Holland et al., 2002; Roig et al., 2002a).  

 This protein is expressed in all tissues and cell lines studied at similar 

levels during the cell cycle. Nek9 activity requires the phosphorylation of a 

residue within its T-loop, Thr210. Nek9 is able to auto activate in vitro 

through the autophosphorylation of this residue. In vivo it is inactive during 



INTRODUCTION 
 

 49 

interphase, and a small amount (5%) is activated in prophase and localize at 

centrosomes and spindle poles during mitosis by a two-step mechanism 

mediated by Plk1 and CDK1 (Figure 7, Figure 8). Interestingly, a significant 

fraction of active Nek9 is associated with chromosomes and the midbody 

after the metaphase-anaphase transition, suggesting possible roles of Nek9 

after metaphase (Bertran et al., 2011; Roig et al., 2005). 

 The Nek9 activation mechanism consists on a first phosphorylation by 

Cdk1 at Ser869 which allows the subsequent binding of the PBD of Plk1. 

Once bound, Plk1 phosphorylates Nek9 at different sites, among them the 

RCC1 domain, thus possibly releasing the kinase domain and allowing 

Thr210 phosphorylation and Nek9 activation. Once active, Nek9 may be 

able to autophosphorylate resulting in an amplification of the activation.  

 When Nek9 is active, it binds, phosphorylates and activates both Nek6 

and Nek7 (Belham et al., 2003). This activation is important for the 

subsequent phosphorylation of the kinesin Eg5 at ser1033, a site that, 

together with CDK1 site Thr926, controls accumulation of a pool of Eg5 at 

the centrosomes and is necessary for prophase centrosome separation and 

normal mitotic spindle formation (Bertran et al., 2011; Eibes et al., 2018; 

Rapley et al., 2008). Simultaneously, Nek9 directly regulates centrosome 

maturation and the ability of this organelle to nucleate enough microtubules 

to organize a normal spindle by phosphorylating the protein adaptor 

Nedd1/GCP-WD, controlling its centrosomal accumulation and thus the 

centrosomal content of γTuRC, the major microtubule nucleating complex 

of the cell (Sdelci et al., 2012) (Figure 6, and see below). 

 Nek9 interacts with the multifunctional protein (and dynein light 

chain) LC8 through a KXTQT motif at the C-terminal domain of Nek9. This 

binding modulates Nek9 oligodimerization and autophosphorylation. In 

response to Nek9 activation and autophosphorylation, LC8 binding to Nek9 
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is disrupted, thus allowing Nek9 to interact with Nek6/7 and activate these 

two related kinases (Regué et al., 2011). 

 
 

Figure 7: A) Nek9 cartoon representation and its dimerized form; B) Mechanism of Nek9 
activation and the processes derived from it. 
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Figure 8: Localization of active Nek9 during cell cycle and different stages of mitosis 

(Roig et al., 2005). 

 

 Loss-of-function phenotypes for Nek9 by gene knockout have not 

been reported, although a number of observations indicate that interference 

with the protein kinase results in abnormal progression through the cell 

cycle, and specifically mitosis. Thus, overexpression of inactive Nek9 

(Nek9[K81M]) is toxic for cells. They do not divide and can undergo 

apoptosis. The microinjection of antibodies against Nek9 during prophase 

leads to prometaphase arrest with nonaligned chromosomes and a 

disorganized spindle, abnormal mitosis and aneuploidy (Roig et al., 2002a). 

In parallel, immunodepletions of endogenous XNercc in Xenopus lavevis 
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meiotic extracts interfere with both the formation of mitotic spindle and 

normal chromosome alignment (Roig et al., 2005). 

 

 Nek9 depletion in glioblastoma and kidney cancer cells by siRNA has 

been described in slower cellular growth due to prolonged G1 and S phase  

and  induced cytokinesis failure and incorrect chromosome separation, 

characterized by the formation of giant micronucleated cells (Kaneta and 

Ullrich, 2013). 

 Nek9 is a component of the acentriolar MTOCs in mouse oocytes, 

which is critical for meiotic spindle stability and accurate chromosome 

segregation. Depletion of Nek9 in oocytes using specific morpholino 

dissociated γ-tubulin from the MTOCs with disrupted meiotic spindle 

structure and misaligned chromosomes resulting in SAC activation and 

meiotic arrest at the Pro-MI/MI stage (Yang et al., 2012). 

 

 In the present work we described that Nek9 KO mice are not viable 

and die at very early stages of embryonic development. In humans, Nek9 is 

essential during development based on the recent description of a Nek9 

mutation (c.1489C>T; p.Arg497∗) that cause a lethal recessive skeletal 

dysplasia, which is the first disorder to be associated with NEK9 in humans 

to date (OMIM entry #617022). Characterization of patient fibroblasts 

showed a significant reduction in cell proliferation, a delay in cell cycle 

progression and a reduction in cilia number and length. Also the Nek9 

orthologue in C. elegans is restricted to ciliated cells adding further support 

for a potential role of Nek9 in ciliary function (Casey et al., 2016).   

Furthermore, it was recently shown that somatic point mutations in Nek9 

cause Nevus comedunicos. This rare disease is characterized by the presence 

of skin injuries similar to acne (Levinsohn et al., 2016).  
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 Nek9 has also been identified as a crucial factor involved in cell-cycle 

progression in p53-deficient cancer cells, as its depletion selectively 

inhibited proliferation in p53-deficient cancer cells both in vitro and in vivo 

with G1 arrest and senescence-like features. Thus, Nek9 inhibition provide 

a possible way to selectively target cancer cells that lack functional p53 with 

the corresponding development of novel cancer therapies (Kurioka et al., 

2014). 

 Apart from its mitotic functions, Nek9 binds and phosphorylates the 

dynein adaptor protein BicD2, although the function of this phosphorylation 

is not known(Holland et al., 2002).Besides, Nek9 may has a role in the 

nucleus as a fraction of Nek9 has been reported to be associated with the 

chromatin modulator FACT (Tan and Lee, 2004), in autophagy as depletion 

of the kinase impairs this process inhibiting the cargo recruitment to vesicles 

and vesicle trafficking (Behrends et al., 2010) and in the replication stress 

response (RSR) by promoting CHK1 activity as its depletion in cells leads 

to replication stress hypersensitivity, spontaneous accumulation of DNA 

damage and an impairment in recovery from replication arrest (Smith et al., 

2014). 

 

Nek6 and Nek7 

 Nek6 and Nek7 were identified as two NIMA-related kinases with a 

highly similar catalytic kinase domain (85% identical) and lacking the 

regulatory C-terminal domain typical of other Neks. They only differ in the 

N-terminal region of the protein, just before the kinase domain. They were 

identified first in mice (Kandli et al., 2000). 

Later, they were described in humans as ribosomal protein kinase p70 S6 

kinases (Belham et al., 2001; O’Regan and Fry, 2009) They are the shortest 
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members of the NIMA family and both of them bind and are activated by 

Nek9  ( Belham et al., 2003; Roig et al., 2002a). 

 In metaphase, Nek6 is associated with spindle microtubules, in 

anaphase it localizes in the central spindle and it is found in the midbody 

when cells undergo cytokinesis. In contrast, Nek7 is localized to 

centrosomes either in interphase or mitosis (O’Regan and Fry, 2009). 

 Nek9 binds to, phosphorylates and activates Nek6/7 by direct 

phosphorylation at Ser206 and Ser195 respectively. Once active, Nek6 

autophosphorylates at Ser137 and Ser202 causing a higher activation of the 

kinase (Belham et al., 2003). In parallel it has been described that Nek7 is 

also activated upon binding to the C-terminal domain of Nek9, that dimerises 

through a coiled-coil domain and could thereby bring together two molecules 

of Nek7 to promote autophosphorylation, releasing autoinhibition through 

Tyr97. The same happens in Nek6 with the analogous Tyr108 (Haq et al., 

2015; Richards et al., 2009). 

 Nek6 and Nek7 have a number of different functions during mitosis 

related to the control of centrosome positioning, spindle assembly and 

cytokinesis. Upon Nek9 activation, Nek6 and Nek7 phosphorylate the 

kinesin Eg5 at Ser-1033 that, together with CDK1 phosphorylation at Thr-

926, allows Eg5 to accumulate around centrosomes and stimulate their 

separation in prophase before nuclear envelope breakdown (Bertran et al., 

2011; Rapley et al., 2008).  Also, both Nek6 and Nek7 contribute to nuclear 

envelope breakdown though phosphorylation of the nuclear pore protein, 

Nup98 (Laurell et al., 2011). In prometaphase and metaphase, Nek6 

promotes spindle assembly through phosphorylation of the heat shock 

protein, Hsp72 (O’Regan et al., 2015). Finally, several reports implicate 

Nek6 and Nek7 in the control of cytokinesis, possibly by phosphorylating 
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the kinesins Mklp2 and Kif14 (Cullati et al., 2017; Fry et al., 2017; O’Regan 

and Fry, 2009; Rapley et al., 2008; Salem et al., 2010). 

 Apart from mitosis, these kinases may have additional roles in 

interphase. For example, Nek7 has been shown to be important for primary 

cilia formation, as Nek7 -/- MEFs exhibit abnormal cilia numbers (Salem et 

al., 2010)and for regulating microtubules in interphase (Cohen et al., 2013). 

Furthermore, Nek6 and Nek7 have been implicated in the regulation of 

centrosome duplication and maturation, senescence, DNA damage response 

(Gupta et al., 2017; Kim et al., 2011; Lee et al., 2008; Tan et al., 2017) and 

in activation of the NLRP3 inflammasome (He et al., 2016). 

 Cell expression of Nek6/7 kinase inactive mutants or depletion by 

RNAi results in an increase of mitotic cells, multipolar and fragile spindles, 

abnormal chromosome segregation, multinucleation and cell death (Fry et 

al., 2017; O’Regan and Fry, 2009; Yin et al., 2003; Yissachar et al., 2006). 

Nek6 and Nek7 mRNAs are present in most tissues, both in human and 

mouse. However, the two kinases are expressed differentially during 

embryogenesis and in different regions of the adult nervous system (Feige 

and Motro, 2002). Nek6 knockout animals are born at Mendelian ratios and 

do not show an obvious phenotype, only an increased cardiac hypertrophy 

after transthoracic aorta constriction (Bian et al., 2014). Conversely, 

knockout of Nek7 results in late embryonic or perinatal lethality and severe 

growth retardation. In addition, Nek7 depleted MEFs present binuclear cells, 

tetraploidy, chromosomal instability, micronuclei and also differences in 

frequency of primary cilia. Thus, Nek7 has crucial functions during 

development that cannot be replaced by Nek6 (Salem et al., 2010). Nek6 low 

resolution and Nek7 high resolution structures have been solved. The 

structures show that both kinases are formed by a globular kinase domain 
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and a disordered N-terminal domain (Meirelles et al., 2011; Richards et al., 

2009). 

 

Spindle formation 

 The key components of the mitotic spindle are microtubules, 

chromosomes that consist of two sister chromatids tightly adhered at their 

centromere regions where each sister assembles a kinetochore that attaches 

the chromosome to spindle microtubules, centrosomes in cells that have 

them, and numerous cell division proteins. 

 There are three subpopulations of microtubules: kinetochore 

microtubules that connect chromosomes to spindle poles; interpolar 

microtubules that originate from opposite poles and interact in an antiparallel 

way stabilizing the bipolarity of the spindle, and astral microtubules that 

extend away from centrosomes into the cytoplasm and have a function in 

orientating and positioning the spindle within the cell (Figure 9) (Wittmann 

et al., 2001). Microtubules s are polarized filaments composed by a- and b-

tubulin heterodimer arranged linearly in a head-to-tail configuration within 

protofilaments. Thirteen parallel protofilaments associate laterally to form 

the cylindrical microtubule structure. Two are the fundamental properties of 

microtubules: their dynamic properties and their structural polarity. The 

dynamic properties allow microtubules to grow or shrink in the presence of 

GTP by the gain or loss of tubulin dimers at both ends. It is known as 

dynamic stability, which is defined by switching states from growth to 

shrink (catastrophe) and shrink to growth (rescue). It is regulated by 

microtubule-associated proteins (MAPs) (Desai and Mitchison*, 1997; 

Mitchison and Kirschner, 1984). The second important property of 

microtubules is their polarity. Because of the asymmetry of the tubulin 

dimer subunits, the minus ends and the plus ends of microtubules have 
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different dynamics. (Desai and Mitchison*, 1997). The microtubule plus 

ends (with b-tubulin exposed at their extremes) are highly dynamic, 

alternating states of shrinkage and growth. These ends are usually oriented 

towards the surface of the cell. However, minus ends (exposing α-tubulin 

monomers) are less dynamic, and although they can grow they do it slowly 

than plus ends. In cells, minus ends can be stabilized due to their association 

with the centrosome or other MTOCs. Different motor proteins, including 

dynein and a large set of kinesin-like proteins, recognize microtubules 

polarity and move their cargo (microtubules, chromosomes and other 

proteins) along them (Figure 9) (Wittmann et al., 2001). 
 

 

 

 

 

 

 

 

Figure 9: Key components of the mitotic spindle and the tubulin assembly-
disassembly cycle (Walczak and Heald, 2008). 

 

 In mitosis, distinct complementary mechanisms drive nucleation and 

reorganization of microtubules for bipolar spindle assembly (Figure 10). The 

first model proposed is a centrosome-based microtubule nucleation, the 

“search and capture” model, in which centrosome nucleate microtubules 

till their plus ends are captured and stabilized by one of the sister 

kinetochores. Thus, chromosomes find a become bioriented at the equator of 
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the cell (Duncan and Wakefield, 2011; Kirschner and Mitchison, 1986; 

Walczak and Heald, 2008). In contrast to the ‘‘search and capture’’ pathway, 

in the “self-assembly’’ model microtubules are nucleated around 

chromosomes, independently of centrosomes, and sorted into an antiparallel 

array that generates the bipolar spindle. Microtubules nucleation and spindle 

assembly dependent of chromatin and kinetochores is mediate by Ran 

GTPase via localization of its guanine nucleotide exchange factor RCC1. 

Upon nuclear envelope breakdown, RCC1 bound to condensing chromatin 

generating a gradient of RanGTP in the vicinity of the chromosomes. 

(Duncan and Wakefield, 2011; Gruss et al., 2001; Hetzer et al., 2002). The 

kinetochores stabilize microtubules (k-fibers) originated around 

chromosomes and become oriented with the plus ends attached to the 

kinetochore and the minus ends focused at the spindle poles (Meunier and 

Vernos, 2011) which finally will be included in the centrosome-driven 

spindle, through cytoplasmic dynein via their capture by astral microtubules  

and at least seven different kinesins (Goshima et al., 2005; Maiato et al., 

2004; Rieder, 2005; Rieder and Khodjakov, 2003). RanGTP releases import 

cargoes from importin β binding either in the interphase nucleus or 

surrounding chromosomes during mitosis, some of which are spindle 

assembly factors (SAFs) such as TPX2 and NuMA, , allowing the activation 

of proteins that function in spindle assembly (Dasso, 2002; Hetzer et al., 

2002). The chromosomal passenger complex (CPC), consisting of Aurora 

B, INCENP, Survivin and Borealin has been also shown to be required for 

microtubule generation during spindle formation (Duncan and Wakefield, 

2011; Tseng et al., 2010). Finally, another mechanism is the augmin 

pathway. The augmin hetero-complex is able to interact simultaneously 

with the γTuRC subunit NEDD1 (Teixidó-Travesa et al., 2010) and pre-

existing spindle microtubules facilitating intra-spindle microtubule 

nucleation (Duncan and Wakefield, 2011; Goshima et al., 2008) maintaining 
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polarized microtubule organization, even when noncentrosomal 

microtubules initiation is widespread (Kamasaki et al., 2013).  

 

 
Figure 10:Mechanisms that contribute to mitotic spindle formation (Duncan and 

Wakefield, 2011). 
 

TPX2 
 TPX2, a microtubule Associate Protein (MAP), was originally 

identified as a protein that targets the kinesin-12 family member Xklp2 to 

spindles in Xenopus egg extracts. TPX2 has a dynamic localization along 

the cell cycle. During interphase it localizes at the nucleus while after NEB 

it localizes at spindle poles which requires dynein activity, Eg5 and 

microtubule flux (Ma et al., 2010; Wittmann et al., 2000). Immunodepletion 

of TPX2 from mitotic egg extracts causes defects in spindle pole 

organization and centrosome-directed spindle assembly , and completely 

blocked microtubule growth in the absence of centrosomes (Gruss et al., 

2001). It seems to be conserved in somatic cells having a crucial role in 

chromatin-mediated spindle assembly since TPX2 knockdown completely 

abolished chromosome-mediated microtubule nucleation in mammalian 

cells (Tulu et al., 2006). 

 The N-terminal of TPX2 mediates Aurora A activation, while its C-

terminal mediates microtubule binding and TPX2 interaction with the motor 

protein Eg5 (Ma et al., 2011). TPX2 nuclear localization during interphase 

could be explained by the presence of two nuclear localization signals (NLS) 

recognized by importin-α. Despite its nuclear localization all TPX2 functions 
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described until now are cytoplasmic and exclusive to mitosis, with the only 

possible exception of a role for TPX2 in the DNA Damage Response in 

interphase. (Neumayer et al., 2012, 2014): During prophase, Eg5 localization 

and centrosome separation depend on TPX2, a pool of which localizes to the 

centrosomes before NEBD in a RHAMM- and Nek9-dependent manner. 

Nek9 phosphorylates TPX2 nuclear localization signal (NLS) preventing its 

interaction with importin and nuclear import (Eibes et al., 2018). Then, after 

NEB it localizes at spindle poles, which requires the activity of the dynein–

dynactin complex. In anaphase TPX2 becomes relocalized from the spindle 

poles to the midbody (Wittmann et al., 2000). RanGTP releases TPX2 from 

importin, stimulating interaction between TPX2 and Aurora A kinase, which 

leads to activation of the kinase (by preventing dephosphorylation by PP1 

phosphatases of Aurora A Thr288) and TPX2 phosphorylation. Aurora A 

subsequently phosphorylates the kinesin-5 Eg5 that promotes spindle 

bipolarity and TACC that promotes microtubule polymerization (Bayliss et 

al., 2003; Eyers et al., 2003; Tsai et al., 2003). 

 TPX2 interacts during mitosis with (Receptor for Hyaluronan 

Mediated Motility) RHAMM. This interaction is required for proper 

localization of TPX2 at centrosomes during mitosis and for activation of 

Aurora A (Chen et al., 2014). 

 

Motor proteins  
 Motor proteins involved in assembly and maintenance of the mitotic 

spindle comprise two groups: the dynein family, which moves towards the 

minus ends of microtubules, and the kinesin family, which has members that 

move along the microtubules in both directions and can also play a role 

destabilizing them (Figure 11). 
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The dynein complex  
 Dynein belongs to the AAA+ superfamily of ATPases, associated with 

diverse activities. Dynein has a ring of six AAA+ modules that are linked 

together into one large polypeptide, along with several unique appendages 

that enable motor function. 

Mammals have two differentiated dynein families, cytoplasmic and 

axonemal dynein. Axonemal dynein is present in cilia and flagella whereas 

cytoplasmic dynein has roles on intracellular trafficking and mitosis.  

 Cytoplasmic dynein transport cargos towards microtubule minus ends, 

which includes components of the centrosome, transcription factors and 

cytoskeletal filaments among others. It is also involved in clearing material 

from the periphery of the cell for degradation and recycling (Roberts et al., 

2013). At cell division, cytoplasmic dynein participates in spindle assembly 

dependent of chromatin. Dynein functions include centrosome separation, 

centrosome tethering to the nuclear envelope and nuclear envelope 

breakdown by pulling nuclear membranes and associated proteins in a 

poleward manner along astral microtubules (Raaijmakers and Medema, 

2014; Salina et al., 2002). Mammalian cytoplasmic dynein requires different 

adaptors, such as dynactin, for its motility: lissencephaly 1 (LIS1; also 

known as NUDF), nuclear distribution E (NUDE) and the dynactin complex 

(Kardon and Vale, 2009; Vallee et al., 2012). 

 

 BicD2 is a conserved, dimeric adapter protein. BicD2 N-terminal 

coiled coil domain is not only an adaptor, it is also required for dynein 

activation or motility, it facilitates the interaction between dynein and 

dynactin (Hoogenraad and Akhmanova, 2016; McKenney et al., 2014). 

BicD2 C-terminal part, apart from its interaction with dynactin subunit 

dynamitin, interacts with Rab6, a small GTPase present at Golgi. Rab6 
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interaction with BicD2 promotes BicD2 localization at Golgi during 

interphase (Hoogenraad et al., 2003). This BicD2 fragment also interacts 

with RanBP2 allowing its localization at NE during G2/M transition and is 

important for centrosome tethering to the NE (Splinter et al., 2010).  

 Furthermore, BicD2 C-terminal domain is able to interact directly with 

the N-terminal domain acquiring an inhibitory conformation of the protein 

that could control its interaction with dynein (Hoogenraad et al., 2003). 

