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Digital Ecology: Coexistence and 
Domination among Interacting 
Networks
Kaj-Kolja Kleineberg & Marián Boguñá

The overwhelming success of Web 2.0, within which online social networks are key actors, has 
induced a paradigm shift in the nature of human interactions. The user-driven character of Web 2.0 
services has allowed researchers to quantify large-scale social patterns for the first time. However, 
the mechanisms that determine the fate of networks at the system level are still poorly understood. 
For instance, the simultaneous existence of multiple digital services naturally raises questions 
concerning which conditions these services can coexist under. Analogously to the case of population 
dynamics, the digital world forms a complex ecosystem of interacting networks. The fitness of 
each network depends on its capacity to attract and maintain users’ attention, which constitutes 
a limited resource. In this paper, we introduce an ecological theory of the digital world which 
exhibits stable coexistence of several networks as well as the dominance of an individual one, in 
contrast to the competitive exclusion principle. Interestingly, our theory also predicts that the most 
probable outcome is the coexistence of a moderate number of services, in agreement with empirical 
observations.

The rapid growth of online social networks (OSNs), such as Twitter or Facebook, has led to over two 
billion active accounts in 20141, and hence they can be said to cover over one quarter of the world pop-
ulation and 72% of online U.S. adults2. Bridging the gap between social sciences and information and 
communication technologies, OSNs constitute a crucial building block in the development of innovative 
approaches to the challenges our current society faces. OSNs have already changed the nature of human 
interactions on a worldwide scale. In contrast to the large-scale social patterns of individuals3–7, the 
mechanisms underlying the fate of OSNs at the system level are not at all well understood.

Real-world social networked systems exhibit a very high level of complexity8–12. In a recent study, 
we were able to identify the main mechanisms responsible for the evolution of quasi-isolated OSNs13. 
However, most OSNs operate on a worldwide scale and are in constant competition for users’ attention 
with numerous other services; a fact that makes it extremely challenging to model them. This competitive 
environment leads to the extinction of some networks, while others persist. This phenomenon suggests 
an ecological perspective on the interaction of multiple OSNs, from which networks are considered to 
form a complex digital ecosystem of interacting species that compete for the same resource: users’ net-
working time.

In standard ecology theory, Gause’s law of competitive exclusion14 states that under constant envi-
ronmental conditions, two species in competition for the same resource cannot coexist. This is because 
even the slightest advantage of one species over the others is amplified and eventually leads to the dom-
ination of this species. This mechanism is often referred to as rich-get-richer. Competitive exclusion is 
predicted by many theoretical models15. However, many observations of natural ecosystems seem to 
contradict Gause’s law, as in the case of the famous plankton paradox16. Attempts to solve such para-
doxes include the assumption of different roles (competition-colonization trade off17,18), the increase of 
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the dimension of the systems, the inclusion of further species properties, etc. (see Ref. 19 and references 
within). However, such models allow for an unlimited number of coexisting species, which thereby cre-
ates a new paradox. Indeed, real ecosystems usually consist of a moderate number of coexisting species. 
Here, we show that the coexistence of networks that are in competition for the same resource, namely our 
society’s networking time, is possible. Furthermore, our work predicts that the most probable outcome 
is the coexistence of a moderate number of networks.

Recent work20 showed that the competition between Facebook and its competitors such as MySpace 
in the mid 2000s led to the extinction of Facebook’s competitors and its own prevalence. However, the 
current existence of a large number of OSNs21 suggests that the coexistence of multiple networks is 
indeed possible. This could be explained by analogy with the competition-colonization trade-off men-
tioned earlier, if we assume that different networks compete for different peer groups and hence one 
network can persist in each of these groups. Although the existence of different peer groups is certainly 
the case in reality, our aim in this paper is to introduce a general and concise theory for competition 
between identical networks that are in competition for the same set of potential users that allows either 
the coexistence of any number of networks or the domination of a single network.