 

Kinesins  
 Kinesins are molecular motors that use the energy from hydrolysis of 

ATP to associate with microtubules and control the movement of 

chromosomes in the spindle. There are 14 families of kinesins, and most 

members possess two distinct functional domains: an ATP-hydrolyzing 

motor domain and a tail domain that can associate with the cargo. The motor 

domain is very well conserved among the different kinesins families while 

the tail domains are more divergent. Most kinesins translocate to the plus 

ends of the microtubule and possess an N-terminal motor domain. There are 

kinesins with the motor at the C-terminus that translocate to the minus end 

of the microtubule. Some kinesins are able to control microtubule dynamics 

through promoting polymerization, depolymerization or simply stopping 

polymerization (Cross and McAinsh, 2014; Vicente and Wordeman, 2015) 

 

 Eg5 (also known as Kif11 or kinesin 5) is a plus end directed kinesin, 

which is structured in an N-terminal motor domain, a central coiled coil 

domain called stalk and a globular C-terminal tail domain. The coiled coil 

domain permits the homotetramerization with two heads contacting one 

microtubule and the other pair of heads contacting a parallel or antiparallel 

microtubule, so that forcing two microtubules to glide with respect to each 

other (Kapitein et al., 2005). This activity is used to separate the centrosomes 



INTRODUCTION 
 

 63 

during the beginning of mitosis and to maintain bipolar spindle (Ferenz et 

al., 2010). Eg5 localizes at spindle during mitosis with an important 

predominance at spindle poles. It has been suggested that Eg5 localization 

along the spindle is controlled by TPX2 and dynein (Wittmann et al., 2000). 

Inhibition of Eg5 either by RNAi (Weil et al., 2002) or with chemical 

inhibitors leads to monopolar spindle formation and failed chromosome 

segregation, suggesting that the kinesin could be a putative target for 

effective antimitotic drugs (Maliga et al., 2002; Mayer et al., 1999; Skoufias 

et al., 2006). 

 CDK1 phosphorylates Eg5 at Thr926. This phosphorylation is 

required for its spindle localization and binding to microtubules (Blangy et 

al., 1995)  Moreover, a small amount of Eg5 is phosphorylated by Nek6/7 

necessary for correct mitotic progression (Rapley et al., 2008), depending on 

the binding to TPX2 (Eibes et al., 2018). 

 During prometaphase through to metaphase, kinesin 12/HKLP2 plays 

a redundant role to Eg5, it compensates the loss of Eg5 in the prometaphase 

pathway for centrosome separation(Tanenbaum et al., 2009). Also, kinesin-

14 HSET is a minus-end directed motor that generates an inward force 

during the formation of the spindle. The outward force created by Eg5 and 

kinesin 12 compensates this inward force to help maintain the spindle length. 

In addition, localization of Kinesin-7, 8 and 13 to the kinetochores and of 

Kinesin-4 and Kinesin-10 to the chromosome arms facilitates microtubule 

capture and chromosomal congression to the metaphase plate. During 

anaphase, sister chromatid separation and movement towards the spindle 

poles are facilitated by the Kinesin-7 and 13. During telophase, Kinesin-6 

motors localize to the midbody and are involved in cytokinesis (Cross and 

McAinsh, 2014; Verhey and Hammond, 2009; Vicente and Wordeman, 

2015). 
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Figure 11:Schematic representation of all motor protein involved in mitotic events and 

their function at every stage (Cross and McAinsh, 2014). 
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Centrosomes and centrioles 

 The centrosome was first observed in the 1800s by Theodor Boveri 

and Édouard Van Beneden. They studied cell divisions in fertilized eggs of 

parasitic worms and discovered the existence of a spindle pole organizer 

during mitosis that continuously duplicates and acts as the main organizing 

centre for cellular division (Scheer, 2014). He also proposed that tumors 

developed as a consequence of chromosomal imbalances, and, furthermore, 

suggested that centrosome aberrations contribute considerably to that 

imbalance (Nigg et al., 2014).  

 

 The centrosome is known to act as the major microtubule organizing 

centre (MTOC) in proliferating animal somatic cells. It concentrates 

microtubule nucleating activities and physically anchors and organizes the 

microtubule network. It thus orchestrate different cellular processes, 

including the formation of the mitotic spindle in dividing cells, cell motility, 

signaling, adhesion, coordination of protein trafficking by the microtubule 

cytoskeleton and the acquisition of polarity. It also acts as the basal body for 

primary cilium formation in quiescent cells. Structural and numerical 

centrosome aberrations have long been implicated in cancer, and more recent 

genetic evidence directly links centrosomal proteins to ciliopathies, 

dwarfism and microcephaly (Banterle and Gönczy, 2017; Bettencourt-Dias, 

2013; Bettencourt-Dias et al., 2011; Doxsey, 2001; Fırat-Karalar and 

Stearns, 2014; Gönczy, 2015; Nigg et al., 2014; Sluder, 2005).  

 In general, vertebrate centrosomes are thought to have evolved from 

internalization of basal bodies of unicellular organisms, and several 

eukaryotic non-ciliated cells including plants, some fungi, and mammalian 

oocytes lack apparent centriole structures (Bettencourt-Dias, 2013). 
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Centrosome structure 

 Originally, the centrosome was described as a special organ of cell 

division and a spindle pole organizer. Only decades later electron 

microscopy enable scientists to discover the beautiful architecture of 

centrioles within centrosomes (Azimzadeh and Marshall, 2010). 

Structurally, it is highly conserved, at least among animal cells. A typical 

unduplicated centrosome is composed of two cylindrical centrioles (called 

mother and daughter centriole) arranged orthogonally to each other. 

Centrioles are microtubule-based organelles usually formed by a 

characteristic radial array of nine microtubule triplets (Figure 12). Starting 

from the inside, each triplet contains an A, B and C microtubule, with the A-

microtubule being the only complete one that contains the full set of 

13 protofilaments. The A-microtubule from one triplet is connected with the 

C-microtubule of the next triplet located clockwise via a A–C linker 

(Gönczy, 2012). Centriole size differs among species, being between 100 - 

250 nm in diameter and 100 – 500 nm in length. For example, they are 

shorter in Drosophila melanogaster and Caenorhabditis elegans and are 

composed of nine microtubule doublets and singlets, respectively, instead of 

triplets. In some insects, the ninefold symmetry is lost, preserving however 

the ability to assemble cilia (Bettencourt-Dias, 2013; Bornens, 2012; 

Gönczy, 2015; Hatch and Stearns, 2010; Lüders and Stearns, 2007). The 

centriole is polarized along its long axis, with the base referred to as the 

proximal end and the tip as the distal end. Microtubules impose this polarity 

on the centriole being the microtubule plus ends at the distal end of the 

centrioles (Azimzadeh and Marshall, 2010; Winey and O’Toole, 2014). 
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Figure 12: A) Ultrastructure of a resin-embedded centriole and procentriole and a 
cross-section illustrating the ninefold radial symmetry of microtubules (Gönczy, 
2012); B) Structure of a mature parent centriole and a tightly associate procentriole 
(Gupta and Kitagawa). 
 

 Both centrioles differ in age and structure and are associated by 

interconnecting fibers. The older centriole (the mother centriole) is 

characterized by distal and subdistal appendages. Subdistal appendages 

function by anchoring microtubules, whereas distal appendages seem to be 

involved in anchoring the organelle to the cell membrane while performing 

its role as the basal body of cilia. Surprisingly, appendages are absent in 

Drosophila and C. elegans. However, several vertebrate centrosomal 

proteins are highly conserved in these species (Azimzadeh, 2014). 

 Centrioles are made of numerous proteins such as ninein, centrobin, 

centrosomal P4.1- associated protein (CPAP) and HsSAS-6 that interact with 

and stabilize tubulins (Delgehyr et al. 2005; Gudi et al. 2011; Zheng et al. 

2016).  

The centrioles also organize the pericentriolar material (PCM), an electron-

dense protein mass organized as radial layers that functions in microtubule 
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nucleation and anchoring roles of the centrosome. (Fu and Glover, 2012; 

Sonnen et al., 2012). CPAP is located at the interface between the centrioles 

and the PCM, followed by CEP192 and Cep120. CDK5RAP2 (Cyclin-

dependent kinase 5 regulatory subunit-associated protein 2), NEDD1 

(Neural precursor cell expressed developmentally down-regulated protein 1) 

and the microtubule nucleator complex g-Tubulin Ring Complex (gTuRC) 

are found at the outer layers. Pericentrin has an extended conformation and 

is organized radially, with the carboxy terminus pericentrin-AKAP450 

centrosomal targeting (PACT) domain adjacent to the centriole wall and the 

amino terminus extending outward into the PCM. 

 The PCM undergoes dramatic changes during the cell cycle. During the 

transition from G2 to M the centrosome recruits several proteins. Induced by 

the activity of mitotic kinases, such as Plk1, several phosphorylation 

modifications take place and the centrosome increases the size and 

nucleation activity, a process known as centrosome maturation (see below) 

(Lüders, 2012). 

 The mitotic centrosome is organized in two parts; an inner part with a radial 

layer organization and an outer extended part organized like a cloud. In the 

human mitotic centrosome, the inner part of is organized in a similar manner 

as in interphase while the outer part contains CDK5RAP2, CEP192, gTuRC 

and pericentrin (Fu and Glover, 2012; Lüders, 2012; Sonnen et al., 2012). 

The Centrosome cycle 

 The centrosome and cell cycle are intricately linked to ensure that 

centrosome duplication is restricted to only once per each round of cell 

division  (Hatch and Stearns, 2010; Nigg and Raff, 2009; Tsou and Stearns, 

2006). The mechanism of centriole duplication can be summarized as 

comprising four discrete steps, namely centriole disengagement, 



INTRODUCTION 
 

 69 

procentriole assembly, centrosome maturation and centrosome disjunction 

and separation (Figure 13). 

 

Figure 13: The centrosome cell cycle 

Centrosome disengagement 

 During metaphase, each of the centrosomes that form the bipolar 

spindle is composed of a pair of centrioles arranged in a tight orthogonal 

conformation, that is thought to prevent centriole reduplication in the same 

cell cycle. At the end of mitosis or in early G1, the orthogonal arrangement 

of the centrioles is lost in a process known as ‘centriole disengagement’. This 

process licenses the centrioles for efficient centriole duplication at the 

proximal ends of each of the centrioles during S-phase (Tsou and Stearns 

2006, Tsou et al. 2009). The licensing of centrioles is now recognized to 

depend on two main processes: centriole disengagement, which permits the 
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reduplication of the parent centriole, and centriole-to-centrosome 

conversion, which is required for the procentriole to acquire competence for 

duplication (Nigg and Holland, 2018). 

Centriole disjoining is suggested to be controlled by two “centriole 

licensing pathways” respectively in early mitosis (Plk1-mediated) and in 

late mitosis, in anaphase/telophase transition (Plk1 and separase-mediated). 

At the onset of anaphase, Plk1 regulates the activation of separase, a 

cysteine protease that triggers sister chromatid separation.   

By analogy to sister chromatid cohesion, Plk1 might promote a separase-

independent removal of an hypothetical centriolar ‘‘glue’’ protein (ideally 

responsible for cohesion) in early mitosis, while in anaphase might recruit 

separase and mediate an anaphase-specific separase cleavage of this 

‘‘glue’’ protein (Tsou and Stearns, 2006; Tsou et al., 2009). Separase 

induce centriole separation through the cleavage of cohesin and pericentrin. 

Pericentrin has to be phosphorylated by Plk1 to be a suitable substrate of 

separase in late mitosis. Phosphoresistant mutants of PCNT are not cleaved 

by separase and eventually inhibit centriole separation (Kim et al., 2015). 

In addition, expression of a non-cleavable PCNT mutant suppressed 

centriole disengagement  (Lee and Rhee, 2012; Matsuo et al., 2012).  

 Cep215, also called CDK5Rap2, is tightly bound to centrioles 

through interactions with Cep152 and Cep192 and there are two distinct 

and independently localized pools of Cep215 at the centrosome. One 

interacts with Cep68 and contributes to the intercentriolar linker. 

Phosphorylation of Cep68 target it to degradation in early mitosis releasing 

this pool of Cep192. The second pool of Cep192 interacts with pericentrin 

and is more intimately associated with centrioles. In late mitosis, separase 

cleavage pericentrin, releasing Cep192 and promoting centriole 
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engagement lost. A non-degradable version of Cep68 (S332A) did not 

prevent linker disassembly so Cep68 but non-cleavable pericentrin did 

(Figure 14) (Pagan et al., 2015). 

  

 

 

 

 

 

 

 

 Laser ablation of the daughter centrioles in S phase–arrested cells 

promoted a new duplication cycle on the mother centrioles, showing that the 

attachment of the daughter centriole to the wall of the mother inhibits 

formation of additional daughters. Under conditions when multiple 

daughters simultaneously form on a single mother, all of these daughters 

must be removed to induce reduplication.  In addition, overexpression of the 

PCM protein pericentrin in S-arrested cells induces formation of numerous 

daughter centrioles meaning that the size of the PCM cloud associated with 

the mother centriole restricts the number of daughters that can form 

simultaneously (Loncarek et al., 2008). 

Figure 14: Cep215 has a dual role in centrosome cohesion 
(Fry, 2015). 
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 Furthermore, it is known that Shugoshin 1 (Sgo1) is involved in 

controlling spindle pole integrity and centriole cohesion and that its 

function is at least mediated through phosphorylation by Plk1 (Wang et al., 

2008) This suggest a dual pathway in which Plk1 promotes the 

stabilization of cohesion through sSgo targeting and phosphorylates 

factors that induce disengagement. 

 After centriole disengagement, the orthogonal link between the 

mother and daughter centriole is lost and the centriole pairs are tethered by 

a newly formed intercentriolar linkage that extends between the proximal 

ends that is composed of rootletin, β-Catenin, Cep68, Cep215, LRRC45 

and C-Nap1 (Fry et al. 1998a, Bahe et al. 2005, Bahmanyar et al. 2008, 

Pagan et al. 2014).   This allows each of the centrioles to go thought the 

second requisite for duplication, acquisition of PCM, a process termed 

centriole-to-centrosome conversion, which is also governed by CDK1 and 

Plk1 (Fu et al., 2015a; Izquierdo et al., 2014; Wang et al., 2011b). This 

involves the acquisition of Cep295 for the recruitment of critical factors 

for duplication, such as Cep152. Proteins such as centrobin and Cep120, 

which are recruited to daughter centrioles in their first cell cycle, are 

gradually lost during the conversion. To become competent for 

ciliogenesis and MT anchoring, mother centrioles formed two cycles ago 

reach its final maturation by building distal and subdistal appendages 

(Loncarek and Bettencourt-Dias, 2017). 

 However, it has been described recently that Plk1 induces maturation 

and distancing of the daughter centriole allowing reduplication of the mother 

centriole even if the original daughter centriole is still orthogonal to it but 

there is around 80 nm distance, which is the distance centrioles normally 

reach during prophase (Shukla et al., 2015). 
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Centrosome duplication 

 At the initial stage of procentriole assembly, several proteins are 

recruited to form a central tube known as the cartwheel structure at the 

proximal ends of each of the licensed centriole, onto which microtubules are 

added to form the centriolar wall. Cep192, as well as the interacting proteins 

Cep152, Cep63, and Cep57, constitute a first module that plays a critical 

scaffolding function to recruit Plk4, the main centriole duplication factor, to 

the proximal region of the parental centriole to coordinate the process and 

identify the origin of centriole duplication (Arquint and Nigg, 2016; Banterle 

and Gönczy, 2017; Fırat-Karalar and Stearns, 2014; Fu et al., 2015b; Hatch 

and Stearns, 2010; Nigg and Holland, 2018; Nigg and Stearns, 2011; Sonnen 

et al., 2013) . 

 In early G1 phase, Plk4 forms a ring around each parental centriole. 

Plk4 exist as homodimer and trans-autophosphorylation within the dimer 

triggers SCF–βTrCP-mediated proteolytic degradation (Cunha-Ferreira et 

al., 2009; Holland et al., 2012; Nigg and Holland, 2018). At this stage, STIL 

and SAS-6 proteins are not yet present, due to their degradation by 

APC/CCdh . With the silencing of the APC/C at the G1/S transition STIL 

binds PLK4 on the circumference of the mother centriole. Upon binding to 

STIL, Plk4 undergoes a conformational change and is activated through 

trans-autophosphorylation within the activation segment (Arquint and Nigg, 

2016; Arquint et al., 2015; Lopes et al., 2015). Once active, Plk4 then 

phosphorylates STIL allowing the interaction and the recruitment of HsSAS-

6 and cartwheel formation. HsSAS-6 homodimers finally oligodimerize to 

form a ring with nine homodimeric units conferring ninefold symmetry to 

the centrioles (Keller et al., 2014). Depletion of PLK4 or chemical inhibition 
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of the kinase results in rapid loss of STIL from centrioles, suggesting that 

PLK4 activity is required to maintain STIL at the site of centriole formation 

(Arquint and Nigg, 2016). Binding of Plk4 with STIL is regulated first, by 

CDK1-CyclinB, which binds STIL during mitosis, thus preventing 

interaction with Plk4 (Zitouni et al., 2016) ad second, STIL levels are low 

during G1, when is targeted for degradation via APC/CCdh1. As for STIL, 

levels of HsSAS-6 are regulated by both APC/CCdh1- and Plk4- mediated 

phosphorylation of SCF/FBXW5, with prevents the targeting of HsSAS-6 

for degradation, thus promoting of centriole assembly (Puklowski et al., 

2011; Strnad et al., 2007). Centriolar HsSAS-6 feeds back positively on 

STIL and STIL also interacts with the tubulin-binding protein CPAP, 

recruiting it to the emerging procentriole. Overexpression of any one of the 

core components of the Plk4-STIL–Sas-6 module is sufficient to promote 

the formation of more than one centriole per mother centriole (Arquint and 

Nigg, 2016; Arquint et al., 2012; Banterle and Gönczy, 2017; Nigg and 

Holland, 2018). 

 Also, Cep135 interaction with HsSAS-6 serves to connect HsSAS-6 

to CPAP making Cep 135 a promising candidate bridge between cartwheel 

and peripheral elements and its depletion leads to a significant reduction in 

centriole number (Lin et al., 2013). Daughter centrioles start to elongate in 

late S phase until they reach its full-length in G2-phase. Centrobin, SPICE, 

Cep120 and CPAP participate in the centriole elongation process through 

their interactions with tubulin (Banterle and Gönczy, 2017; Gudi et al., 2011; 

Zheng et al., 2016). CPAP controls the speed of microtubule growth during 

centriole assembly while CP110 and POC1 cap the distal tips of centrioles, 

resulting its depletion results in overly long centriolar microtubules (Banterle 

and Gönczy, 2017; Nigg and Holland, 2018; Schmidt et al., 2009; Zheng et 

al., 2016). 
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 It was recently described a new role of Plk4 as a homeostatic clock 

that helps to ensure daughter centrioles grow to the correct size in fly 

embryos. If the centriole contains higher Plk4 levels at the beginning of S 

phase, this will impact the Plk4 recruitment rate and thus the rate by which 

Plk4 is subsequently lost from the centriole. On the contrary, reduced Plk4 

levels at the beginning of S phase will result in lower recruitment and loss 

rates. Thus, initial recruitment of Plk4 could be sufficient to establish the 

centriolar Plk4 rate controlling proximal end Sas-6 incorporation period and 

centriole size (Aydogan et al., 2018). 

Centrosome maturation 

 Newly formed centrioles in cycling cells undergo a maturation process 

that is almost two cell cycles long before they become competent to function 

as microtubule-organizing centers and basal bodies. As a result, each cell 

contains three generations of centrioles, only one of which is able to form 

cilia.  

During G2/M centrosomes increase their size, recruit additional PCM 

proteins and assembly the appendages on the new parental centriole which 

allow for its transition from daughter to a mother centriole (Azimzadeh and 

Marshall, 2010).This process has long been known to be governed by Plk1 

(Kong et al., 2014). Plk1 triggers the ordered assembly of an initial set of 

core scaffolding proteins (Cep152, CDK5RAP2 and Cep192) that 

subsequently recruit all other PCM components. First, Cep192 acts as a 

scaffold for Aurora A recruitment and activation, which make Plk1 active 

and ready to phosphorylate Cep192 triggering γTuRC binding and 

microtubules  nucleation (Joukov et al., 2014). The protein adaptor 

NEDD1/GCP-WD is phosphorylated by Nek9, acting downstream of Plk1,  

contributing to its recruitment to the centrosome and in consequence, to the 

recruitment of γ-tubulin in prophase (Sdelci et al., 2012). 
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Centrosome disjunction  

 After centriole disengagement the proximal ends of the two centrioles 

became tethered by filamentous centriole linkers to ensure centrosome 

cohesion. The proteinaceus filaments is mainly composed by two proteins: 

Rootletin and C-Nap1, although recently the proteins Cep68 and Cdk5Rap2 

(Cep215) have also been described as part of the link (Bahe et al. 2005, 

Bahmanyar et al. 2008, Pagan et al. 2014). 

 During mitosis centrosomes must separate so the linker should be 

dissolved. Cep215, also called CDK5Rap2, is tightly bound to centrioles 

through interactions with Cep152 and Cep192 and there are two distinct and 

independently localized pools of Cep215 at the centrosome. One interacts 

with Cep68 and contributes to the intercentriolar linker. Phosphorylation of 

Cep68 targets it to degradation in early mitosis releasing this pool of Cep215. 

The second pool of Cep215 interacts with pericentrin and is more intimately 

associated with centrioles. In late mitosis, separase cleavage pericentrin, 

releasing Cep215 and promoting centriole engagement lost. A non-

degradable version of Cep68 (S332A) did not prevent linker disassembly so 

Cep68 but non-cleavable pericentrin did (Figure 14) (Pagan et al., 2015). 

 The linker components C-Nap1 and rootletin are phosphorylated by 

Nek2A after Nek2A activation by Plk1 at late G2/early M phase. Nek2 

phosphorylates the C- terminal of C-Nap1 to prevent its oligomerisation and 

interaction with the Cep135 (centrosomal protein of 135 kDa) and rootletin 

thereby disrupting the stability of the filamentous intercentriolar linker 

(Faragher and Fry, 2003; Fry et al., 1998b; Pagan et al., 2015; Yang et al., 

2006). A physiological antagonist of Nek2 activity is the PP1 phosphatase, 

specifically the PP1α isoform, which regulates centrosome cohesion through 

dephosphorylating C-Nap1 after mitosis (Meraldi and Nigg, 2001; Mi et al., 
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2007). 