We show that the coexistence of competing networks can indeed be modeled by allowing for the 
interplay of two very common mechanisms: preferential attachment and diminishing returns. Preferential 
attachment22–30 is a fundamental principle that can be applied to growing networks and which states that 
newborn nodes are most likely to connect to the more popular nodes; this leads to a rich-get-richer 
effect. The principle of diminishing returns—or diminishing marginal returns—is widely used in eco-
nomic theories and refers to the negative curvature of production functions. For example, suppose that 
sowing 1 kilogram of seed in a certain place yields a crop of one ton. However, 2 kilograms of seed 
produces only 1.5 tons of crop; and 3 kilograms of seed produces 1.75 tons of crop. Thus, the marginal 
return per increment of seed diminishes with the increasing amount of seed used.

In this paper, we demonstrate the following three points. First, multiple networks can coexist in a 
certain parameter region due to the interplay of a rich-get-richer mechanism and diminishing returns 
in the dynamics of the evolution of the networks. Second, we are most likely to observe only a moder-
ate number of coexisting services. Finally, third, the influence of the mass media controls the observed 
diversity in the digital ecosystem.

Results

From quasi-isolated online social networks to interacting networks. The fate of a single network 
within the digital ecosystem depends crucially on the form of the interactions between it and its com-
petitors, and the fitness of each of them. Nevertheless, without precise knowledge of the evolution of a 
single network in the absence of competitors, little insight can be gained into the fundamental interaction 
mechanisms. A theory of interacting networks must therefore be built on such precise understanding 
of the evolution of individual networks in isolation. In a recent study13, we were able to gauge precisely 
the fundamental mechanisms driving the evolution of isolated networks, which we briefly summarize 
in what follows.

The evolution of an OSN is coupled to the underlying social structure. The following four dynamical 
processes drive the evolution of the system:

1. Viral activation: a susceptible node can be virally activated and added to the OSN by contact with 
an active neighbor in the traditional off-line network. Such events happen at rate λ for each active 
link.

2. Mass media effect: each susceptible individual becomes active spontaneously at rate μ and may 
thus be added to the OSN in response to the visibility of the OSN.

3. Deactivation: active users become spontaneously passive at rate δ  and no longer trigger viral acti-
vations or reactivate other passive nodes.

4. Viral reactivation: at rate λ, active users can reactivate their passive neighbors. The neighbor then 
becomes active and can trigger both viral activations and viral reactivations.

The balance between the mass media influence, μ, and the viral effect, λ, can be estimated from the 
topological evolution of the corresponding empirical network. This estimation can be performed by mak-
ing use of the network exhibiting a dynamical percolation transition. The critical point of the transition 
depends on the ratio between λ and μ. This is due to the complementary roles the respective effects play 
in the topological evolution. Matching the system size at the critical point then yields a linear relationship 
between λ and μ (see Ref. 13 for further details).

The macroscopic state of the system is characterized by the density of active nodes, defined as the 
quotient of active nodes over the total number of nodes, ρ ( )ta , and the density of passive nodes, ρ ( )tp . 
The density of susceptible nodes can be evaluated as: ρ ρ ρ( ) = − ( ) − ( )t t t1s a p . For a detailed 
discussion of the model we refer the reader to Ref. [13] In the present context, we want to emphasize 
that the model exhibits a threshold λc below which the entire network eventually becomes passive.

Suppose now that, instead of a single network, there are nl networks competing for the same set of 
potential users. Each user can be active or passive in several networks simultaneously, as represented in 
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Fig. 1, such that the long-term evolution of the fraction of active users in each layer determines the fate 
of the system: either several networks coexist or only a single network prevails. The first key point in the 
generalization of the model introduced in Ref. 13 concerns the role of the viral parameter λ. This param-
eter is a proxy for users’ engagement in online activities, such as inviting their friends to participate in 
the network, generating or forwarding content, etc. However, such activities require users to spend a 
given amount of their time on them and their time is, obviously, bounded. This implies that when users 
are simultaneously active in two or more different networks or services, they are forced to decide the 
amount of time they devote to each of them. We model this effect by assuming that the viral parameter 
for each layer is λ λω=i i, where ωi a set of normalized weights (that is, ω∑ == 1i