 Additionally, the maintenance of centrosomal integrity involves the 

activity of β-catenin, that can localize to the proximal and distal centriole 

ends and, moreover, between centrosomes acting like a docking protein for 

the recruitment of Rootletin and C-Nap1 (Bahmanyar et al., 2008). 

Centrosome separation  

 Centrosomes then separate and move to the opposite side of the 

nucleus forming a bipolar spindle. There are two different pathways 

according the timing of centrosome separation; the prophase pathway, where 

centrosomes separate before NEB and the prometaphase pathway, where 

centrosomes complete separation after dissociation of the nuclear membrane.  

During the prophase pathway, kinesin-5 (Eg5/KIF11), cortical dynein and 

dynein bound to the NE are the main players. For the prometaphase pathway, 

the activity of KIF15 (also known as Kinesin-12 and HKLP2) plus 

microtubule-kinetochores pushing forces and actin cytoskeleton are required 

(Raaijmakers et al., 2012; Tanenbaum and Medema, 2010). Prophase 

centrosome separation optimizes spindle assembly and minimizes abnormal 

chromosome attachments that could end in aneuploidy (Silkworth et al., 

2012). 

 Eg5 is a plus-end- directed member of the kinesin 5 family that is able 

to bind antiparallel microtubules emerging from both centrosomes and slide 

them apart. Eg5 loading at centrosomes is a required step for separation. This 

localization is regulated by the action of different protein kinases. CDK1 

phosphorylates Eg5 at Thr926 promoting Eg5 binding to microtubules 

(Blangy et al., 1995). At the same time CDK1 and Plk1 drive the activation 

of the Nek9/Nek6/7 pathway, so once active, Nek6 and Nek7 phosphorylate 

Eg5 at Ser1033 promoting its accumulation at centrosomes (Bertran et al., 
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2011). Recently, our group has shown that Eg5 localization and centrosome 

separation in prophase depend on the nuclear microtubule-associated protein 

TPX2, a pool of which localizes to the centrosomes before NEBD in a 

RHAMM- and Nek9-dependent manner. Nek9 phosphorylates TPX2 

nuclear localization signal (NLS) preventing its interaction with importin 

and nuclear import (Eibes et al., 2018). 

 

Centrosome duplication and the link with the cell cycle 

 The centrosome duplication cycle is coupled with cell cycle. When the 

cell enters mitosis, the duplicated centrosomes separate to the spindle poles 

and assemble the bipolar mitotic spindle for accurate chromosome separation 

and to maintain genomic stability. The two cycles might be coordinated so 

that when the chromosome cycle is delayed, the centrosome cycle stops, 

thereby avoiding the generation of extra centrosomes.  

There are two coupling points, at the G1/S and G2/M transitions. At the G1/S 

transition, cyclin-dependent kinase 2 (CDK2) in a complex with cyclin E or 

cyclin A may trigger procentriole formation via phosphorylation of the 

centriolar coiled-coil protein of 110 kDa (CP110), the serine/threonine 

kinase MPS1 (also known as TTK) and the multifunctional protein 

nucleophosmin (Gönczy, 2015; Hinchcliffe and Sluder, 

2001).Overexpression of a non-phosphorylatable form of nucleophosmin, 

inhibits disengagement, whereas depletion of nucleophosmin results in 

centrosome amplification(Okuda et al., 2000). Also, CDK2 inactivates 

APC/CCDH1 towards the end of G1 phase, preventing the degradation and 

thus leading to the accumulation of components needed for S phase entry, 

including HsSAS-6, STIL and CPAP.  At G2/M transition, CDK1 leads to 

activation of the serine/threonine kinase Aurora A, which in turn 
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phosphorylates and activate Plk1 resulting in centriole–procentriole 

disengagement (Figure 15) (Gönczy, 2015; Hinchcliffe and Sluder, 2001). 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Key aspects of the centrosome duplication cycle (Nigg and Holland, 2018). 
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Centrosome amplification and cancer 

 Centrosome aberrations occur frequently and often lead to abnormal 

mitotic spindle formation, which can result in abnormal chromosome 

segregation and as a consequence tumorigenesis, microcephaly, dwarfism or 

ciliopathies (Bettencourt-Dias et al., 2011; Gönczy, 2015; Nigg et al., 2014). 

 Centrosome anomalies can be divided into structural alterations, 

originated from alterations in the levels or activity of centrosome proteins, 

and numerical alterations, due to an increase number of centrioles (Chan, 

2011; Nigg and Holland, 2018). Correct centriole number is controlled in 

three ways: during each round of duplication only two new centrioles are 

assembled (numerical control); centriole duplication occurs once per cell 

cycle (temporal control); and the procentriole is formed in a site next to an 

existing centriole (spatial control).  

 Distinct mechanisms can lead to centrosome amplification. First, 

deregulation of the centrosome duplication cycle by overexpression of 

centriolar proteins or PCM components. Whereas genes encoding 

centrosome proteins are rarely mutated in human cancers, increased or 

decreased expression of centrosome proteins is more common (Chan, 2011; 

Gönczy, 2015; Nigg and Raff, 2009). Second, by perturbation of cell cycle 

progression, a prolonged G2 arrest by DNA damage (Inanç et al., 2010)  

results in  Plk1 activation, centriole disengagement and premature centriole 

reduplication (Lončarek et al., 2010). Third, upon loss of existing centrioles 

and production of new ones by the novo pathway, that happen when all 

endogenous centrioles are destroyed, but is normally inhibited by the 

presence of even a single endogenous centriole (Loncarek and Khodjakov, 

2009). Finally, as a result of tetraploidization, that results of cytokinesis 

failure, mitotic slippage, endoreduplication or cell fusion (Anderhub et al., 

2012; Godinho and Pellman, 2014; Hatch and Stearns, 2010). 
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 Centrosome amplification can specially contribute to abnormal 

chromosome segregation. To suppress multipolar spindles, the cell can 

silence the extra centrosomes, preventing them from forming a spindle pole 

and leaving only two centrosomes active. Alternatively, cells with 

supernumerary centrosomes often cluster them in anaphase to form a 

pseudo-bipolar spindle. However, a prior intermediate multipolar spindle, 

can result in merotelic microtubule-kinetochore (MT-KT) attachments, an 

error in which a single kinetochore is attached to microtubules emanating 

from both spindle poles, leading to lagging chromosomes and subsequently 

aneuploidy. This provides a direct mechanistic link between extra 

centrosomes and chromosome instability (CIN), two common characteristics 

of human solid tumors (Ganem and Pellman, 2012; Ganem et al., 2009). 

Clustering needs spindle tension, the actin cytoskeleton and the cell adhesion 

machinery, and is expected to require microtubule-associated proteins 

(MAPs) and motors that organize the spindle poles. The microtubule motor 

cytoplasmic dynein is an important factor for this clustering, together with 

NuMA, a spindle associated MAP and the minus-end-directed kinesin 14 

motor protein HSET. Centrosome clustering is essential for the survival of 

cells with supernumerary centrosomes. Thus, the use of inhibitors that target 

centrosome clustering opens a new possible selective cancer therapeutic 

strategy (Kwon et al., 2008; Nigg, 2002; Quintyne et al., 2005).   

 Another source of mitotic errors comes from the incorrect timing of 

centrosome separation before cell division. Both accelerating and delaying 

centrosome separation increase the frequency of chromosome miss-

segregation (Silkworth et al., 2012; Zhang et al., 2012). Centrosome 

amplification also can impair asymmetric cell division, for example 

in Drosophila neuroblasts leading to amplification of the neuroblast stem 

cell pool and subsequent tissue overgrowth. 
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 The deleterious effects of extra centrosomes are not limited to mitosis, 

they can also alter the architecture of the interphase microtubule 

cytoskeleton. The presence of supernumerary centrosomes can affect cilia 

signaling and increase microtubule nucleation capacity, altering the activity 

of Rho GTPases which play an important role in the regulation of invasion 

and migration. Thus, centrosome amplification could also influence tumor 

biology independently of generating aneuploidy by altering cell shape, 

polarity or motility (Figure 16) (Godinho and Pellman, 2014; Nigg and 

Holland, 2018). 

 

 

 

 

 

 

 

 

 

 

Figure 16: Mechanisms through which centrosome amplification can contribute to 
tumorigenesis (Nigg and Holland, 2018). 
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Centrobin 

 Centrobin (Centrosomal BRCA2 interacting protein) is a 903 residues 

protein containing a large coiled-coil domain in its center. It was identified 

in a proteomic analysis of purified human centrosomes (Andersen et al., 

2003) and later through a yeast two-hybrid screen with the C terminus of the 

BRCA2 tumor suppressor, although the interaction with BRCA2 could not 

be verified (Zou et al., 2005). 

 Centrobin has ubiquitous expression in almost all cells, is 

preferentially localized to the daughter centriole of proliferating human cells, 

(Zou et al., 2005), although in mouse hippocampal cells, it localizes to both 

mother and daughter centrioles (Shin et al., 2015), and is required for 

centriole duplication. Centrobin is recruited to the procentrioles at the 

beginning of S phase. During S, G2, and M phases, there are two centrobin-

positive centrioles, the newly assembled procentrioles. In G1, cells have one 

centrobin-positive centriole, the daughter centriole assembled in the 

previous cell cycle, that disappear in the next S phase (Zou et al., 2005). 

Centrobin interacts with tubulin directly, and centrobin–tubulin interaction 

is essential for the function of centrobin during centriole duplication. 

Centrobin is recruited to the procentriole via its direct interaction with 

tubulin, and it is dependent on hSAS-6 allowing the recruitment of other 

duplication proteins. Interaction with tubulin also facilitate centrobin 

function in centriole elongation and stabilization. (Gudi et al., 2011).  It is 

also critical in the organization of microtubule network in both interphase 

and mitotic cells (Jeffery et al., 2010a; Jeong et al., 2007a). 

 Cep152 interacts with and recruits centrobin to site of centriole 

biogenesis. At the same time, centrobin interacts with (centrosomal P4.1–

associated protein) CPAP, interaction critical for the recruitment of CPAP to 
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procentrioles to promote the elongation of daughter centrioles and for the 

persistence of CPAP on them for normal centriole biogenesis and integrity.  

Although depletion of centrobin from cells did not have an effect on the 

centriolar levels of Cep152, it caused the degradation of CPAP from both the 

preexisting and newly formed centrioles. Loss of centrobin-CPAP 

interaction happens at mitosis by an unknown mechanism targeting CPAP 

for degradation to restrict the centriole length during biogenesis. Conversely, 

centrobin excess causes the accumulation of CPAP and defective long 

centrioles (Gudi et al., 2014, 2015). 

 Depletion of centrobin by siRNA resulted in impaired cytokinesis, in 

centrosomes with one or no centriole and a range of spindle abnormalities 

due to unfocused spindle poles, detachment of centrosome from the mitotic 

spindle and less stable MT-KT attachments, resulting in spindle assembly 

checkpoint (SAC) activation and metaphase arrest. That demonstrates that 

centrobin is essential for centriole biogenesis and integrity, acting as a 

regulator of microtubule dynamics and as a protein necessary for 

centrosome-spindle adhesion (Jeffery et al., 2010a; Zou et al., 2005). 

Furthermore, centrobin is confirmed as an essential centriole duplication 

factor since a combination of centrobin depletion by siRNA and HU-induced 

cell cycle arrest or Plk4 overexpression prevents centrosome amplification 

(Gudi et al., 2011). Mitotic defects with abnormal spindle formation were 

also observed in centrobin suppressed early mouse embryos (Sonn et al., 

2009). Unlike human cells, Drosophila centrobin is not necessary for 

centriole duplication, depletion by siRNA or Centrobin hemizygosity does 

not affect the centriole duplication process in Drosophila neuroblasts and 

Drosophila S2 cells (Jeffery et al., 2013)  

 In addition, in interphase cells centrobin acts as a modulator of PCM 

components and microtubule nucleation activity of the centrosome since its 
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depletion results in an increase of microtubule nucleation and defects in 

microtubule stability, which trigger microtubules and PCM proteins 

recruitment around the centrosome (Jeffery et al., 2013). 

 Although, centrobin is target to the daughter centriole by its C-

terminal end, a fraction of cytoplasmic centrobin can bind to microtubules 

transiently by Nek2 phosphorylation, allowing organization of microtubule 

network in interphase and bipolar spindle in mitosis (Jeffery et al., 2010a; 

Jeong et al., 2007a). On the other hand, centrobin can be phosphorylated by 

Plk1, enhancing centrobin activity for proper spindle formation during 

mitosis(Lee et al., 2010a). 

 Other new studies revealed the opposite effects of Nek2 and Plk1 

phosphorylations on microtubule-stabilising activities of centrobin. Since 

the Nek2 activity is highest at G2 phase, Nek2 phosphorylation antagonizes 

the MT-stabilizing activity of centrobin prior to mitosis, having a function 

in cell spreading, migration and microtubule stabilization in interphase cells. 

When the cell enter mitosis, Plk1 phosphorylation promotes centrobin 

microtubule stabilizing activity, which is critical for bipolar spindle 

formation (Park and Rhee, 2013). 

 Work in Drosophila neuroblasts revealed that in interphase, 

centrobin (CNB) functions as a positive regulator of microtubule 

organizing center (MTOC), daughter centriole recruits PCM and forms an 

aster that is crucial for successful asymmetric cell division and that it is 

dependent of Plk1 phosphorylation. Its depletion impedes daughter 

centrioles to assemble an MTOC, whereas mother centrioles carrying 

ectopic CNB become active MTOCs (Januschke et al., 2013). Conversely, 

In Drosophila type I sensory neurons, CNB functions as a negative 

regulator of ciliogenesis. Although basal body capability is exclusive of 
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mother centrioles, CNB depletion allow daughter centrioles to template a 

defective ectopic axoneme. However, mother centrioles ectopically 

expressing CNB cannot function as basal bodies  (Gottardo et al., 2015).  

 In Drosophila primary spermatocytes mothers and daughters 

centrioles become basal bodies, with equal signal of CNB, that assemble 

axoneme-based cilium-like structures, which are the precursors of sperm 

flagella. In a very recent study, CNB has been shown to be required in 

primary spermatocytes for centrioles to properly position and stabilize C-

tubules, grow in length up to full-sized basal bodies, and template normal 

axonemes (Reina et al., 2018). 

 Recently, new roles for centrobin as a positive regulator of vertebrate 

ciliogenesis have been identified by using CRISPR-Cas9 to ablate CNTROB 

in hTERT-RPE1 cells.  The depletion increase frequency of monocentriolar 

and acentriolar cells. Besides, centrobin loss abrogated primary ciliation 

upon serum starvation and it requires a C-terminal portion of centrobin that 

interacts with CP110 and tubulin. Another signal of ciliary dysfunction is 

shown in centrobin-depleted zebrafish embryos, that develop microcephaly, 

defects in laterality control and other morphological features (Ogungbenro 

et al., 2018). 

 An study in the Chinese Han population (Wang et al., 2012) revealed 

some genetic nucleotide polymorphisms of the human centrobin that can be 

associated with breast cancer susceptibility. Also, a recent proteomic 

analysis (Gupta et al., 2015) of centrosome-cilium protein interactions show 

a interaction of centrobin with FANCD2, an essential DNA inter-strand 

crosslink that has been shown to be mutated in some human ciliopathies 

(Johnson and Collis, 2016). 
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The main objective of the thesis is to interfere with Nek9 using different 

approaches to find Nek9 unidentified substrates and functions. 

 

Detailed objectives:  

1. Study of the results of eliminating Nek9 expression during mice early 

embryonic development. 

2. Study the phenotype resulting from Nek9 heterozygosis. 

3. Study the effects of eliminating Nek9 expression from cells in cell 

growth, viability and the centrosome cycle. 

4. Identify Nek9 substrates by monitoring phosphorylation sites on a 

proteome-wide scale by SILAC that could explain the observed 

phenotypes and relate their modification to possible new roles of Nek9.  

5. High throughput screening for Nek9 inhibitors. 
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Reagents  

All reagents were obtained from Sigma-Aldrich unless otherwise indicated.  

Nek9-targeted mice  

 Mice lacking Nek9 (B6.129-Nek9tm1a/H and B6.129-Nek9tm1c;Cg-

Tg(UBC-cre/ERT2)1Ejb/J) were generated in the IRB Barcelona mutant 

mouse core facility. Mouse embryonic stem (ES) cells were targeted with 

a Nek9 targeting construct that was designed and constructed using standard 

recombineering methods. The gene trapped allele (trap) was assembled by 

inserting a LACZ/NEO cassette surrounded by Frt sites between exon 1 and 

2 plus loxP sequences flanking exon 2 of the murine Nek9 locus. The 

targeting vector was confirmed by sequencing and linearized vector was 

transfected into ES cells. Finally, ES cells injections were performed derived 

from C57B6/j mice. Injected blasts were re-implanted back into the oviduct 

of pseudo-pregnant foster mice. Chimeras were scored by coat colour 

analysis, and the chimeras showing the highest contribution from the ES 

cells were mated with C57B6/j wild-type mice. Agouti offspring obtained 

from these test-matings were screened for the presence of the mutation. 

 Mice lacking p53 were a generous gift from Travis Stracker, who 

purchased from Jackson Laboratories (B6.129S2-Trp53tm1Tyj/J; stock 

#002101) 

 All animals were maintained in strict accordance with the European 

Community (86/609/EEC) guidelines in the specific-pathogen-free (SPF) 

animal facilities in the Barcelona Science Park (PCB). Protocols were 

approved by the Animal Care and Use Committee of the PCB (IACUC; 

CEEA-PCB) in accordance with applicable legislation (Law 5/1995/GC; 

Order 214/1997/GC; Law 1201/2005/SG). All efforts were made to 

minimize animal suffering. 
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Culture of embryos  

 Females were superovulated with PMSG (National Hormone and 

Peptide Program-UCLA) and hCG (Sigma). Fertilized embryos at E1.5 were 

collected by flushing the uteri of pregnant females with M2 medium (Sigma) 

and cultured in vitro in potassium simplex optimized medium (KSOM; 

Chemicon International). Two-cell embryos were cultured in vitro for 2 

days. 

Mouse Embryonic Fibroblast (MEFs) culture  

 MEFs were obtained from E12.5 embryos and cultured following 

standard protocols in Dulbecco's modified Eagle's medium (DMEM) 

supplemented with 2 mM glutamine, 1% penicillin/streptomycin, and 10% 

fetal bovine serum (FBS).  

 The adenovirus expressing Cre recombinase (Ad5 CMV-Cre) was a 

gift from Gonzalo Fernandez-Miranda and was amplified using HEK 293 

cells. Subsequently, MEFs were infected with adenoCre or treated with (Z)-

4-Hydroxytamoxifen (H7904, Sigma) in confluence and in low serum 

conditions. Three days after infection cells were split into plates containing 

10% FBS medium and then harvested at different time points for analysis. 

For rescue experiments MEFs were infected with retrovirus expressing 

pBabe vector. After infections, cells were selected in puromycin for 2 days. 

Histopathologic Analyses 

 Tissues and organs that presented a macroscopic alteration at the 

necropsy were collected, fixed in 10% neutral buffered formalin and 

embedded in paraffin using standard procedures. Sections of 4 µm sections 

were obtained and stained with hematoxylin and eosin (H/E). Finally, the 

histological analysis was performed in a blinded manner by a board-certified 
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veterinary pathologist. Blood smears were prepared using the wedge 

technique, followed by air-drying and Acridin Orange staining. 

 

Splenocytes isolation 

 Spleens were removed from mice and were homogenized into a single-

cell suspension using Dulbecco’s phosphate buffered saline supplemented 

with 10% fetal bovine serum, designated wash buffer. Red blood cells were 

lysed by resuspending spleen cells in ammonium chloride-Tris (ACT) buffer 

and incubating at RT 5 min. Splenocytes were washed and resuspended in 

wash buffer.  2 x10 6 cells were seed in complete media supplemented with 

cytokines LPS (ug/ml) and IL-4 (5ng/ml). 

Metaphase spreads 

 Metaphase preparations were made using 0.075M KCl hypotonic 

treatment and 3:1 methanol/acetic acid fixation from MEFs or splenocytes 

after a 4h treatment with colcemid (0.1 µg/ml). Slides were stained with with 

Giemsa stain (Sigma Giemsa Stain, catalog #GS-500, dilute in water 1:20) 

for 30 minutes. Chromosomes were counted with an upright epifluorescence 

Nikon E600 microscope and CellCount software. 

 

Plasmids  

 

 Different Nek9 and Nek6 expression plasmids were previously 

described (Belham et al., 2003; Roig et al., 2002b). 

Different cDNAs were amplified by PCR from existing plasmids (Table 1). 

In some cases, the restricted fragment was introduced in an intermediate pCR 

2.1-TOPO vector using the TOPO TA Cloning kit (Invitrogen) according to 
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the manufacturer’s protocol. The cDNAs were digested from the vector and 

introduced in the desired plasmids.  

Table 1: Sequences of primers to cloning. 

 

Primers were synthesized by Sigma-Aldrich. Constructs were sequenced at 

Macrogen Inc.  

 Mini and midi plasmid DNA were prepared using Macherey-Nagel 

NucleoSpin Plasmid kit or Nucleobond Xtra Midi (Endotoxin-free) kits, 

respectively. In these procedures, plasmids were isolated according to the 

manufacturer’s instructions. For miniprep, a single bacterial colony was used 

to inoculate 5 ml of LB broth with appropriate antibiotic and incubated 

shaking overnight at 37°C. 4 ml of the overnight culture was used for 

miniprep DNA extraction while 400 ml overnight culture was used for 

midiprep extractions. The resulting plasmids were resuspended in 50 µl and 

160 µl Milli-Q water respectively.  
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Table 2: Sequences of primers for mutagenesis 
 

Genomic DNA extraction and genotyping PCR 

 Ear punches from mice or MEFs Cells were incubated 1h at 95ºC in 

250 µl Hot Shot buffer followed by 250 µl Neutralization buffer. Genomic 

DNA obtained was used for PCR amplification of specific sequences (Table 

3).  

 PCR reactions were all assembled in 20 µl, including 1 µl DNA. 

Amounts of primers, nucleotide mix (2.5 mM each dNTP), Taq polymerase 

buffer, Taq polymerase and MgCl2 (NZY or Biotools) together with PCR 

conditions varied with primer set. For Nek9 embryos we performed a Nested 

PCR, with 10 µl DNA for the first round PCR and 1µl of first round PCR 

product as template for the second PCR using Thermo Scientific Phire Hot 

Start II DNA Polymerase. 
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Table 3: Sequences of primers for sequencing  

 

Cell culture  

 HeLa, U2OS, HEK 293T cells and Embryonic Mice Fibroblast cells 

were cultured in a 5% CO2 atmosphere and 37oC in DMEM (Dubelco’s 

modified Eagle’s medium) supplemented with 10% FBS (Fetal Bovine 
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Serum), L- glutamine (2mM), penicillin and streptomycin (100 IU/ml and 

100 ug/ml, respectively). 

 The tetracycline-inducible U2OS myc-Plk4-WT cell line (U2OS:myc-

Plk4-WT), previously described (Kleylein-Sohn et al., 2007) was a gift from 

Jens Lüders. Stable transformants were established by selection for 2-3 days 

with 1 mg/ml G418 (Invitrogen) and 50 µg/ml hygromycin (Merck) and then 

induced with 0,5ug/ul tetracycline. 

 To induce primary cilia formation in MEFs, cells were plated to be 70-

80% confluent the next day, when they are supplemented with 0.1% FBS 

DMEM for up to 48 h.  

Transfection  

 HEK 293T cells were transfected using different expression plasmids 

with LipofectamineTM
  

2000 according to the manufacturer instructions 

(Invitrogen) or with Polyethyleneimine (PEI) (Polyscience, Inc) (Boussif et 

al., 1995). HeLa, U2OS cells and RPE1 were transfected with Lipofectamine 

TM 2000 according to the manufacturer instructions (Invitrogen). siRNA 

transfection was performed using Lipofectamine TM RNAiMax according to 

the manufacturer’s instructions.  

 The sequences of the siRNA duplex for targeting the different proteins 

were: Nek6, 5’-AAUAGCAGCUGUGUGAGUCUUGCCU-3’ (Ambion) 

(O’Regan and Fry 2009); Nek7, 5’- 

AAUAGUGAUCUGAAGGAAGAGGUGG-3’ (Invitrogen) and Nek9, 

5’AAUAGCAGCUGUGUGAGUCUUGCCU-3’ (Invitrogen). 

Drug treatments  

 Cells were treated for the indicated times with the following inhibitors: 

nocodazole 250 ng/ml (Sigma); Bi2536 (100nM) (Axon Medchem); RO-
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3306 9 µM (Enzo); CentrinoneB 500nM (Medchemexpress) and 

Hidroxyurea 2mM (sigma). 

Lentiviral infection  

 shRNA was delivered through lentiviral infection. HEK 293 cells were 

transfected with PEI using the plasmids for lentiviral assembly REV, RRE 

and VSVG, together with the corresponding pLKO.1-shRNA plasmids 

(Sigma MISSION shRNA Library). Empty pLKO.1 vector was used as a 

control. 24 hours after transfection, HEK cells were incubated at 30ºC during 

16 hours stimulating virus assembly and continuously medium was collected 

and filtered. HeLa cells were treated with the resulting media for two 

consecutive days and then selected with puromycin (1µg/ml) during 3 days.  

The shRNA clones used for targeting the different proteins were Nek9 

TRCN0000000929 5’CCGGCCGAGGAATGGAAGGTTTAATCTC 

GAGATTAAACCTTCCATTCCTCGGTTTTT-3’ and TRCN0000000930 

5’CCGGCCAAAGGAACTCAGACAGCAACTCGAGTTGCTGTCTGA

GTTCCTT TGGTTTTT-3’.  

 Nek9 wt, Nek9 DRCC1 and Nek9 KM were cloned using BglII and 

HindIII from Nek9 previously described plasmids (Belham et al., 2003; Roig 

et al., 2002b) into a pBABE-puro plasmid with a mutated HindIII site in the 

SV40 promoter (Table 2). 

Cell extracts, immunoprecipitation and western blotting analysis  

 Cells were lysed with lysis buffer that contained 50mM Tris (pH 7.5), 

100mM NaCl, 50mM NaF, 1mM DTT, 1mM EDTA, 1mM EGTA, 10 mM 

β- glycerophosphate, 2mM Na3VO4, 25nM calyculin A, 1% TX100, 0.5mM 

PMSF, 1µg/ml leupeptin, 1µg/ml aprotinin or with RIPA buffer. Cytosolic 
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fraction was obtained by centrifugation at 13200 rpm for 10 minutes. Protein 

concentrations were determined using the Bradford reagent (BioRad).  

 Immunoprecipitations were carried out with the indicated antibodies 

pre-bound to protein A/G dynabeads (Invitrogen). 1mg of lysate was 

incubated for 1h at 4oC and washed three times with lysis buffer. 

Immunoblotting was carried out after separation of proteins by SDS-PAGE 

and transfer to PVDF membranes (Immobilon-P Transfer Membrane, 

Millipore). Meanwhile, 20 µl of prewashed protein A/G beads (Santa Cruz) 

were incubated with 3-5 µg of primary antibody for 1-2 hours at 4°C with 

gentle agitation. Beads-antibody complex was washed twice with IP lysis 

buffer followed by incubation with 3-5 mg total cell extracts for a further 2-

4 h. After incubation, beads-antibody-protein complex was spun down at 250 

g for 3 min and supernatant discarded while beads-antibody- protein 

complex was washed 4-6 times in lysis buffer. The complexes were then 

boiled in 5x protein sample buffer for 10 min and pelleted at 12,000 g before 

immunoblot analysis of bound proteins.  

 Membranes were probed with the following antibodies: anti-Nek9, 

anti- Nek9[Thr210-P], anti-Nek6 and anti-Nek6[Ser206-P] polyclonal 

antibodies were produced as described (Belham et al., 2003; Roig et al., 

2002b, 2005). Anti-GFP (1:1000) (Roche) (Invitrogen), anti-FLAG (1:1000) 

and anti-btubulin (1:1000) (Sigma), anti-Nek6 (Abcam), anti-Nek7 

(Abcam), anti-Plk4 (Abcam), anti-p53 (Cell Signalling), anti-centrin (Merk 

Milllipore), anti-SAS-6 (Santa Cruz), anti-centrobin (Abcam), anti-active 

caspase 3 (R&D Systems) and anti-Aurora A (Abcam) were also used. Anti-

SAS-6 and anti-CPAP were a gift from Renata Basto. Anti-centrobin was a 
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gift from Ciaran Morrison. Anti-Arl13b was a gift from Pepe Reina and 

Cayetano González. 

 Anti-centrin antibody resulted in some cases in multiple non-specific 

centrin foci in the cytoplasm making it difficult to quantify, so only ones that 

were clearly centrioles were considered in the quantifications.  

 Secondary antibodies were from Jackson Immuno Research 

Laboratories and were detected by ECL Chemiluminiscence (Thermo 

Scientific).  

Protein expression in bacteria  

 pGEX-4T1Centrobin 1-200 and pGEX-4T1Centrobin 590-903 

contructs were expressed in E. coli RosettaTM 2 (DE3) induced with 

isopropil-β-D-thiogalctopyranoside (IPTG) for 8h at 37ºC or 8h at RT 

respectively. GST fusion proteins were purified with glutathione-sepharose 

(GE Healthcare) following standard protocols and were eluted with 25 mM 

reduced glutathione. Purified proteins were resolved in SDS-PAGE 

acrylamide gels and stained with Coomassie blue (Sigma) to check protein 

presence, size and purity.  

Stable isotope labeling with amino acids in cell culture (SILAC) 

 Two cells population of MEFs, Nek9+/+ and Nek9flox/flox were grown in 

DMEM that contains the natural ‘light’ amino acid or the nonradioactive 

labeled ‘heavy’ amino acid form (12C6 and 13C6 L-lysine, respectively) 

(Thermo Scientific Pierce SILAC Protein Quantitation Kit-DNEM). After 6 
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passages cells reached 100% label incorporation of 13C6 L-lysine-labeled 

cells and were infected with Adcre to induce Nek9 depletion. 

 In collaboration with Dr. Judit Villen (University of Washington, 

Seattle, US), equal concentrations of cell lysate from both cell populations 

are combined for sample processing and subsequent protein separation by 

SDS-PAGE. Proteins are digested with trypsin to generate peptides for mass 

spectrometry (MS) and quantitation of isotopic peptide pairs. Unbiased 

quantitative comparison of changes in phosphosite composition after 

elimination of Nek9 has been carried out giving us a global view of 

phosphosites that depend on the kinase for their phosphorylation. 

Kinase assay 

 Centrobin (1-200 and 590-903 constructs) phosphorylation assays 

were done by incubation of the purified protein in phosphorylation buffer 

(50mMMOPS at pH 7.4, 1 mM EGTA, 5 mM MgCl2, 10 mM b-

glycerophosphate), plus 100 mM ATP and [g32P] ATP at 30ºC for 30 

minutes in presence or absence of eluted recombinant Nek9 plus a 10 

minutes incubation at 25oC with an exogenous substrate as H3. Reactions 

were terminated by addition of 5X Laemli buffer and boiling, and proteins 

were resolved by SDS-PAGE. Coomassie staining was used to visualize 

proteins and kinase activity was measured with a PhosphorImager system or 

with the specific a-Nek9[Thr210-P] antibody as indicated.  

Time lapse microscopy  

 Automated Wide-field scanR microscope equipped with temperature 

and CO2 incubation chamber was used to acquire time lapse imaging of 

MEFs cell using the 20x 0.45 phase contrast objective lens every 7 minutes 

for 24 hours with the CellR software (Olympus Life Science Europe). 
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Software autofocus was used to adjust the z-focus with transmission channel 

and transmission acquisition was performed on single plane 12bits-images 

with an ORCA camera (Hamamatsu Photonics). Subsequent analysis was 

performed with ImageJ.  

 Spinning disk confocal microscopy with the Andor Revolution 

system, equipped with EMCCD camera technology was used to acquire time 

lapse imaging of stable U2OS GFP-centrin using the 100X objective lens 

every 5 min with a Z stack to encompass centrioles completely. Software 

autofocus was used to adjust the z-focus with transmission channel. Cy3, 

GFP (with filter cubes and excitation filters from AHF Analysentechnik) and 

transmission acquisition was performed on single plane 12bits-images with 

an ORCA camera (Hamamatsu Photonics). Subsequent analysis was 

performed with ImageJ. 

Cell cycle analysis  

 0,5ml of PBS and 4,5 ml of ethanol 70% and fixed for 2 hours at -

20oC. Subsequent centrifugation of the samples was followed by a wash in 

PBS and staining with a PBS solution containing 10% Triton X-100 (Sigma), 

20 µg/ml propidium iodide (Sigma) and 2 mg/ml RNAse A (DNAsa free- 

Sigma) at 37oC for 15 min. Cells were analysed using a CouLter XL 

analyser8 (Beckman CouLter).  

Immunocytochemistry  

 Cells were grown on coverslips, rinsed with PBS and fixed with 

methanol at -20 oC for 15 minutes. After rinsing with PBS, cells were 

incubated with PBS containing 3% bovine serum albumin, 0.1% Triton-X 

and 0.02% azide. Primary antibodies used were: anti-γ-tubulin or btubulin 

1:500 (Sigma), anti-pericentrin 1:5000 (Abcam), anti-H3-P 1:200 (Cell 
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Signaling), anti-GFP 1:500 (Invitrogene), anti-FLAG 1:1000 (Sigma), anti-

hSAS-6 1:200 (Santa Cruz), anti-centrin3 1:2000 (Mitchinson and Ohi lab), 

anti-centrin1 1:500 (Millipore) , anti-centrobin 1:500 (Abcam) anti-Cep164 

1:500 (Proteintech), anti-C-Nap1 1:500 (Proteintech), anti-ARL13Rr 1:500 

(Proteintech), anti-Cdk5Rap2 1:500 (Universal Biologicals), anti-Cep152 

1:500 (GenTex) and anti-Nedd1 1:200 (Abcam). Primary antibodies were 

detected with Alexa Fluor 488 goat anti-rabbit or anti- mouse IgG and Alexa 

Fluor 555 goat anti-rabbit or anti-mouse IgG 1:500 (Invitrogen). DNA was 

stained with DAPI (0,01 mg/ml).  

 Images were acquired with an Orca AG camera (Hamamatsu) on a 

Leica DMI6000B microscope equipped with 1.4 NA 63x and 100x oil 

immersion objectives. AF6000 software (Leica) was used for image 

acquisition and edited using Fiji (Image J). Confocal images were obtained 

using a Leica DM2500 spectral confocal microscope.  

 Quantification of fluorescence intensities at centrosomes was 

performed with Fiji on non-saturated images acquired with constant 

exposure. We measured a circular area around centrosome and an adjacent 

area with the same dimension to subtract the background. All the values were 

normalized to the median of each control.  

CRISPR/Cas9 

 A gRNA 5’CACCGTACCACGCTGCTGATTGAGC-3’ (IDT DNA) 

to direct cleavage exon 2 of Nek9 was cloned in a pSpCas9(BB)-2A-GFP 

(PX458) vector (available from Addgene, vector #48138), that co-expresses 

SpCas9, gRNA, and GFP. The vector contains two BbsI cleavage sites that 

allow for the insertion of annealed oligonucleotides containing the gRNA 

target sequence. After transfection, fluorescent U2OS cells were directly 

sorted into individual wells of a 96-well plate.  After 2–4 weeks, when single 
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cell has grown into large colonies, cells were harvest and processed by WB 

to check for Nek9 depletion. 

High throughput screening for Nek9 inhibitors 

 In collaboration with PLACEBO, the Platform Austria for Chemical 

Biology at the Ce-M-M-, the Research Center for Molecular medicine of the 

Austrian Academy of Sciences and using PLACEBO available equipment 

we have screen PLACEBO library of chemicals for their capability to 

interfere with recombinant Nek9 autoactivation and phosphorylation of its 

substrate Nek7 in the presence of ATP/Mg2+. The modification of 

biotinylated Nek7 was detected using an available antibody that specifically 

recognizes phosphorylated Nek7 and streptavidin-coated AlphaScreen 

Donor beads plus AlphaScreen Protein A Acceptor beads (from 

PerkinElmer). The kinase reaction and Alpha detection has been performed 

in a Packard Proxi 384-well microplate with control buffer o tested 

compound with Nek9 solution and Biotin-Nek7 solution containing ATP, 

incubated for 60 min at RT and when a mix with EDTA/donor and acceptor 

beads/Antibody mixture for alpha detection was added. 

The plate was incubated ON and read in an EnVision Multimode late reader 

(PerkinElmer) using Wallac EnVision Manager. 

Statistical Methods  

 Asterisks indicate statistically significant difference with the 

corresponding controls as determined using the two-tailed Mann-Whitney t 

test unless indicated otherwise (*p<0.05; **p<0.01; ***p<0.001). 

Values = mean ± SD. 
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Elimination of Nek9 expression in mice 

 Previous work in our group showed that interference with Nek9 in 

different systems has major effects in cell division and reduces viability, 

suggesting that Nek9 has key roles during mitotic progression and more 

specifically spindle organization (Roig et al., 2002a, 2005). Completely 

abolishing the phosphorylation of specific substrates of Nek9 or of its 

downstream effectors Nek6/7 (the adaptor Nedd1 and the kinesin Eg5, 

respectively) impedes (Sdelci et al., 2012) or strongly hinders (Bertran et al., 

2011) the completion of mitosis. In addition, and although it is clear that 

some Nek9 functions are independent of Nek6 and Nek7 (Sdelci et al., 2012), 

downregulation of either Nek6 or Nek7 has also been shown to interfere with 

normal mitosis and microtubule dynamics (Cohen et al., 2013; O’Regan and 

Fry, 2009; Yissachar et al., 2006). In mice, lack of Nek7 has been previously 

shown to lead to lethality in late embryogenesis or at early postnatal stages 

and to severe growth retardation (He et al., 2016; Salem et al., 2010). 

Embryonary fibroblasts derived from Nek7-/- embryos show increase 

tendency for chromosomal lagging and abnormalities in primary cilia 

number (Salem et al., 2010). In contrast, Nek6-deficient mice have no 

observable phenotype at early stages of life (our unpublished results), 

possibly as a result of compensation by Nek7. To better study this as well as 

the importance of the kinases in organism development and homeostasis, we 

have generated mouse models with disrupted Nek9, Nek7 and Nek6 

expression and started their characterization. 

Generation of Nek9 genetically modified mice  

 In order to complete disrupt Nek9 expression, with the assistance of 

the Mutant Mouse Facility of the IRB Barcelona, we generated mice 

containing a "knockout-first" targeted gene trap allele (tm1a or trap). Nek9 

exon 2 was flanked with loxP sequences and a reporter-tagged insertion 
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allele (frt- lacZ -neo-frt cassette) was inserted effectively making it a Nek9 

null mutation. This allele was additionally converted to a "floxed" 

conditional knockout (tm1c or flox) allele through crossing with mice 

expressing the site-specific recombinase Flpo. This conditional knockout can 

be converted to a deletion allele (tm1d or ∆) through the action of the 

recombinase Cre (Figure 17A). To gain further control of this step, 

conditional knockout Nek9flox/flox mice was crossed with animals 

ubiquitously expressing a tamoxifen-inducible cre activity (Cre-ERT2) 

under the UBC promoter (B6.Cg-Tg(UBC-cre/ERT2)1Ejb/J) resulting in 

Nek9flox/flox;UBC-cre/ERT2 animals. Mutant Estrogen Receptor (ERT2) 

ligand-binding domain fusions with Cre recombinase are a key tool for 

spatio-temporally controlled genetic recombination with the Cre/lox system. 

CreERT2 is efficiently activated in a concentration-dependent manner by the 

Tamoxifen metabolite trans-4-OH-Tamoxifen (trans-4-OHT). 

Development of pre-implantation embryos lacking Nek9 

 Our results show that animals carrying a single KO-first allele 

(Nek9+/trap effectively Nek9+/–) are healthy at bird and fertile. We intercrossed 

Nek9+/trap mice and analyzed their progeny. No homozygous null animals 

(Nek9trap/trap, effectively Nek9-/-) were born and no homozygous viable 

embryos were observed at mid gestation, suggesting early embryonic 

lethality. A small number(6%) of nonviable reabsorbed Nek9trap/trap embryos 

were observed at E12.5 suggesting post-implantation lethality (Figure 17). 
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Figure 17: Generation of Nek9 genetically modified mice. A) Schematic of the Nek9 
alleles used in this study. The position of the oligonucleotides used for genotyping is 
shown as numbered arrows (see Table 3 in material and methods); B) Representative PCR 
of Nek9+ (WT) and Nek9trap mice alleles; C) Results from Nek9+/trap intercrosses, 
observed number of genotyped pups or E12.5 embryos. Asterisk indicate non-viable 
partially reabsorbed embryos. 
 

  

 

 

 



RESULTS 
 

 112 

 To determine the cellular and molecular basis of this, in collaboration 

with Dr. Gonzalo Fernández-Miranda (IRB Barcelona), Ivette Vanrell and 

Dr. Nuno Costa-Borges (Embryotools S.L.) we extracted embryos from 

Nek9+/trap intercrosses at E1.5 (when expected to be at the one- or two-cell 

stages) and cultured them in vitro for 3 days (E4.5, until wild type embryos 

reach blastocyst stage). We initially quantified embryo viability from Nek9+/+ 

x Nek9+/+, Nek9+/+ x Nek9+/trap and Nek9+/trap x Nek9+/trap intercrosses. As we 

expected, embryos from control and Nek9+/+ x Nek9+/trap intercrosses mostly 

developed normally reaching either the morula or blastocyst stage. However, 

Nek9+/trap intercrosses resulted in a considerable part of the embryos 

becoming inviable at different stages of development, from 2 cells to morula, 

possibly corresponding to Nek9trap/trap embryos (Figure 18A). 
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Figure 18: Nek9trap/trap embryos have a lower viability that their WT counterparts.  A) 
Developmental stage of E4.5 embryos resulting from the indicated three different 
intercrosses after 3 days in culture (2 cells, 4-16 cells, morula or blastocyst). n=88 
embryos from Nek9+/+ x Nek9+/+ (6 females), n=81 embryos from Nek9+/+ x Nek9+/trap (6 
females) and n= 227 embryos from Nek9+/trap x Nek9+/trap (10 females); B) E1.5 embryos 
were isolated from Nek9+/trap intercrosses, cultured for three additional days and 
genotyped by PCR. The percentage of E4.5 embryos that did not reach blastocyst stage 
after 3 days in culture is shown (embryos pooled from 3 independent experiments); C) 
Representative images of embryos from B with the indicated genotypes. ✓ and ✘ 
indicates if embryos reached the expected blastocyst stage of not. 
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 To confirm this, we decided to perform similar crosses and harvest 

embryos for genotyping after three days in culture. To genotype embryos, 

we developed a nested-PCR strategy. After initial problems with 

reproducibility, possibly caused by allele drop-out (the preferential 

amplification of one of a pair of heterozygous alleles) and/or the 

contamination with wild type DNA, we modified our assay conditions (new 

primers pairs, PCR in sterile conditions), and decided to perform two PCRs 

on parallel from each sample (50% of sample each, see experimental 

methods). In this manner we managed to repeat several extractions having 

reproducible genotyping results. We recorded morphology and viability 

during culture and related it to genotype. Most of the wild-type embryos 

formed normal morulas and blastocysts. On the other hand, a considerable 

fraction of Nek9trap/trap embryos didn’t reach blastocyst stage (Figure 18B-C). 