n
i1

l ) that quantify 
users’ engagement with each OSN. In this way, λ λ∑ ==i

n
i1

l  is a conserved quantity related to the phys-
ical and cognitive limitations of users. The second key point in our generalization concerns the depend-
ence of the share, λi, of the total amount of virality for individual networks on the state of activity of the 
whole system, which is defined by the vector: ρ ρ ρ ρ= ( , , , )

a a a
n
a

1 2
T

l
. We assume that the weights ωi 

are functions of ρa that obey the following two conditions:

1. Symmetry: All networks are considered intrinsically equal. Therefore, the weight functions must 
satisfy the symmetry conditions:
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for any i, j, and k. This implies that when the fraction of active users is the same in all of them, 
the viral parameters λi must also be equal in each network and, therefore, ω = / ∀n1i l i.

2. Preferential attachment: We assume that users are in general more likely to subscribe to and partic-
ipate in more active networks. Hence, the weight of a given network i must be a monotonically 
increasing function of ρi

a. Following the same line of reasoning, we also assume that a network 
with zero activity is not functional, so that ω ρ( = ) =0 0i i

a .

Finally, consistent with observations in13, we assume a linear relation between μi and λi

ρ
μ

λ
ν

λω
ν

= =
( )

, ( )1i
i i

a

where v denotes the relative strength of the viral effect with respect to the mass media effect (in Ref. 13, 
we found ν ≈ ∼4 5).

These conditions can be interpreted as coarse-grained preferential attachment in the bipartite graph 
consisting of users and networks. Users are in general more prone to connect to networks which exhibit 
higher activity and, once active in more than one network, they are also more inclined to engage with the 
most active one more often. Notice that we are introducing a feedback loop between the global dynamics 
of the system and the microscopic parameters λi. We are thus assuming that users are, somehow, able to 
sense the global activity of the system. This can be achieved in practice as a combination of the amounts 
of information that users receive from: the network itself31–33, global media, the traditional off-line social 
network, etc. Although preferential attachment induces a rich-get-richer mechanism, in what follows we 
show that the interplay of this mechanism with the dynamics of the networks leads to the emergence of 
stable coexistence of multiple networks across a certain parameter region.

Figure 1. Multiplex layout of two online social network layers. The bottom layer represents the underlying 
social structure and the remaining layers represent each OSN.
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Mean-field approximation. The effects of complex topologies on epidemic-like spreading processes 
are well understood nowadays and cannot be ignored. However, the dynamics of our model is rich and 
complex enough on its own to be analyzed in isolation. Therefore, in this section we perform a mean-field 
analysis which provides important insight into the emergence and stability of a state of coexistence of 
multiple networks. In particular, we replace the real social contact network by a fully mixed population 
with an average number of contacts per user k . Section Real world topology contains numerical simu-
lations of our dynamics using a real social network13,34. We can confirm in advance that the general 
picture drawn in this section is also observed in the real system.

One-dimensional dynamics. For one network, the system is described by the following mean-field 
equations13
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ρ λ ρ ρ δρ
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The nontrivial steady-state solution is ρ = 0s  and ρ δ λ= − / k1a , which is stable only when 
λ δ λ≥ / ≡k c

1. This defines the critical value of λ below which activity is not possible, even in a single 
network. In the rest of the paper, we assume that λ λ> c

1 so that, even if coexistence is not possible, at 
least one network is always able to survive. Likewise, we also fix the timescale of our model by setting  
δ =  1 from now on.