The differences between wild type and Nek9trap/trap embryos failed to reach 

statistical significance, something that we attribute to variability of our PCR 

results and/or low sample number.   

 We next performed additional Nek9+/trap intercrosses, collected 

embryos that did reach the blastocyst stage after 3 days of culture and 

assessed mitotic structures by fluorescence microscopy (IF), staining DNA, 

tubulin and centrosomes (pericentrin). After that, embryos were recovered 

and genotyped (we didn't succeed to genotype embryos by IF with available 

anti-Nek9 antibodies).  

 In this independent set of experiments, and as expected from our 

previous results (see Figure 18B), less Nek9trap/trap embryos than expected 

reached blastocyst stage. Additionally, we found less mitotic cells in 

Nek9trap/trap blastocysts, of which 60% showed multipolar spindles with extra 

centrosomes (vs. 0% in control embryos). Thus, Nek9trap/trap embryos that 

formed blastocysts showed a higher frequency of mitotic abnormalities that 

may result in death during the first days of development (although the low 
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numbers of embryos assayed preclude strong conclusions from our results). 

Interestingly, a small number of mitosis in heterozygous Nek9+/trap embryos 

also showed multipolar spindles although these embryos were observed at 

the expected rations (Figure 19). 

 

Figure 19: Mitotic abnormalities found in Nek9 +/trap embryos. E1.5 embryos were 
isolated from Nek9 +/trap intercrosses and cultured for three additional days. Embryos that 
reached blastocyst stage were recovered, stained and genotyped after imaging. The 
percentage of each genotype (found vs. expected) among the collected embryos is shown. 
The number of mitosis present in these embryos and the percentage of mitosis showing 
multipolar spindles is also shown, together with representative immunofluorescences of 
Nek9trap/trap embryos. Centrosomes were stained for pericentrin (red), microtubules for 
alfa-tubulin (green) and DAPI for DNA (blue). n=37 embryos pooled from 2 different 
experiments. Scale bar 7 µm. 

 

 

Characterization of Nek9+/trap mutant mice  

 As stated, Nek9+/trap mice developed normally and were fertile. 

Furthermore, Nek9+/trap embryonic fibroblasts (MEFs) proliferated well in 

culture and did not display obvious defects during cell cycle progression (see 

below). To check whether the expression in heterozygosity of Nek9 results 

in the onset of any pathology affecting the viability of the animals at late 



RESULTS 
 

 116 

stages of life (specially tumors) we aged a cohort of Nek9+/+ and Nek9+/trap 

animals.  Nek9+/trap mice displayed a slightly shorter tumor-free life span than 

controls (Figure 20A), and at the age of around 12 months presented an 

increase in macroscopic spontaneous pathologies compatible with neoplastic 

proliferations in different organs and tissues (Figure 20B). In particular, a 

histological study carried out with the assistance of the IRB Barcelona 

Histopathology Facility revealed that, when compared to control animals, 

Nek9 mutant mice displayed a slightly increased frequency of colon (0% in 

controls and 2,2 % in mutants) and hepatic (0% in controls and 8,7% in 

mutants) tumors, although a lower frequency of pulmonary tumors (8,8 % in 

controls and 2,2 in mutants) (Figure 20C and Table 4).  

 
Table 4: Specific pathologies found in Nek9+/+ and Nek9+/trap mice after 20 months 

aging experiment (* autolytic samples that couldn’t be analyzed). 
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 Splenomegaly with splenic lymphoid hyperplasia and pulmonary 

bronchi alveolar lymphoid tissue (BALT) hyperplasia were frequently 

presented in both Nek9+/trap animals and in WT mice. Both findings were 

generally considered unspecific and frequently observed in aged laboratory 

rodents, especially in those housed in conventional animal facilities, 

although, the splenic hyperplasia of the lymphoid tissue might also be 

compatible with a preneoplastic lesion of lymphoid tissue. Other histological 

lesions found in this study and considered incidental findings frequently 

found in aging mice were renal tubular vacuolation, membrane proliferative 

glomerulonephritis, focal areas of necrosis of the adipose tissue, liver 

angiectasia, extramedullary hematopoiesis, liver microgranulomas, hepatic 

lipidosis and acidophilic macrophage pneumonia (Haines et al., 2001). 

Unfortunately, some of the samples obtained from death animals (frequently 

Nek9+/trap animals) presented advanced autolysis that compromised the 

histologic diagnosis (pathology not apparent/not determined* in table 4)  

 Lymphoma is the most common contributing cause of morbidity or 

mortality in old mice (Haines et al., 2001). Our results showed that 20 

months Nek9+/trap animals presented a slightly higher incidence of 

lymphomas than its control counterparts, an observation that we 

hypothesize may be related to the described high levels of expression of 

Nek9 in the lymphatic system of wild type animals (Human Protein Atlas 

, www.proteinatlas.org). Conversely, we observed that Nek9 expression is 

significantly reduced in Nek9 hemizygous mice (Figure 20E). 
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Figure 20: Nek9-deficient mice showed a tendency to develop tumors. A) Tumor-free 
survival curve of Nek9+/+ and Nek9+/trap mice indicating a slight but non-significant 
reduction in the tumor-free life span of  Nek9 heterozygous mice (p=0.25, Log-rank or 
Mantel-Cox test); B) Percentage of tumor-bearing mice at 20-months (n=33 Nek9+/+ 

animals, n=46 Nek9+/trap animals); C) Representative tumors found in Nek9+/trap mice: 
lymphoma in the spleen (left and right top panels), hepatic (left and right middle panels), 
pulmonary (left bottom panel) and colon cancer (right bottom panel); D) Representative 
spleen, kidneys and liver of aged animals with the indicated genotypes are shown, note 
the presence of splenomegaly and a tumor of considerable size in one of the livers in 
Nek9+/trap animals; E) Nek9 expression in the indicated tissues was determined by western 
blots using specific antibodies. b-tubulin is used as a loading control.  
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 Interestingly, a high percentage of Nek9+/trap animals showed a range 

of kidney defects (extensive areas of renal necrosis and in some cases 

presence of a solitary kidney). Although no observable differences in size or 

overall structure were noted, brains of Nek9+/trap mice were found to be 

significantly lighter than these of control mice (Figure 21) together with a 

significative higher body weight resulting from an accumulation of white 

adipose tissue subcutaneous, intraabdominal and epididymal, that our data 

suggests may be normal in structure. We did a glucose tolerance test, a 

standard procedure that addresses how quickly exogenous glucose can be 

cleared from blood. Impairment of glucose tolerance indicates problems with 

maintenance of glucose homeostasis (insulin resistance, carbohydrate 

metabolism, diabetes, etc) that can result in body weight gain. No defect in 

glucose tolerance was seen in our animals (Figure 22).  

 

 

Figure 21: Brains of Nek9+/trap mice are lighter than these of control mice. Brains were 
extracted from mice with the indicated genotypes just after sacrifice and weighted after 
fixation in 10% buffered formalin for 2 days (n=33 Nek9+/+ animals, n=26 Nek9+/trap 
animals).   
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Figure 22: Nek9+/trap mice have a considerable higher weight than control animals, and 
this is more pronounced in females. A) Animals were heighted one per month during the 
20 months experiment (n=33 Nek9+/+ animals,16 males and 17 females, n=46 Nek9+/trap 
animals, 23 males and 23 females); B) Glucose tolerance test done in 5 males and 5 
females of each genotype. 20% glucose solution, 2g of glucose/kg body mass or (µl) = 10 
x body weight (g) was injected intra-peritoneally. The blood glucose levels were then 
measured at 0 (time-point of injection), 30 and 60 minutes after injection by placing a 
small drop of blood on a new test strip and recording the measurements. Glucose levels 
should be below 140 mg/dl at 2 h. Levels between this and 200 mg/dl indicate “impaired 
glucose tolerance”, and any level above 200 mg/dl confirms a diagnosis of diabetes.  
 

 In view of our results interfering with Nek9 in different systems, and 

the apparition of different pathologies related to cellular transformation, we 

next performed an estimation of the incidence of aneuploidy in the aged 

animals by quantifying micronuclei in circulating erythrocytes, a standard 

test to indicate the existence of lagging chromosome fragments or whole 

chromosomes that have not been incorporated into the nucleus after mitosis 

(MacGregor et al., 1983). To do so, blood smear preparations are made and 
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stained with the DNA marker acridine orange. When a bone marrow 

erythroblast develops into a normochromatic erythrocyte (mature), the main 

nucleus is extruded. Thus, visualization of micronuclei is facilitated in these 

cells as a result of the lack of the main nucleus. We observed that the number 

of micronuclei is significatively higher in Nek9+/trap animals. This was 

associated to a higher number of immature erythrocytes. Usually, immature 

erythrocytes indicate excessive erythropoiesis in response to various stimuli 

such as acute hemorrhage, leukemias, anemia and metastatic cancer to the 

bone marrow. Our results thus suggest that Nek9 haploinsufficiency results 

in chromosome segregation defects and possibly the onset of aneuploidy, and 

this may be related to the apparition of cancer. We confirmed this by 

karyotyping splenocytes of animals of different age (from 1 to 6 months), 

confirming that Nek9+/trap cells frequently showed gain or loss of 

chromosomes (Figure 23). 
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Figure 23: Nek9 in heterozygosis results in aneuploidy. A) Percentage of circulating 
erythrocytes with micronuclei (6 different animals of each genotype at 20 months, 1000 
cells counted per animal) and a representative micronuclei image in Nek9+/trap erythrocytes 
stained with acridine orange; B) Percentage of immature erythrocytes (6 different animals 
of each genotype, 1000 cells counted per animal); C) Number of chromosomes in 
splenocytes, quantified in mitotic spreads at different ages (2 animals for each genotype, 
n=60 cells). Note that the major part of Nek9+/+ splenocytes had 40 chromosomes while 
Nek9+/trap splenocytes showed a wide range of chromosome numbers.  
 

  Aneuploidy is a common characteristic of cancer cells. However, a 

part from driving tumorigenesis, aneuploidy can also inhibit it being crucial 

the cellular context and depending on the level of genomic damage that is 

induced (Weaver and Cleveland, 2008). Aneuploidy can activate p53, 

protecting organisms from developing tumors, and loss of p53 drastically 

accelerates tumor development (Li et al., 2010) and that is why p53-deficient 
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mice are chosen to study the effects of p53 loss on tumor progression my 

mediated apoptosis and increased genomic instability (Donehower, 1996).  

Thus, taking advantage of the availability of p53-deficient mice (Jacks et al., 

1994) (B6.129S2-Trp53tm1Tyj/J, a gift from Travis Stracker, IRB 

Barcelona), we decided to cross our animals with this model, to determine if 

the lack the tumor suppressor resulted in a higher incidence of tumors. We 

aged a cohort of combined genotypes mice from Nek9+/trap; Trp53+/- 

intercrosses until 7 months to see if the absence of p53 increased 

significantly the apparition of cancer in Nek9+/trap animals. Indeed, this is 

what we observed (Figure 24, Table 5). Although the incidence and type of 

tumor at the end of the experiment (7 months) was similar in Nek9+/trap; 

Trp53-/- and Nek9++; Trp53+/- animals, Nek9+/trap; Trp53-/- mice had a 

significantly shorter tumor-free life span than control animals being this 

paralleled with an increase in spontaneous pathologies at early age (Figure 

24B-C), specifically different types of lymphomas and subcutaneous 

sarcomas. As a whole thymic lymphoma was the most common neoplasia 

observed in animals (57,1 % in Nek9+/+; Trp53-/- mice versus 66,7% in 

Nek9+/trap; Trp53-/- mice). This proliferative neoplastic change consisted of 

dense proliferation of lymphoid cells with loss of the normal thymus 

architecture (distinction of the cortex-medulla junction). Neoplastic cells 

presented lymphoblast appearance with round to oval nucleus and a 

moderate number of mitotic figures. Also, macrophages that had rests of 

phagocytized apoptotic lymphoid cells were present (tangible body 

macrophages, TBM) (Figure 24D). Invasion of the thymic capsule and 

peripheral tissues and organs (mediastinum, lungs, and pericardium) by the 

neoplastic cellular population was frequently observed. 
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Figure 24: Effect of Nek9 heterozygosity in p53-deficient mice. A) Results from 
Nek9+/trap;Trp53+/- intercrosses. Percentage of born animals, the expected births and the 
expected births excluding inviable Nek9trap/trap combinations; B) Tumor-free survival 
curve of all combined genotypes after 7 months, indicating a significant reduction in the 
life span of Nek9+/trap;Trp53+/- as compared to wild type animals (Log-rank or Mantel-
Cox test); C) Percentage of tumor-bearing mice in the different genotypes at the 
experiment endpoint; D) Representative tumors found: thymic lymphoma with 
infiltration in pericardium and lung (left above) with numerous tangible body 
macrophages (right above) and malignant subcutaneous sarcoma infiltrating 
subcutaneous muscle (bottom). 
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 Our results could be related to the work of others with aneuploidy 

models and p53 mutant mice, where p53 loss drastically accelerates tumor 

development  (Li et al., 2010), and suggest that the expression in 

heterozygosity of Nek9 results in aneuploidy and this subsequently in 

tumorigenesis affecting the viability of the animals, indicating that Nek9 

may act as a haploinsufficient tumor suppressor. Interestingly Nek9 

heterozygosity seemed to protect Trp53-/+ animals from tumors while Nek9 

WT induce tumor formation in Trp53-/+ animals (Table 5 and Figure 24C). 

Further experiments will be needed to assess the significance of this 

observation.  
 

 
Table 5: Specific pathologies found in Nek9 and p53-deficient mice after 7 months 
aging experiment (* autolytic samples that couldn’t be analyzed). 
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Cellular effects of eliminating Nek9 expression in Mouse 

Embryonic Fibroblasts (MEFs) 

 In order to intensively characterize the phenotype resulting from 

totally or partially eliminating Nek9 expression, we aimed to perform more 

detailed studies using cultured MEF cells with different genotypes. As a first 

step towards this goal, we did a preliminary study of the phenotype resulting 

from the elimination of Nek9 expression in 3T3 or SV40 large T antigen-

immortalized Nek9flox/flox cells transduced with Cre expressing adenoviruses 

(produced in our group from virus originally from the Iowa University). 

However, immortalized cells rapidly became aneuploid and acquired 

aberrant centrosome numbers, and so the study described herein has been 

done completely in primary MEFs (passages P1 to P3). Using these, we took 

advantage of the possibility to abrogate the expression of Nek9 in a 

conditional manner by expressing the Cre recombinase in Nek9flox/flox cells, 

and as an alternative system we eliminated Nek9 expression in 

Nek9flox/flox;UBC-cre/ERT2 cells by incubation with 4-hydroxytamoxifen (4-

OHT) (Figure 25). Identical results were obtained with both strategies, and 

unless indicated results presented herein correspond to Nek9flox/flox;UBC-

cre/ERT2 cells.  

 We thus derived Nek9flox/flox;UBC-cre/ERT2 cells MEFs from 

E12.5 embryos and these cells were treated with 4-OHT 1uM to genetically 

abrogate the expression of Nek9 (resulting in Nek9D/D MEFs), using already 

established conditions and monitored both by PCR and Nek9 western blot. 

Non-treated Nek9flox/flox;UBC-cre/ERT2 cells cells were used as controls 

(wt cells treated with 4-OHT behave identically than non-treated). 

 The abrogation of Nek9 expression was done in non-cycling confluent cells 

maintained in low sera conditions. After 72 hours, cells were split and release 
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into the cell cycle by the addition of serum-containing media. Nek9 depletion 

was observed 24h after the release (t=0). Protein levels of Nek6 and Nek7, 

Nek9 downstream substrates were not affected, while p53 protein level had 

a slightly increase at 48h in Nek9-depleted cells (Figure 25).  

 

 
Figure 25: Abrogation of Nek9 expression in primary mice embryonic fibroblasts 
(MEFs). A) Schematic of the protocol followed for acute ablation of Nek9 in G0-arrested 
cells. Nek9flox/flox cells were arrested by confluency in low serum and transduced with 
AdCre vector or treated with 4OHT. 72 hours later, cells were split into new medium 
supplemented with 10% fetal bovine serum to induce entry into the cell cycle and 
harvested for further analysis at different point times; B) Representative PCR showing 
the generation of the Nek9 null allele (Nek9Δ) 48 hours after tamoxifen induction of Cre 
activity. The Nek9flox allele was genotyped using oligonucleotides pair 1 (FKW+S2R), 
whereas oligonucleotides pair 2 (FKW+S4R) was used to genotype the Nek9Δ allele (see 
Table 3 in material and methods); C) Representative western blots showing Nek9 
depletion at 24, 48 and 72 hours (first panel) after tamoxifen induction of Cre activity. b-
tubulin is used as a loading control.  
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Nek9 depletion results in mitotic arrest and aneuploidy 

 Nek9D/D cultures showed an impairment in their proliferation capacity 

when compared with control MEFs, being the doubling time of the cells in 

culture two-fold longer than control cells. This was associated to a slight 

tendency to have a higher mitotic index, suggesting cell cycle arrest or longer 

mitosis. However, no significative accumulation in prometaphase or other 

specific mitotic phase was observed, probably due to the high variability 

between experiments (Figure 26A-B). FACS cell cycle profiles of control 

and Nek9D/D cultures where almost undistiguible, with only a slight increase 

of the percentage of cells in G2/M detectable in Nek9-depleted cells at early 

point times. Importantly (see below) we didn’t detect any increase in the 

percentage of cells with more than 4N DNA content (polyploid cells). No 

increase in the sub-G1 (less than 2N) population was either detected, 

suggesting that apoptosis does not occur in this population (Figure 26C). 
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Figure 26: Nek9-depleted cell growth rate is reduced. A) Representative growth curve 
during 2 cell passages of control and Nek9-depleted cells. After 8 days in culture, Nek9-
depleted cells stopped growing; B) For the indicated genotypes, the mitotic index 
(unpaired t-test was performed) and percentage of cells in each phase of mitosis were 
quantified by immunofluorescence with anti-b-tubulin plus DAPI (n=4 independent 
experiments;100 cells quantified in each experiment).P=prophase, 
PM=prometaphase, M=metaphase, A=anaphase, T=telophase (unless indicated, here and 
henceforth,  characterization of the phenotype is done in cells harvested 48h after the 
release into the cell cycle); C) Propidium iodide staining and analysis of DNA content by 
flow cytometry showed almost indistinguishable cell cycle profiles. Note that an 
accumulation of polyploid 4N and >4N cells was not detected. 
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 We next studied entry and progression through mitosis by following 

MEFs in a time-lapse imaging experiment. The percentage of cells entering 

in mitosis (around 30%) was similar in Nek9flox/flox and Nek9D/D MEFs, 

suggesting that in these cells the kinase is not involved in the machinery 

controlling the G2 to M transition (Figure 27A). Control Nek9flox/flox MEFs 

were able to carry out mitosis (in this case defined as time between apparent 

cell rounding and splitting into two daughter cells) in an average time of 41.5 

minutes. In contrast, Nek9D/D  cells stayed in mitosis for an average time of 

47 minutes, although several cells took much longer to complete mitosis. 

Additionally, 10% of Nek9D/D MEFs cells (1% of Nek9flox/flox) aborted 

mitosis, reverting to a single cell in most cases and 2.5% of the Nek9D/D cells 

didn’t finish mitosis before the experiment ended. Finally, 2.5% of cells both 

Nek9flox/flox and Nek9D/D died in mitosis (although we didn’t observe caspase 

3 activity by WB (Figure 27). So, with that, we confirmed our previous 

hypothesis of longer mitosis in Nek9-depleted cells, hence the higher mitotic 

index. 
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Figure 27: Nek9 depletion resulted in a significant increase of cell doubling time. A) 
Total number of cells entering mitosis in control or Nek9-depleted cells; B)Time in 
mitosis was quantified by live imaging and defined as time between apparent cell 
rounding and splitting into two daughter cells (n=78 mitosis in  Nek9flox/flox cells and n=81 
mitosis in Nek9Δ/Δ cells; aborted mitosis: cells that become round and after some time re-
adhered without dividing; death: cells that become apoptotic; abnormal mitosis: division 
into three cells; not finished: cells that were in mitosis at the end of the recording; C) 
Time in mitosis of all cells that completed mitosis for the indicated genotypes and their 
classification.  
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 We noticed that Nek9-deficient cultures contained a high percentage 

of cells with multiple micronuclei (20% cells vs 5% in control cells), a 

similar phenotype to that previously observed in Nek9+/trap erythrocytes. 

These micronuclei almost always contained centromeres, thus suggesting 

whole chromosome segregation abnormalities resulting in aneuploidy 

(Figure 28A). We also found a high percentage of anaphases with lagging 

chromosomes (around 40% of anaphases in Nek9D/D vs <1% in Nek9flox/flox), 

although we did not find a significant number of binucleated cells, and 

telophases with DNA bridges (>15% telophases in Nek9D/D vs <5% in 

Nek9flox/flox) (Figure 28B).  

 

Figure 28: Nek9 depletion result in abnormal chromosome segregation. A) 
Accumulation of abnormal cells with micronuclei, n=4 independent experiments; 100 
cells quantified in each experiment; right, staining with a centromere marker, right 
(CREST antibody in red, DAPI in blue) B) Percentage of anaphases with lagging 
chromosomes (30 Nek9flox/flox and 45 Nek9Δ/Δ cells from three independent 
experiments) and telophases with DNA bridges (30 Nek9flox/flox and 45 Nek9Δ/Δ cells from 
three independent experiments). Examples are shown (DAPI staining in grey). Scale bar 
5 µm.  
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 Our results suggested that the lack of Nek9 could result in aneuploidy, 

similarly to what we observed in haploinsufficient mice cells. To confirm 

this, we performed karyotypes. Indeed, Nek9D/D  cells frequently showed gain 

(50% in Nek9D/D vs 20% in Nek9flox/flox) or loss (25% in Nek9D/D vs 5% in 

Nek9flox/flox) of chromosomes effectively being aneuploid (Figure 29). 

 

 

Figure 29: Nek9-depleted MEFs become aneuploidy. Number of chromosomes in MEFs 
with the indicated genotypes were quantified in mitotic spreads (n=15 cells for each 
genotype) 

 

Nek9 depletion results in the apparition of multiple centrosomes and 

aberrant mitotic figures 

 We next sought to understand the origin of the observed mitotic 

defects and aneuploidy. Surprisingly, we observed that, upon Nek9 

depletion, the number of g-tubulin (Figure 30) or pericentrin (see below) foci 

increased significatively, suggesting centrosome amplification (something 

that was confirmed using additional centrosome markers, see below). As is 
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shown in Figure 30, we found a significant number of Nek9D/D cells with 3, 4 

or more than 4 centrosomes, including cells with up to more than 12 

centrosomes (cells with only one nucleus were quantified and centrosomes 

were detected with g-tubulin) at 48h post-release, that progressively 

increased from 24 hours to 72 hours post-release. In fact, 25% of Nek9D/D 

cells had more than 2 centrosomes in comparison to <10 % of Nek9flox/flox 

cells.  
 

 
Figure 30: Nek9 depletion leads to centrosome amplification in MEFs. Frequency of 
Nek9flox/flox and Nek9Δ/Δ MEFs cells with the indicated number of centrosomes stained 
with γ-tubulin (plus DAPI). Multinucleated cells, present at low frequency in both control 
and Nek9-depleted cultures were not considered. Representative immunofluorescence 
images showing mitotic cells with extra centrosomes are shown. n=4 independent 
experiments, 100 cells per experiment. Unpaired t-test was performed. Scale bar 5 µm. 
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 Next, we examined whether enforced expression of Nek9 could rescue 

the observed centrosome overduplication. To address this, Nek9flox/flox cells 

were first treated with 4-OHT and subsequently infected with pBABE-

FLAG lentivirus expressing wild-type Nek9. The number of γ-tubulin foci 

in Nek9D/D MEFs was markedly decreased by Nek9 re-expression (from 

17,5% to 7,5% of cells showing more than two foci) but not by infection with 

the empty vector, strongly suggesting that Nek9 prevents centrosomal 

amplification (Figure 31). 

 Finally, as an additional control, Nek9flox/flox (Cre-ERT2 negative) cells 

were treated with 4OHT. This did not result in an increase of the number of 

g-tubulin foci in contrast to what we observed with Cre-ERT2 positive 

Nek9flox/flox cells (and neither, as expected, in the downregulation of Nek9 

expression). Additionally, as mentioned above and supporting the direct 

relation of Nek9 with the observed phenotype, Nek9flox/flox cells transduced 

with AdenoCre, that did result in the efficient abrogation of Nek9 expression 

in a 4OHT independent manner, showed division defects, aneuploidy and 

amplification of the foci of different centrosome markers (data not shown). 

 

 
Figure 31: The number of centrosomes in Nek9Δ/Δ MEFs was markedly decreased by re-
expression of Nek9. Nek9flox/flox and Nek9Δ/Δ MEFs were infected with pBaBe retrovirus 
expressing Nek9 or the empty vector and selected by puromycin resistance. After 
confirming Nek9 depletion by WB (b-tubulin is used as a loading control), cells with 
more than two centrosomes were quantified by IF using γ-tubulin as a centrosome 
marker. n=2 independent experiments, 100 cells per experiment. 
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 When the cell undergoes mitosis, the duplicated centrosomes separate 

in order to organize the poles of a bipolar mitotic spindle, resulting in 

accurate chromosome separation and the maintenance of genomic stability. 

Centrosome abnormalities such as the amplification of centrosome numbers, 

frequently lead to abnormal spindle formation, although cells have 

mechanisms to minimize this, such as the clustering or inactivation of extra 

centrosomes (Wang et al., 2014). Thus, we analyzed the appearance of the 

mitotic spindles in mitotic Nek9-depleted cells. We observed an increase in 

prophase cells with more than 2 centrosomes (30% in Nek9D/D vs <5% in 

Nek9flox/flox), and prometaphase/metaphase cells with multipolar mitotic 

spindles (40% in Nek9D/D vs 5% in Nek9flox/flox), spindles with clustered 

centrosomes (40% in Nek9D/D vs 10% in Nek9flox/flox) and what seem to be 

inactivated centrosomes (Figure 32). Thus, our results suggest that extra 

centrosomes observed in Nek9-defficient cells result in abnormal mitotic 

configurations. This may result in aneuploidy in part through the production 

of merotelic attachments, as these incorrect chromosome attachments are not 

detected by the SAC and, if these are uncorrected by anaphase onset, the 

probability of chromosome mis-segregation increases, resulting in whole 

chromosome aneuploidy. Furthermore, chromosomes with unresolved 

merotelic attachments usually get trapped in the cleavage between dividing 

cells, leading to chromosome breakage and consequently aneuploidy (Orr et 

al., 2015). In fact, as previously shown, we found anaphases or telophases 

with lagging chromosomes and DNA bridges (Figure 28), frequently 

associated to an abnormal number of centrosomes (Figure 32C). 
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Figure 32: Representative immunofluorescence images of mitotic spindle abnormal 

conformations observed in Nek9Δ/Δ MEFs, stained by anti-b-tubulin (mitotic spindle), 
pericentrin (centrosomes) and DAPI (DNA).  A) Frequency of prophase cells with more 
than 2 centrosomes; B) Quantification of the incidence of multipolar spindles in 
prometaphase or metaphase cells (n=3 independent experiments, 50 cells per experiment) 
and quantification of the incidence of pseudo-bipolar with centrosome clustering and 
multipolar spindles in metaphase cells with more than two centrosomes (n=3 independent 
experiments, 50 cells per experiment); C) Representative IF of an anaphase with lagging 
chromosomes and telophase with DNA bridge, both with centrosome clustering. Scale 
bar 5 µm. 
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 Amplified centrosomes in Nek9-defficient cells have a close to normal 

structure, as demonstrated by the containing of different PCM makers such 

as pericentrin, CDK5RAP2, Cep192, NEDD1 and g-tubulin in prophase 

centrosomes (Figure 33). Interestingly, although only significant in the case 

of Cep192 and NEDD1, there was a tendency towards a decrease in intensity 

of PCM proteins in prophase centrosomes in Nek9-depleted cells. This could 

be related to the previously described role of Nek9 during centrosome 

maturation (Sdelci et al., 2012) and may contribute to the observed mitotic 

abnormalities. Another explanation could be that as with an increased 

number of centrosomes, the PCM is redistributed among then.  

 

 Thus, PCM staining suggest that what we observed were indeed 

centrosomes. To finally establish this (and rule out other possible 

explanations such as centrosome fragmentation), we stained cells with 

centrin, a centriole marker. Figure 34A shows that indeed, extra PCM foci 

observed in Nek9-depleted cells contained centrioles, at least two per foci, 

although in some cases more than two were observed (see below). Our 

results thus established that Nek9 depletion results in the amplification of 

centrosome numbers. 
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Figure 33: Centrosomes in Nek9Δ/Δ cells recruited different PCM components. 
Quantification of pericentrin, CDK5RAP2, Cep192, NEDD1 and γ-tubulin intensity at 
mitotic centrosomes. Example cells with the corresponding antibodies plus DAPI are 
shown in each case. n=45 prophase cells from 3 different experiments. Prophases were 
identified using DAPI staining, by assessing chromosome condensation and the presence 
of apparently intact nuclei. Scale bar 5 µm. 
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Figure 34: Centrosomes in Nek9Δ/Δ MEFs contain centrioles. A) Representative 
immunofluorescence images showing extra centrosomes in Nek9Δ/Δ cells, stained for 
centrin. Scale bar 5 µm; B) Representative immunofluorescence images showing extra 
centrosomes in Nek9Δ/Δ cells, stained for detection of the centriolar components SAS-6 
and CPAP. Scale bar 5 µm; C) Western blot showing that Nek9 depletion did not affect 
protein levels of the duplication factors SAS-6, CPAP and Plk4. b-tubulin is used as a 
loading control.  
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Nek9-depleted cells contain an excess of Centrobin_positive centrioles   

 Our data suggest that centrosome number did not increase as a result 

of failed mitosis, as we did not see a correlation with multinucleation or 

polyploid. It thus may be possible that abrogation of Nek9 expression results 

in a deregulation of the centriole/centrosome duplication cycle. We thus 

studied different centriolar proteins with the aim to understand whether 

centriole duplication was normal in Nek9-depleted cells.  

 We first stained centrosomes for the daughter centriole markers SAS-

6 and CPAP (human SAS-4) (Figure 34B), observing that each centrosome 

contained only one SAS-6 or CPAP positive centriole as expected. Although 

not obvious changes in the amounts of these proteins were observed by 

immunofluorescence, to address if it was a result of abnormal expression of 

known centriole duplication factors such, SAS-6 or CPAP but also Plk4 (in 

our hands not observable in MEF cells by IF) in Nek9-defficient cells, we 

quantified the levels of these proteins by western blot. No obvious changes 

in the levels of any of the proteins were observed. (Figure 34C). 

 

 As we advanced above, Nek9D/D MEFs centrosomes contained extra 

centrioles with different configurations including paired centrioles, single 

centrioles and clusters of three or more centrioles (Figure 35). In Nek9D/D 

mitotic cells we found around 50% of cells with more than 4 centrioles per 

cell (~10% in Nek9flox/flox). We also quantified the percentage of centrosomes 

with more than 2 centrioles in interphase cells, that was >15% in Nek9D/D  

and around 2.5 % in Nek9flox/flox cells. In our hands, the anti-centrin antibody 

resulted in some cases in multiple non-specific centrin foci in the cytoplasm 

making it difficult to quantify the results, so only foci that were clearly 

centrioles (i.e. surrounded by PCM) were considered in the quantifications.  
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Figure 35: Nek9 depletion leads to multiple centrosomes with several different centriole 
configurations. A) Representative immunofluorescence images of mitotic MEFs 
immunostained with the indicated antibodies are shown. Centrioles (i.e. centrin foci  
associated to g-tubulin) per cell in mitosis are quantified as follows: <4, 2+2 (2 centrioles 
per mitotic pole) or >4. n=4 independent experiments, 50 cells per experiment; B) 
Representative immunofluorescence images of interphase MEFs immunostained with the 
indicated antibodies are shown. Percentage of centrosomes with more than 2 centrioles. 
n=4 experiments, 50 cells per experiment. Scale bar 5 µm. 
 

 While characterizing the Nek9flox/flox cells, we realized that a 

significant percentage of centrioles present were positive for centrobin, a 

daughter centriole marker (Zou et al., 2005). Centrobin participate in an 
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undefined manner in the initiation of new centriole structures  and facilitates 

the elongation and stability of centrioles via its interaction with tubulin (Gudi 

et al., 2011).  As a Nek2 substrate, it has been reported to have a role in 

stabilizing the microtubule network (Jeong et al., 2007) and in regulating the 

assembly of functional mitotic spindles (Jeffery et al., 2010b). Centrobin is 

recruited to the procentrioles during S phase. During S, G2, and M phases, 

the cell shows two centrobin-positive centrioles, the newly assembled 

procentrioles/daughter centrioles. After mitosis, cells have one centrobin 

positive centriole, the daughter centriole assembled in the previous cell 

cycle. Upon reentering S phase, centrobin on the daughter centriole 

assembled in the previous cycle becomes undetectable, the molecular basis 

of this not being clear (Zou et al., 2005). 

 Mitotic control Nek9flox/flox cells have a centrobin positive centriole 

(one daughter centriole) per each centriole pair. However, in Nek9D/D  cells, 

we observed a significative increase in the number on centrobin positive 

centrioles (~60% of centrioles in Nek9D/D vs 50% in Nek9flox/flox were 

centrobin positive, resulting in around 40% of Nek9D/D (vs <2% of 

Nek9flox/flox) cells showing at least one diplosome with both centrioles 

positive for centrobin (Figure 36). In fact, different centriole configurations 

were observed with cells frequently having groups of more than two 

centrioles, all of them centrobin positive. Furthermore, the levels of 

centrobin assessed by western blot were slightly increased upon Nek9 

removal, although the detection was difficult and the results variable 

between different experiments probably due to the small amount of centriolar 

centrobin in cells (Bauer et al.,2016) (Figure 36D). 
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Figure 36: Centrobin positive centrioles were significantly increased in Nek9-depleted 
cells. A) Representative immunofluoescence images of mitotic MEFs immunostained 
with the indicated antibodies. Scale bar 5 µm; B) Representative immunofluoescence 
images of interphase MEFs immunostained with the indicated antibodies. Scale bar 5 µm; 
C) Percentage of centrobin positive centrioles and cells with centrobin positive centriole 
pairs. n=4, 30 cells per experiment; D) Representative western blot showing Nek9 
depletion. Centrobin protein levels were slightly increased upon Nek9 absence. b-tubulin 
is used as a loading control. 
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 Hence, Nek9 depletion may cause the production of multiple 

‘daughter’ centrioles (something that our results with CPAP and SAS-6 do 

not seem to corroborate) or impede the removal of centrobin from new 

mother centrioles just before reentering S phase. Centrobin excess has been 

shown to cause the accumulation of CPAP, something that we have not 

observed, and defective long centrioles (Gudi et al., 2014, 2015), something 

that in some isolated cases we have seen but does not seem to be prevalent 

in Nek9D/D cells.  

 Despite the increase in the number of centrobin positive centrioles, we 

did not notice the same increased using another daughter centriole marker, 

SAS-6 (Figure 37 and see also Figure 34). In fact, we observed a slight 

decrease (45% in Nek9D/D vs 55% in Nek9flox/flox cells; n=1) in the percentage 

of SAS-6-positives centrioles, as the total number of centrioles in Nek9-

depleted cells was higher, but roughly the same number of SAS-6 positive 

centrioles were observed. Nek9flox/flox cells, almost entirely showed one SAS-

6 positive procentriole per each centriole pair, ~10% with two centrin foci 

and 1 SAS-6 focus (corresponding to cells in G1) and ~90% with two centrin 

and SAS-6 foci (corresponding to S/G2/M cells with duplicated 

centrosomes). In contrast only 45% of Nek9D/D cells showed this 

configuration. The rest had more than 4 centrioles that however, were 

frequently associated with only one or two SAS-6 foci, suggesting that a 

fraction of the centrobin positive centrioles observed in Figure 36 are not 

positive for SAS-6 (we were unable to do IFs simultaneously with this two 

centriolar proteins to document this). Interestingly, a significative number of 

cells (26,7%) did show centriole groups with three SAS-6 foci, hinting to a 

possible mechanism for centriole amplification.  
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 Centrosome overduplication can result from two different 

mechanisms: the dysregulation of canonical templated centriole duplication, 

and the de novo formation of centrioles. In general, centrioles amplified 

through the canonical duplication cycle tend to form a cluster of daughters 

around a single mother centriole, whereas centrioles amplified by the de novo 

pathway tend to be dispersed in cytoplasm (Bettencourt-Dias and Glover, 

2007).  

 Our observations seemed to point to canonical amplification (i.e. 

existence of groups of centrioles). To further elucidate this, we stained cells 

with centrobin plus C-Nap1, a mother centriole marker (Figure 38). As 

expected, after mitosis, control G1 cells (when only 2 centrioles are present) 

displayed two C-Nap1 positive centrioles, being only one of them centrobin 

positive, corresponding to the daughter centriole assembled in the previous 

S phase, whose centrobin will become undetectable upon reentering S phase. 

Thus, in S-G2-M (when already 4 centrioles are present) cells displayed two 

C-Nap1 positive centrioles and two centrobin positive centrioles, the newly 

assembled procentrioles.  Interestingly, in Nek9D/D cells we observed single 

C-Nap1 foci (mother centrioles) associated by several (usually two but in 

some cases three) centrobin foci. This resulted in an increase in centrobin 

positive centrioles in relation to C-Nap1 positive ones in Nek9D/D  cells, being 

1.3 the average of centrobin positives centrioles vs C-Nap1 positive 

centrioles in Nek9D/D and 0.8 in Nek9flox/flox cells, respectively. As using SAS-

6 we do not observe an excess of daughter centrioles (Figure 37), we 

hypothesize that what we observe are mother centrioles positive for 

centrobin associated to one or two daughter centrioles (also centrobin 

positive). Furthermore, we propose that the accumulation of defective 

removal of centrobin from the new mother centriole just after mitosis, induce 

new rounds of centriole duplication from the same mother centrioles 

generating a cluster of amplified centrioles.  
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Figure 37: Representative immunofluorescence images of Nek9flox/flox and Nek9Δ/Δ MEFs 
immunostained with the indicated antibodies are shown. One SAS-6 positive centriole 
was present in each centriole pair. Percentage of centrioles SAS-6 positives were 
quantified (total number or indicated configuration). Extra centrioles in Nek9-depleted 
cells were not all positives for SAS-6 daughter centriole marker (one experiment, 100 
cells). Scale bar 5 µm. 
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Figure 38: Representative immunofluorescence images of Nek9flox/flox and Nek9Δ/Δ MEFs 
immunostained with the indicated antibodies are shown. Quantification of centrobin 
positive centrioles versus C-Nap1 positive centrioles. The ratio between both is 
represented. n=2, 50 cells per experiment; unpaired t-test was performed. Scale bar 5 µm. 
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Centrobin positive centrioles in Nek9D/D cells favor the production of 

shorter cilia and multi-ciliated cells 

The hypothesis that the lack of Nek9 results in mother centrioles positive for 

centrobin is supported by preliminary observations showing that centrobin 

positive centrioles in Nek9D/D cells are able to function as basal bodies of cilia 

when arrested by serum starvation (Figure 39). We observed cilia (labeled 

with the ciliary marker Arl13b) that apparently were growing from centrobin 

positive centrioles (>20% of cilia showing Arl13b and centrobin signal 

overlap or continuity in Nek9D/D cells vs 2% in Nek9flox/flox cells), although 

we could not assure unequivocally that they were basal bodies without the 

use of other markers. Additionally, in some Nek9D/D cells it was possible  to 

observe cilia with two centrobin foci in their base. Although the number of 

cells producing cilia did not change in respect to control cells (around 60%), 

cilia in Nek9D/D  cells were frequently shorter (2,2 um vs 2,97 um in average 

in Nek9flox/flox). Furthermore, we observed that 20% of Nek9D/D cells were 

multi-ciliated (vs 2% in Nek9flox/flox), something that may be related to the 

previously described centriole amplification. 
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Figure 39: Cilia formation in G0 arrested Nek9-depleted cells. A) Representative 
immunofluorescence images of Nek9flox/flox and Nek9Δ/Δ MEFs immunostained with the 
indicated antibodies are shown; B) Percentage of ciliation between control and Nek9-
depleted cells, cilia length quantification and percentage of centrobin signal at the base 
of cilia in Nek9 absence (one experiment, 100 cells); C) Percentage and representative 
immunofluorescence images of multiciliated Nek9Δ/Δ MEFs immunostained with the 
indicated antibodies are shown. One experiment,100 cells. Scale bar 5 µm. 
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Nek9 depletion in human cells  
Cell viability is affected upon Nek9 depletion 

 In parallel to the described results, and to ascertain if the phenotype 

resulting from the depletion of Nek9 was not an isolated event observed in 

MEFs, we used two transformed human cell lines, U2OS and HeLa to study 

the result of depleting Nek9 by siRNA. Upon Nek9 depletion, both cell types 

showed an impairment in their proliferation capacity when compared with 

control cells. Surprisingly, and in contrast to what we observed in MEFs, the 

respective mitotic indexes were not increased, and in fact we observed a 

slight decrease in the percentage of mitotic cells in both cell lines. A 

clonogenic survival assay additionally showed that Nek9 downregulation 

was deleterious in both cases (Figure 40). 

 
Figure 40: Nek9 abrogation in human cell lines. A) Representative western blot 
confirming Nek9 depletion 48h after siRNA transfection in HeLa and U2OS cells. 
b-tubulin is used as a loading control; B) Colony formation assay, growth curve and 
mitotic index in control or Nek9 siRNA transfected HeLa cells (n=2,100 cells per 
experiment) and U2OS cells (n=4, 100 cells per experiment). 
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U2OS but not HeLa cells phenocopy the effect on centrosomes of 

downregulating Nek9 levels observed in MEFs 

 Together with the proliferation defects, we observed that the 

downregulation of Nek9 resulted in centrosome amplification in U2OS but 

not HeLa cells (Figure 41). Thus, 7% of U2OS cells after Nek9 siRNA (vs 

2% after control siRNA) showed more than two centrosomes while no 

amplification was detected in HeLa. Besides the increase in the number of 

centrosomes in U2OS, 48h post-transfection we also found a significative 

increase in the number of centrosomes with more than 2 centrioles (11% of 

centrosomes in Nek9 siRNA cells vs less than 1% in control cells).  

 We did not find abnormal expression of Plk4 or SAS-6 in U2OS after 

Nek9 depletion, and the extra centrioles were not SAS-6 positive. Control 

cells had one SAS-6 positive procentriole per each centriole pair (2;1 or 

2+2;1+1 configurations) while in Nek9-depleted cells only the 70% showed 

this configuration. The rest of the cells showed more than 4 centrioles with 

only one or two of them being positive for SAS-6 (Figure 42).  
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Figure 41: Nek9 depletion leads to centrosome amplification in U2OS but not in HeLa 
cells. A) Percentage of cells with more than 2 centrosomes 48h post-transfection in HeLa 
(n=2, 100 cells per experiment) and U2OS (n=3, 100 cells per experiment). 
Representative immunofluorescence images with the indicated antibodies are shown. 
Scale bar 5 µm; B) Quantification of centrosomes with more than 2 centrioles upon Nek9 
abrogation for 48 hours in U2OS cells (n=3, 50 cells per experiment, unpaired t-test was 
performed). Representative immunofluorescence images with the indicated antibodies 
are shown. Scale bar 5 µm. 
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Figure 42: Centrin and SAS-6 configurations after control and Nek9 siRNA transfection 
in U2OS cell (48h post-transfection; n=2, 50 cells per experiment). Representative 
immunofluorescence images with the indicated antibodies are shown. Scale bar 5 µm. 
Western blot showing that Nek9 depletion did not affected protein levels of the 
duplication factors SAS-6 and Plk4. b-tubulin is used as a loading control.  
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 As in Nek9D/D  cells, in U2OS where Nek9 was depleted by siRNA we 

noticed both in mitosis and in interphase, a significative increase in the 

number on centrobin positive centrioles (50% of centrioles in control siRNA 

vs 70% in Nek9 siRNA cells), and the presence of centrobin positive 

centriole pairs (35% of cells with a diplosome with both centrioles positive 

for centrobin in Nek9 siRNA cells vs <5% in control cells)  (Figure 43). As 

observed in MEFs, centrobin levels as detected by western blot seemed to 

increase upon Nek9 downregulation, although these results not conclusive 

enough due to inter-experiment variability to be able to assure that this is the 

case (not shown). 

 
Figure 43: Excess of centrobin positive centrioles in U2OS cells after Nek9 
downregulation (48h post-transfection). A) Representative immunofluorescence images 
of mitotic and interphase cells immunostained with the indicated antibodies are shown. 
Scale bar 5 µm; B) Percentage of centrobin positive centrioles and cells with centrobin 
positive centriole pairs. n=3, 50 cells per experiment; unpaired t-test was performed.  
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 To finish the comparison between MEFs and U2OS, we also 

quantified C-Nap1 (mother centriole marker) in respect to centrobin 

(daughter marker) positives centrioles, observing a similar increase in the 

number of centrobin positives centrioles vs. C-Nap1 positive centriole that 

we had previously observed in MEFs, being 1.2 the average of centrobin 

positives centrioles per C-Nap1 positive centrioles in Nek9-depleted cells 

and 0.8 in control cells (Figure 44).  
 

 
Figure 44: Representative immunofluorescence images of U2OS cells 48h post-
transfection with control or Nek9 siRNAs, immunostained with the indicated antibodies 
are shown. Quantification of centrobin positive centrioles versus C-Nap1 positive 
centrioles. n=3, 50 cells per experiment; unpaired t-test was performed Scale bar 5 µm. 
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Centriole amplification upon Nek9 downregulation is Plk4-

dependent 

 Being Plk4 the main regulator of centriole duplication, we also wanted 

to determine whether interfering with the activity levels of this kinase affects 

the ability of Nek9-depleted cells to increase centriole/centrosome numbers. 

In order to overexpress Plk4, we used a U2OS cell line that allows the 

temporally controlled expression of this kinase by tetracycline induction and 

examined centriole formation during cell-cycle progression (Figure 45). We 

could not detect changes in Plk4 levels by western blot (data not show), but 

already 12 h after Plk4 induction, approximately 40% of cells showed 

evidence of centriole amplification, both in control or Nek9-depleted cells, 

that progressively increased with time, with around 70% of cells showing 

multiple centrioles arranges in in a manner reminiscent of the petals of a 

flower (rosettes) after 24 or 48h. This has been shown to correspond to 

multiple (pro)centrioles arranged around each parental centriole (Lopes et 

al., 2015). In these rosettes generated upon Plk4 induction most of the 

centrioles were SAS-6 and centrobin positives. Nek9 RNAi did not result in 

an increase of the number of rosettes. Additionally, and as described, 

amplified centrioles from Nek9-depleted cells where Plk4 hadn’t been 

induced were centrobin but not SAS-6 positive, suggesting that the 

mechanism that results in centriole amplification in these cells is different to 

that of Plk4 overexpression.   
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Figure 45: Representative immunofluorescence images of Plk4-inducible U2OS cells 
48h post-transfection of control or Nek9 siRNAs, and immunostained with the indicated 
antibodies are shown. Percentage of cells forming centrin rosettes during 48h time course 
after tetracycline induction. t=0 before induction and 12, 24 and 48h after tetracycline 
induction (n=1, 100 cells). Scale bar 5 µm. Arrowheads indicate a centrobin positive 
centriole pair. 
 

 Conversely, we wanted to inhibit Plk4 activity and to do so we took 

advantage of centrinone B, a reversible inhibitor that triggers centrosome 

depletion in human cells  (Wong et al., 2015). Figure 46A shows that after 

48 hours in control siRNA transfected cells, 80% cells were found to have 2 
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centrosomes with 2 centrioles each (2+2 centrioles). When these cells were 

treated with centrinone B for 48 hours, the number of centrosomes and their 

respective centrioles were decreased. Under these conditions we found only 

50% of cells with 2 centrosomes with 2 centrioles each (2+2), Instead, 

around 5% of the cells showed 2 centrioles in one centrosome and 1 centriole 

in the other (2+1) and 10 % one centriole per centrosome (1+1). Also, around 

30% had one centrosome with only one centriole (1). In Nek9-depleted cells, 

almost 20% cells had more than 4 centrosomes with more than 2 centrioles 

each as expected from our previous results. After centrinone treatment, no 

cells with this configuration were observed. Instead, we found cells with two 

centrosomes but several abnormal centriole configurations (1+1, 2+1, 0+2). 

In addition, 40% cells had 1 centrosome with one centriole (1). Curiously, 

around 10% of these cells lacked centrioles. These data suggested that 

centriole amplification in Nek9-depleted cells depends on Plk4 activity. 

Interestingly it also shows that Nek9 depletion may accelerate centriole loss 

upon Plk4 inhibition. 

 We quantified in the same conditions the number of centrioles that 

were centrobin positive (Figure 46B). We found that in control cells 40% of 

the cells had 2 centrioles, one centrobin positive (2;1) and 60% had 4 

centrioles, 2 centrobin positives (2+2;1+1). When treated with centrinone B 

for 48 hours, 5% had 1 centriole, 1 centrobin positive (1;1), 50% had 2 

centrioles, one centrobin positive (2;1), 5% 2 centrioles with no centrobin 

(2;0) and 40% 4 centrioles, 2 centrobin positives (2+2;1+1).  

On the other hand, in Nek9-depleted U2OS more than 20% had more than 4 

centrioles that were centrobin positives but when treated with centrinone B 

these cells lost centrioles. We instead found 25% cells with no centrobin 

positive centrioles despite the cells still having 4 or 3 centrioles, suggesting 

that the extra centrobin-positive centrioles were the firstly to be lost. 
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Figure 46: Centriole amplification in Nek9-depleted U2OS cells is Plk4 dependent. 
Control and Nek9 siRNA transfected cells were treated with DMSO or 500nM of the Plk4 
inhibitor centrinone B (n=1, 100 cells), 48h transfection + 48h centrinone B treatment. 
A) Frequency of cells with the indicated number of centrosomes and centrioles identified 
with γ-tubulin and centrin antibodies, respectively; B) Frequency of cells with the 
indicated number of centrobin positive centrioles. 
 

 

 

 



RESULTS 
 

 161 

Nek9 may control centriole number through centrobin  

 We have the hypothesis that Nek9 has several unidentified roles 

during the cell cycle, and more specifically the late phases of mitosis, directly 

through the modification of the molecular behavior of different substrates by 

phosphorylation or indirectly as the activator of the downstream kinases 

Nek6/7. 

 In collaboration with Dr. Judit Villen (University of Washington, 

Seattle, US), we wanted to identify Nek9 substrates by monitoring 

phosphorylation sites on a proteome-wide scale. We compared changes in 

phosphosite composition after elimination of Nek9 in Nek9flox/flox MEF cells 

infected with AdCre adenovirus (Nek9+/+ cells were used as controls) by 

SILAC (Stable Isotope Labeling by Amino acids in Cell culture). This 

technique gave us a global view of phosphosites that depend on the kinase 

for their phosphorylation, and thus, a list of substrates candidates. 

 One potential Nek9 substrate candidate that we found was centrobin, 

the daughter centriole marker that according with our data is accumulated in 

amplified centrioles when Nek9 is depleted from both MEF and U2OS cells. 

Centrobin was less phosphorylated in Nek9 null MEFs, what made us think 

about the possibility that Nek9 could phosphorylate centrobin in late mitosis 

or G1, when it is known to be lost from the daughter centriole (Zou et al., 

2005), thus being Nek9 implicated in the process of centrobin release during 

centriole disengagement previous to the phase. According to our hypothesis, 

in the absence of Nek9, centrobin would not be phosphorylated, remaining 

at daughter centrioles, and this through a yet to be determined mechanism 

would result in centriole amplification.  
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Centrobin overexpression induces centriole amplification 

 Our data showed that the downregulation of centrobin by RNAi 

interfered with centriole amplification resulting from Nek9 downregulation 

(not shown). We thus wondered what would happen if we overexpressed it. 

Thus, we expressed recombinant GFP-centrobin in U2OS and HeLa cells. 

Our results showed the same effect observed upon Nek9 depletion. U2OS 

but not HeLa cells that were effectively GFP-centrobin transfected, 

frequently contained more than four centrioles (15% of cells in interphase 

and 25% in mitosis in GFP-centrobin transfected cells vs 5% cells in 

interphase and 2% in mitosis in GFP control transfected cells; only cells 

expressing low levels of GFP-centrobin were considered). In addition, we 

confirmed that centrioles were also positive for GFP-centrobin (Figure 47). 
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Figure 47: GFP-centrobin overexpression results in centriole amplification in U2OS 
cells. A) Anti-GFP western blot confirming GFP constructs expression; B) 
Representative immunofluorescence images of U2OS cells 24h post-transfection, 
immunostained with the indicated antibodies are shown. Scale bar 5 µm; C) Percentage 
of interphase or mitotic cells with the indicated number of centrioles (n=3, 50 cells per 
experiment); D) Percentage of interphase HeLa cells with the indicated number of 
centrioles (n=2, 50 cells per experiment). In all cases cells expressing centrobin at levels 
in which the protein formed big aggregates in the cytoplasm were not considered.  
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Study of the possible phosphorylation of centrobin by Nek9 

 In order to better understand the molecular basis of our observations, 

we next did a search for sites described to be postranslationally modified in 

centrobin 

(https://www.phosphosite.org/proteinAction.action?id=9421). 

Unfortunately, the site that we identified by SILAC in mice cells (S776), 

although conserved, had not been identified as a site modified in vivo 

previously. Besides four Nek2 phosphorylation sites (Thr35, Ser36, Ser41 

and Ser45) that had been exclusively confirmed in vitro, there were other 

residues that appeared several times modified in vivo in high throughput 

studies and could be putative Nek9 phosphorylation sites (conforming to the 

[FLWYV]XX[ST] sequence), Ser78, Ser80 and Ser837. Interestingly the last 

one was proximal to the site identified by SILAC in mouse centrobin. 

Finally, we thought about the possibility that centrobin degradation could be 

controlled by ubiquitination, and that this could depends on Nek9 

phosphorylation. Indeed, several ubiquitination sites have been reported 

(Udeshi et al., 2013), one of them, K832, with several records in high 

throughput studies, close to Ser837 (Table 6). 

 

 
Table 6: Described centrobin PTM sites (phosphorylation/ubiquitination). Potential sites 
likely to be phosphorylated by Nek9 were indicated together with phospho-null and 
phosphor-mimetic mutants generated. 
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 We thus next generated phospho-null and phospho-mimetic mutants 

for these potential posttranslational modification sites, by mutating serines 

or threonines residues to alanines or to aspartic acids, respectively, including 

GFP-centrobin[4A] or GFP-centrobin[4D] mutants that contained Thr35, 

Ser36, Ser41 and Ser45 residues, and GFP-centrobin[2A] or GFP-

centrobin[2D] that contains Ser78 and Ser80. Finally, we produced GFP-

centrobin[K832M] with the aim of interfering with the ubiquitination of this 

residue. 

 We next transfected all the centrobin constructs in U2OS to see if there 

was any change in centrobin amount or localization and whether they 

resulted in centriole amplification. Overexpressed GFP-centrobin frequently 

forms aggerates in the cytoplasm of cells and was not well extracted with the 

standard lysis buffer, so we used RIPA buffer.  Even with this buffer the 

majority of the protein remained in the insoluble fraction (Figure 48A). None 

of the mutants had a significantly altered expression level or localization at 

centrioles (not shown) and centriole amplification was similar in all the 

mutants and equivalent to that observed with GFP-centrobin wild type. 

Despite these technical limitations, the highest levels of centriole 

amplification were observed with GFP-centrobin[4A]. Thus 40% of mitotic 

and 15% of interphase cells had more than 4 centrioles in comparison to a 

30% found in mitosis or almost 10% in interphase when centrobinWT was 

expressed. This effect was partially rescued with the phosphomimetic 4D 

(20% of mitotic cells with more than 4 centrioles and only 5% of interphase 

cells had more than 4 centrioles) which is also the better detected in the 

soluble fraction (Figure 48B). These results suggested that Thr35, Ser36, 

Ser41 and Ser45 residues as possible sites that have to be phosphorylated to 

avoid centriole accumulation of centrobin and subsequent centriole 

amplification. 
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Figure 48: Centriole amplification observed upon overexpression of GFP-centrobin 
phospho-null and phospho-mimetic mutants in U2OS cells. A) Anti-GFP western blot of 
soluble and insoluble fractions after RIPA buffer protein extraction in U2OS cells 
transfected with all GFP-centrobin mutants.; B) The percentage of cells transfected with 
the indicated mutants that showed more than 4 centrioles were quantified in mitosis and 
interphase. Quantification was done by IF selecting only GFP positive cells (one 
experiment, 50 cells). 

 

Nek9 interacts with centrobin 

 Our results suggest that Nek9 may control the amount of centrobin and 

(maybe as a result) its localization to centrioles. To address if Nek9 and 

centrobin interact in vivo, we performed an endogenous Nek9 

immunoprecipitation. We observed that endogenous Nek9 

immunoprecipitated together with centrobin (Figure 49A). To confirm the 

association, we transfected HeLa with FLAG-Nek9 plus FLAG-Nek6 as a 

control. Our results show that recombinant FLAG-Nek9 associates to 

endogenous centrobin. In contrast we could not detect association with 
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FLAG-Nek6 (Figure 49B). We next wanted to investigate whether the 

observed interaction was dependent on centrobin phosphorylation. To 

achieve this purpose, we transfected HeLa cells with GFP-centrobin and the 

phosphonull mutant 4A, the one that produced a higher level of centrosome 

amplification. As expected from the experiments described above, we 

detected an interaction between recombinant GFP-centrobin wild type and 

endogenous Nek9 (Figure 49C). Strikingly, we discovered that there was no 

association between centrobin 4A mutant and Nek9. Neither did we observed 

centrobin interaction with Plk1, Nek6 or Nek7. 

 
 

Figure 49: Nek9 associates with centrobin. A) Immunoprecipitation of endogenous Nek9 
in HeLa cells and anti-centrobin western blot; B) Immunoprecipitation of FLAG-Nek9 
and FLAG-Nek6 and anti-centrobin western blot; C) Immunoprecipitation of GFP-
centrobinWT and GFP-centrobin4D. Western blot for the indicated antibodies is shown. 
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High throughput screening for Nek9 inhibitors  
 The process of cell division has been long established as a targeting 

opportunity for cancer therapy. Interfering with DNA or tubulin with the aim 

of inducing either cell cycle arrest or abnormal mitosis and subsequent cell 

death is a proven strategy that results in differentially killing dividing cells 

while ideally not affecting differentiated cells.  Targeting of mitotic 

regulators is emerging as a strategy that could complement or even substitute 

better established but less selective antiproliferative therapies that directly 

interfere with the cellular microtubule network such as paclitaxel, thus 

having several side effects. 

 With this in mind, we aimed to validate Nek9 as a putative antimitotic 

target by identification of small chemical inhibitors of its activity. Nek9 is 

by its enzymatic nature druggable, and regarding our results exposed before 

in different systems show that interfering with the different functions of the 

kinase can have strong antimitotic effects, possibly as the result of a 

significant induction of defective cell division and aneuploidy. Moreover, 

our group has recently shown that Nek9 signals between the mitotic kinase 

Plk1 and the kinesin Eg5 (Bertran et al., 2011; Eibes et al., 2018; Sdelci et 

al., 2012), both validated mitotic targets with several inhibitors presently 

undergoing clinical trials as antiproliferative agents.  

 We proposed to test whether, efficient inhibition of Nek9 results in 

cell cycle arrest and eventually the death of dividing cells (specially 

transformed cancer cells) while being innocuous to non-dividing cells. The 

effects of Nek9 inhibition was tested using a chemical genetics approach 

based in a strategy originally devised by the Shokat laboratory (University 

of California, San Francisco, http://shokatlab.ucsf.edu).  

 The project was developed in collaboration with Dr. Stefan Kubicek 

at PLACEBO, the Platform Austria for Chemical Biology at the Ce-M-M-, 

the Research Center for Molecular medicine of the Austrian Academy of 
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Sciences, where I stayed one month as a visiting student. We expressed and 

purified both inactive (but readily activable) and constitutively active Strep-

Tagged Nek9 as well as biotinylated Nek7 and using PLACEBO available 

equipment we have screen part of PLACEBO library of chemicals for their 

capability to interfere with recombinant Nek9 autoactivation and 

phosphorylation of its substrate Nek7 in the presence of ATP/Mg2+. The 

modification of biotinylated Nek7 was detected using an available antibody 

that specifically recognizes phosphorylated Nek7 and streptavidin-coated 

AlphaScreen Donor beads plus AlphaScreen Protein A Acceptor beads (from 

PerkinElmer). 

 We screened a total of 1,165 compounds from 5 different compound 

collections: 1) NIH clinical collection, (2) Kinase collection, (3) CeMM 

library of unique drugs, (4) Collection of anti-cancer drugs and (5) 

Epigenetic compounds at concentrations ranging from 20 to 100 uM (0.2% 

DMSO). The positive control Staurosporin, a known protein kinase inhibitor 

was used at an assay concentration of 40 uM (0.2% DMSO). 

Hits are defined as compounds that give > 50% inhibition compared to the 

DMSO controls. Thus, using these criteria, we identified 219 hits. 

 As an initial step, a positive obtained from the screen has been tested 

in vivo in human cells for its capability to mimic our observed phenotype of 

Nek9 inhibition, effectively mimicking the effects of depleting Nek9. 

However, more experiments have to be one with this and other compounds 

found in the screening. 
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Nek9 may be involved in centriole disengagement 
 It was described that orthogonal orientation of the centrioles was not 

the feature preventing centriole reduplication in human cells. Rather, 

centriole block to reduplication relies on a close association between a 

mother and a daughter centriole, which is established at the time of 

daughter centriole formation and is relieved in a Plk1-dependent manner.  

However, several centrosomal proteins, such as CPAP and centrobin, have 

been reported to be required for the stabilization and elongation of 

daughter centrioles and that in its absence, cells cannot respond to Plk1 

activity at the centrosome, preventing Plk1-dependent centriole distancing 

and disengagement (Shukla et al., 2015). We already mentioned the 

possibility of Nek9 role in G1 removing centrobin from the centriole formed 

in the previous cycle. Hence, centrobin accumulation upon Nek9 absence 

could induce premature centriole disengagement at the end of mitosis. 

 We followed the behavior of centrioles by long-term time-lapse 

microscopy in a U2OS GFP-centrin stable cell line after 48h control or Nek9 

siRNA transfection. This analysis revealed that in Nek9 absence, centrioles 

disengaged prematurely after mitotic division, around 20 min after 

anaphase onset vs 40 min in control cells (Supplementary figure 4). Due to 

centrobin accumulation in centrioles of cells where Nek9 had been depleted, 

it could be possible that Plk1-dependent daughter centrioles maturation 

occurs faster which leads to accumulation of PCM components around its 

proximal parts, stimulating distancing from the mother centrioles. Thus, 

mother centriole can initiate a new round of centriole duplication if the 

original daughter centriole is distanced enough.  
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Supplementary figure 1:  A) Representative time lapse images of mitotic U2OS GFP-
centrin stable cell line 48h post-transfection of control or Nek9 siRNAs. Images were 
taken every 6 min (one experiment). Arrowhead pointing centrioles. B) Time (min) 
between anaphase onset and centriole disengagement (n=6 cells) and time (hours) in 
mitosis, since the cell became spherical until it divided in two cells (n=20 cells). 
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CRISPR/cas9, an additional model for Nek9 disruption  
 In parallel, we created a Nek9-depleted U2OS cell line by 

CRISPR/cas9 observing a phenotype similar i.e. centrosome amplification 

to that of genetically eliminating Nek9 expression in MEFs. We generated 

five different KO clones (KO 14, 15, 17,18 and 19) and its respective WT 

and analyzed the percentage of cells with more than two centrosomes. KO 

15 did not amplify centrosomes, something that we expected since it still 

expressed Nek9, as shown by western blot. All others amplified centrosomes 

to a greater or lesser extent. We selected KO 14, the one with the highest 

amplification (>15% cells with >2 centrosomes) to perform next 

experiments. As previously shown for Nek9 siRNA U2OS, Nek9 abrogation 

resulted in proliferation defects. We did a growth curve with KO 14 during 

17 days and 3 cell passages, observing a lower growth capacity in 

comparison with WT. At passage 2 and 3 we also quantified centrosomes, 

confirming the amplification phenotype (15% cells with >2 centrosomes). 

Finally, as Nek9 is activated in mitosis, we performed a mitotic arrest in 

U2OS KO 14 cells, that were incubated with 250 ng/ml nocodazole for 16 

hours. Cells in mitosis (M) were collected after mitotic shake off, and 

untreated exponential growing cells (Exp) were used as a control. Mitotic 

arrest was confirmed by cyclinB expression. In the same way as in MEFs 

and U2OS Nek9-depleted centrobin protein levels increased upon Nek9 

depletion, especially in mitosis (Supplementary figure 2). 
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Supplementary figure 2:  Generation and characterization of a CRISPR/SpCas9 Nek9 
KO U2OS cell line. A) Representative western Blot showing Nek9 absence in different 
cell clones. b-tubulin is used as a loading control; B) U2OS KO cells where incubated 
with nocodazole (ND, 250 ng/ml) for 16 hours. Cells in mitosis (M) were collected after 
mitotic shake off, and cell extracts were analyzed by western blot with the indicated 
antibodies. Cyclin B levels are used as a marker for mitosis. b-tubulin is used as a loading 
control; C) Percentage of cells with more than 2 centrosomes observed in different KO 
clones, quantified using γ-tubulin antibody as a centrosome marker (one experiment,100 
cells); D) Growth curve during 3 cell passages in Nek9 KO cells (clon 14) compared with 
control cells. E) Representative immunofluorescence images of Nek9 KO (clon 14) 
immunostained with the indicated antibodies are shown. Frequency of cells with more 
than 2 centrosomes (n=2, 100 cells per experiment, an unpaired t-test was performed). 
Scale bar 5 µm.
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Nek9 null embryos die at early post-implantation stage 
 

 In the last few years, interference with Nek9 in different systems has 

suggested that the kinase has key roles during mitotic progression and more 

specifically in spindle organization. Our group have shown that expression 

of inactive forms of the kinase strongly interferes with cell division and in 

most cases results in cell death and that microinjection of anti-Nek9 

antibodies into mitotic cells results in the disruption of spindle organization 

and prometaphase arrest or in some cases aberrant chromosome segregation 

followed by mitotic catastrophe or aneuploidy (Roig et al., 2002). 

 Also, Nek9 siRNA depletion results in a rapid increase of the 

percentage of cells in G2/M with a decreased spindle microtubule density 

and defects in chromosome alignment  (Bertran et al., 2011; Sdelci et al., 

2012). Thus, elimination of Nek9 expression has strong phenotypic results.  

We sought to study this in detail in the present thesis. To do so, we isolated 

Nek9flox/flox;UBC-cre/ERT2 MEFs cells from mice and temporarily cultured 

them in the presence or absence of 4-hydroxytamoxifen (4-OHT) to achieve 

acute abrogation of Nek9 expression. In parallel we have also used siRNA 

to deplete Nek9 in human cells.  
 

 Nek9 is downstream of Plk1 in the mitotic signaling network (Bertran 

et al., 2011), and it has been described that depletion of both alelles of Plk1 

in mice results in embryonic lethality after the eight-cell stage due to 

extensive mitotic aberrations (Lu et al., 2008b; Wachowicz et al., 2016). 

Something similar happen with Aurora A, another mitotic serine/threonine 

kinase that localize at centrosomes and mitotic spindles. Aurora A null mice 

die early during embryonic development before the 16-cell stage because of 

spindle assembly problems (Lu et al., 2008c). Thus, we wondered whether 

Nek9 depletion could have a similar effect. However, in the case of Nek9, 
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embryos did not arrest in any specific stage. Although some the Nek9-/- 

embryos didn't reach blastocyst stage, others developed as normal 

blastocysts (although in some cases with mitotic abnormalities) and may thus 

implant and die at some time before birth, as suggested by the absence of 

viable embryos at E12.5. Thus, we guess that Nek9 ablation is lethal in 

embryos at early post-implantation stages, similar to what happens in the 

case of kinesin Eg5, which is phosphorylated by Nek6/7 (activated by Nek9), 

necessary for prophase centrosome separation and normal mitotic spindle 

formation (Bertran et al., 2011; Eibes et al., 2018). Eg5 heterozygous mice, 

that are healthy, fertile, and show no detectable phenotype, whereas 

Eg5−/− embryos die during early embryogenesis, prior to the implantation 

stage (Chauvière et al., 2008). Post-implantation studies will be needed to be 

carried out by isolating embryos from E8.5 to E14.5 and performing similar 

analysis to further study this. Additional histological studies of deciduas at 

E5.5-E8.5 could also be performed. 

 It is interesting to note that 13,3% of the mitosis in Nek9+/trap embryos 

also showed multipolar spindles, however the number of born embryos was 

similar to the expected one (in contrast to Nek9trap/trap animals). This 

suggests that the mitotic abnormalities observed did not enough affect 

viability in a negative manner. However, in Nek9trap/trap lack of both Nek9 

alleles probably results in an excess of mitotic abnormalities that could 

generate aneuploidy and its consequent genomic instability and DNA 

damage. The presence of aneuploidy is related to abnormalities in 

centrosome number and mitotic errors, that in fact is what we observed in 

Nek9+/trap MEFs. Our preliminary results showed a slightly increase in the 

number of centrosomes in respect to Nek9+/+ with cell passages (data not 

shown), which therefore, could explain the mitotic abnormalities and 

premature lethality in Nek9 KO embryos. Curiously, the same phenotype 

is observed after abrogating Nek9 expression in Nek9flox/flox, MEFs, 
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namely, extra centrosomes that generate mitotic errors, which at the end 

results in the appearance of aneuploidy. 

 

 In an extensive study of mouse gene knockouts, it has recently been 

described that Nek9 knockout was viable at E9.5 but with a small or absent 

trophoblast compartment. Then, at or after mid-gestation (embryonic days 

9.5–14.5) animals die because of placental dysmorphologies, such as small 

placenta, reduced cellular density, labyrinth vascularization defects and 

hemorrhagic areas (Perez-Garcia et al., 2018). 

  Recent reports have shown that recessive germline Nek9 mutations 

cause skeletal disease. Homozygous nonsense mutations in 

Nek9, c.1489C>T (p.Arg497∗), were found in aborted fetuses with a lethal 

skeletal dysplasia in two Irish Traveller families (Casey et al., 2016). In 

addition, a single affected individual has also been described with a 

homozygous Nek9 mutation, demonstrating joint contracture and Legg-

Calvé-Perthes disease (MIM: 150600), a form of avascular necrosis of the 

femoral head. Two members of this same family had a misssense Nek9 

mutation, c.2042G>A; p.Arg681His, that provoke  arthrogryposis, perthes 

disease, and upward gaze palsy (MIM:614262), a disease characterized by 

persistent joints flexure or contracture (Shaheen et al., 2016). As 

previously described, Nek9 gain of function mutations are involve in nevus 

comedonicus (NC), a severe form of acne, disrupting normal follicular 

differentiation. Thus, Nek9 has a role in the epidermis and the follicular 

homeostasis, but notably, NC syndrome also characterized by features 

skeletal abnormalities, including scoliosis, syndactyly or absence of 

fingers, and supernumerary digits. Somatic Nek9 mutation in bone 

progenitors could explain all these described findings (Levinsohn et al., 

2016), and could be related to the Nek9 KO embryos lethality.  
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Nek9 haploinsufficiency mouse model  
 Nek9 haploinsufficiency resulted in chromosome segregation defects 

and in the generation of aneuploid cells. Nek9+/- mice are also prone to 

develop a wide spectrum of tumor types, suggesting that Nek9 may function 

as a tumor suppressor protecting from genomic instability. A similar increase 

in the development of spontaneous tumors has been observed in 

haploinsufficient mouse models of other mitotic and kinetochore genes as 

well as for mitotic checkpoint genes including Aurora A, CenpE, Mad2, or 

Cdh1 (Schvartzman et al., 2010). Nek9+/- mice cells accumulate aneuploidy 

with age indicating that their tissues are genetically unstable and has the 

origin in centrosomes abnormalities. This feature correlates with increased 

susceptibility to tumor development, supporting the idea that Nek9 

deregulation might eventually act as a driving force of tumor development 

by the induction of aneuploidy, something that would be exacerbated in a 

p53 null background. Despite these defects, at the end, Nek9+/- mice 

developed normally and are fertile, so being Nek9 an essential kinase for cell 

proliferation and animal life, a minimal threshold of Nek9 expression or 

function is sufficient for cell progression and thereby an interesting 

observation given the current relevance of Nek9 as a putative cancer target. 

 As it was expected, the frequency of tumors in animals heterozygous 

for Nek9 was increased in animals with compromised p53 expression. In 

contrast, Kurioka et al., 2014 observed  that Nek9 depletion selectively 

inhibited proliferation in p53-deficient cancer cells. They showed that 

patients with intact Nek9 and mutant p53 proteins exhibited significantly 

poorer prognoses, suggesting that expression of Nek9 promotes tumor 

growth. However, they use siRNA to deplete Nek9, which cannot be 

compared with expressing Nek9 in heterozygosis. In the other hand, what 
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we noticed was that in Trp53-/+ animals Nek9 WT induce tumors while Nek9 

in heterozygosity protect animals from tumorigenesis which goes more in 

the line of Kurioka et al., 2014 data. 

 Aneuploidy by promoting genomic instability and DNA damage, was 

proposed as a main cause of cancer, based on the fact that aneuploidy is a 

common characteristic of tumors (Weaver and Cleveland, 2008). Nek9 in 

heterozygosis results in aneuploidy as shown by the presence on micronuclei 

in circulating erythrocytes and the gain or loss of chromosomes observed in 

splenocytes from Nek9+/trap, even at early stages, one month after birth. 

However, the observed aneuploidy is not reflected in the number of tumors 

observed in mice. It is now clear that the effects of aneuploidy are more 

complex than initially proposed. Aneuploidy can drive tumorigenesis, but 

not necessarily. Sometimes, aneuploidy actually suppresses tumors. Three 

factors have to be taken into account: the combination of chromosomes in 

the cell, if the cell is stably aneuploid or contains a karyotype that is evolving 

due to further chromosomal missegregation and the additional mutations 

(Weaver and Cleveland, 2008). For example, Li et al., 2010 reported that 

aneuploidy increase levels of intracellular reactive oxygen species, 

producing oxidative DNA damage, which activates ataxia-telangiectasia 

mutated (ATM) and finally induce p53 activation. Thus, although there is a 

concordance of aneuploidy and p53 absence in many tumors, the presence 

of aneuploid cells in some normal tissues indicates that there are exceptions 

to the involvement of p53 in aneuploid cells and specific interaction of the 

karyotype with the genetic context in different tissues may be important in 

how cells respond to aneuploidy (Thompson and Compton, 2010). 

 

 Other factor to consider is the severity of the aneuploidy. Highly 

aneuploid cells are removed by p53-mediated apoptosis, mildly aneuploid 
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cells may enter p53-mediated senescence and slightly aneuploid cells are 

difficult to transform. Hence, slightly and mildly aneuploid cells do not show 

tumorigenic risks. Tumors can develop only when some of the highly 

aneuploid cells lose p53. Upon p53 absence, these cells can divide, acquire 

additional mutations and start tumor generation. However, it takes a long 

time for tumors to develop in mice and the penetrance usually is not 

complete. However, when p53 is removed from the beginning, tumors 

develop faster and the penetrance highly increase (Li et al., 2010). 

 

Impact in the centriole duplication cycle after Nek9 cell 

abrogation 

 We have done a complete characterization of the phenotype from 

Nek9 cell abrogation. Our results show that eliminating Nek9 results in 

problems in proliferation, abnormal mitosis and centrosome amplification, 

without being associated to multinucleation or polyploidy. Based on that, 

and without completely ruling out that other factors related to the different 

functions of Nek9 may be implicated, we think centrosome amplification is 

the major cause of the observed mitotic aberrations and subsequent 

aneuploidy and tumor predisposition in aged Nek9+/- animals, as well as the 

observed aneuploidy in Nek-9 deficient cells.   

 

 Centrosome amplification in Nek9-depleted cells was not a result of 

S-phase arrest as we treated control and Nek9-depleted cells with 

Hydroxyurea (HU) observing an accumulative effect to the one caused by 

Nek9 abrogation (data not shown).  These extra centrosomes have a normal 

PCM structure with tendency towards a decrease in intensity of some PCM 

proteins in prophase centrosomes. This could be related to the previously 

described role of Nek9 during centrosome maturation (Sdelci et al., 2012, 
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note that this study was done in HeLa cells) and may contribute to the 

observed mitotic abnormalities. Another explanation could be that due to the 

increase in the number of centrosomes, the PCM is redistributed among 

them.  

 We also confirmed that amplified centrosomes were not a 

consequence of fragmentation as they contained extra centrioles, that 

additionally had different configurations including paired centrioles, single 

centrioles and clusters of three or more centrioles. The presence of singlet 

centrioles could indicate that both centriole engagement and cohesion failed, 

opening the possibility of a deregulation in G1 centriole disengagement 

process that licenses the centrioles for centriole duplication instead of a 

failure in the duplication process per se. This may be related to the 

observation that HeLa cells do not amplify centrioles upon Nek9 

downregulation. These cells have been shown not to amplify centrioles 

during S phase arrest as a result of Plk1 not being active in S, preventing 

centriole licensing and reduplication (Lončarek et al., 2010).  

 

 Our results suggest that centriole overduplication in cells lacking 

Nek9 is Plk4-dependent and use the classical pathway of centriole 

duplication. However, the extra centrioles are not all daughters or they don’t 

contain the cartwheel protein SAS-6 or SAS-4/CPAP. The cartwheel is 

located at the proximal part of a centriole, coincident with centriolar proteins 

SAS-6 and STIL. In particular, SAS-6 has been shown to form the scaffold 

of the cartwheel. While the cartwheel is essential for centriole assembly, it 

is removed from newborn centrioles at the end of the cell cycle when they 

are converted to centrosomes. Centriole disengagement and centriole-to-

centrosome conversion occur at late mitosis and enable centriole 

duplication, so it is possible that cartwheel removal may function in the 

same process. In fact, in unconverted or unmodified centrioles, resulted 
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from inhibiting Plk1-dependent conversion, cartwheel removal also fails. 

Thus, centriole duplication cannot occur even when they are disengaged 

(Wang et al., 2011).  

 Our data matches with the hypothesis that amplified centrioles found 

after Nek9 depletion lack SAS-6 as a result of the protein being immediately 

lost from newborn centrioles, which become mothers (modified or 

converted) and acquire the capability to reduplicate whether or not they are 

disengaged, although in fact, they probably disengage prematurely.   

 

 In Nek9 depleted cells, an abnormally high percentage of centrioles 

are positive for centrobin. It is possible that, at some point, as a result of this 

centrioles lose engagement and become re-licensed to duplicate, as 

evidenced not only by the presence of singlet centrioles both C-Nap1 and 

centrobin positive but also by the increased numbers of diplosomes (centriole 

pairs) that were both centrobin positive. Somehow, an excess of centrobin 

results in ‘daughter’ centrioles that became mothers and can reduplicate 

generating more ‘daughters’.   

 In view of our SILAC results, Nek9 may regulate centrobin 

degradation by phosphorylation, so Nek9 absence may possibly cause an 

accumulation of centrobin, disengagement, and result in the generation of 

new centrioles. In fact, we have confirmed Nek9-centrobin interaction by 

immunoprecipitation. In order to define the possible Nek9 phosphorylation 

region within the centrobin polypeptide, in collaboration with Nuria Gallisà, 

we carried out an in vitro kinase assay with N-terminal (1-200 aa) and C-

terminal (590-903 aa) centrobin fusion proteins as substrates in presence or 

absence of Nek9 recombinant protein, and preliminary results pointed to a 

possible Nek9-dependent phosphorylation of centrobin (not shown).  
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 Strikingly, we discovered that there was no association between GFP-

centrobin[4A] mutant and Nek9, suggesting that for the interaction to take 

place, centrobin should be already phosphorylated.  

 Despite our great effort to generate GFP-centrobin mutants we could 

not manage to reach any conclusion, as none of the mutants had a 

significantly altered expression level or localization at centrioles (not shown) 

as compared to wild type protein, and centriole amplification was similar in 

all the mutants. As levels of centrobin at centrioles are small, this could be 

explained by the effects of  overexpression, making difficult to observe any 

differences. In addition, we found difficulties detecting centrobin by WB 

apart from the overexpression, the results obtained were variable although 

they seem to indicate that centrobin levels increased upon Nek9 depletion 

and decrease with centrobin siRNA transfection.  

  

 As a possible molecular mechanism that explains our observations, we 

would like to point out that using proximity-dependent biotinylation 

(BioID), (Gupta et al., 2015) identified TRIM37 (an E3 ubiquitin ligase)  as 

a centrobin interactor. Increasing evidence indicated that this protein is 

involved in the tumorigenesis of several cancer types (Brodtkorb et al., 

2014). Interestingly, it is required to prevent centriole reduplication. 

Probably acts by ubiquitinating positive regulators of centriole reduplication 

(Balestra et al., 2013). Consistent with that, TRIM37 knockout cells formed 

ectopic centrosomal-component foci that contain centrosomal components. 

Thus, TRIM37 has an important role in ensuring that Plk4 recruitment and 

PCM assembly occur only on the scaffold provided by mother centriole 

(Meitinger et al., 2016). In view of that, we hypothesize that TRIM37 could 

ubiquitinate centrobin, as it has some described ubiquination sites, somehow 

in a way that depends on Nek9 phosphorylation, resulting in its release 

previous to the next centriole duplication phase. Thus, upon Nek9 depletion, 
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TRIM37 could not ubiquitinate centrobin, that remains in the daughter 

centriole allowing new rounds of centriole reduplication. 

 

 Altogether, our results show that the depletion of Nek9 results in 

centrosome amplification. We propose a model in which the lack of Nek9 

results in the accumulation of centrobin at centrioles and this is accompanied 

with an excess centriole production. Extra centrioles would result in 

aneuploidy in cells and tumors at the organism level. We discuss the 

possibility that in Nek9-depleted cells centrioles lose engagement and 

become re-licensed to duplicate, possibly as a result of an excess of 

centrobin, as evidenced not only by the presence of singlet centrioles but also 

by the increased numbers of centrobin-positive pairs. In view of our SILAC 

and kinase assay results, Nek9 may regulate centrobin degradation by 

phosphorylation, possibly through the control of its ubiquitination, so the 

absence of Nek9 may possibly cause an accumulation of centrobin, centriole 

disengagement and duplication licensing, and result in the generation of new 

centrioles (Figure 50).  
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Figure 50: Proposed model for Nek9-centrobin function. 
  

 

 



DISCUSSION 

 190 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CONCLUSIONS 

 191 

 

 

 

 

  

CONCLUSIONS 



CONCLUSIONS 

 192 

  



CONCLUSIONS 

 193 

 
1. Nek9 abrogation is lethal in embryos during early development. 

2. Pre-implantation embryos lacking Nek9 shows mitotic defects.  

3. Nek9 haploinsufficiency results in chromosome segregation defects and 

the onset of aneuploidy, and this may be related to the apparition of 

tumors. 

4. Tumor apparition frequency is remarkably increased in animals with 

compromised p53 expression.   

5. Nek9 depletion impairs normal cell cycle progression and results in 

mitotic arrest. 

6. Abnormal levels of Nek9 lead to the apparition of abnormal mitotic 

spindles.  

7.  Cell lacking Nek9 become aneuploidy. 

8.  Multiple centrosomes with abnormal centriole configurations are 

observed both in genetically engineered MEFs and human cells where 

Nek9 is absent or downregulated. 

9. Centrosome amplification is not a result of fragmentation or of 

cytokinesis failure. 

10. Nek9 depletion may cause an accumulation or a defective removal of 

centrobin from new mother centrioles. 

11.  Extra centrioles are generated in Plk4-dependent manner. 

12.  Extra centrioles are “cartwheel-less” centrioles, lacking SAS-6 

13.  Centrobin positive centrioles may favor the production of shorter cilia 

and multi-ciliated cells. 

14.  Centrioles with an excess of centrobin may lose engagement and become 

re-licensed to duplicate, resulting in centriole amplification. 

15.  Centrobin and Nek9 interact in vivo. 

16.  Nek9 may regulate centrobin degradation by phosphorylation. 
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Table 7: Centriole configurations for the indicated centriole markers in control or Nek9-
depleted MEFs or U2OS cells,  
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