Multiple competing networks. In the case of an arbitrary number of OSNs, the system is charac-
terized by the fraction of active and passive users in each layer, ρi

a and ρi
p, and the fraction of individ-

uals in the traditional off-line social network that are susceptible to subscription in network ρi: i
s. We 

assume that the densities of active/passive/susceptible nodes are not correlated between different OSNs. 
Thus, the evolution equations in the mean-field approximation for the i-th layer are
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where we have used ρ ρ ρ= − −1i
p

i
a

i
s. Note that the coupling between different OSNs is encoded in 

the weights, ρω ( )i
a . The stationary solution of Eqs. (3) that corresponds to the complete coexistence of 

all the nl networks is given by
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l l . This again defines a critical threshold for λ below which coexistence is impossible. At 

the opposite extreme, the stationary solution for the prevalence of just one single network, j, is
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for λ λ> c
1. It is easy to see that this last solution is always stable when λ λ> c

1. However, the stability 
of the coexistence solution depends, in general, on the particular form of the weights ρω ( )i

a . A detailed 
analysis of the Jacobian matrix of the system of Eqs. (3) evaluated at the coexistence point Eq. (4) shows 
that this state is stable only when
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The emergence of stable coexistence can be understood as the interplay between preferential attach-
ment and diminishing returns. Preferential attachment affords an advantage in terms of respective 
weight, ωi, for networks which already exhibit higher activity; inducing a rich-get-richer effect. However, 
this is damped by the intrinsic dynamics of the system, which exhibits diminishing returns in terms of 
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activity with respect to an enhancement of the corresponding weight ωi. As long as the preferential 
attachment mechanism is not strong enough to overcome this damping effect, any perturbation in the 
density of active nodes near the coexistence point will eventually decline. Hence, the coexistence is stable. 
From a mathematical point of view, this is equivalent to showing that, at the coexistence point, the func-
tion φ ρ( )⁎i

a  is proportional to the dynamical return of the system when network i is perturbed. In other 
words, if the activity of network i is externally increased by a small amount ρ∆ i

a, after some relaxation 
time, the dynamics brings the perturbation to the new value ρ φ ρ ρ∆ = ( )∆

⁎
i
a

i
a

i
a. Coexistence is stable 

whenever the dynamical perturbation ρ∆
 i

a is smaller than the external one ρ∆ i
a (see Supplementary 

Information for details). It is possible to see that φ ρ( )⁎i
a  diverges at ρ =⁎ 0i

a  and is zero when ρ =⁎ 1i
a , 

and thus there is always a value of λ above which the inequality (6) is fulfilled (see Supplementary 
Information for details).

Interestingly, a series of states of partial coexistence exist between the complete coexistence state and 
the prevalence of a single network, such that only a number nc < nl of OSNs coexist simultaneously. The 
symmetries of the weights ρω ( )i

a  imply that any such case is exactly the same as the complete coexist-
ence state if we replace nl by nc in Eqs. (4) and (6). Finally, we note that the stability of the partial or 
complete coexistence solutions is independent of the value of v (see Supplementary Information). 
Therefore, we can discuss the stability in the limit v → ∞, which reduces the dimensionality of the dynam-
ical system.

The symmetry and preferential attachment conditions of the weights ρω ( )i
a  combined with the nor-

malization condition imply that, without loss of generality, ρω ( )i
a  can be written as

ρω
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ψ ρ
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where ψ can be any monotonically increasing function bounded on [0,1] with ψ(0) = 0. To gain further 
insight, we consider the following form of function ψ ρ ρ( ) = σ[ ]i

a
i
a . By adjusting a single parameter this 

form allows us to describe a system between a set of decoupled networks, when σ =  0, and very strongly 
coupled ones, when σ  0. In this particular case, the stability condition of the coexistence state of nc 
networks is given by

σ
λ λ
λ

<
−

= , , .
( )

with n n2
8

c
n

c
n c l

c

c

This inequality defines a set of nl −  1 critical lines σc(λ;nc) in the plane (λ,σ ) that separate phases 
with nc and nc −  1 maximally coexisting networks. This is illustrated in Fig.  2a for the case of nl =  5 
competing networks.

However, the stability of the coexistence solution does not guarantee that it is reached from arbitrary 
initial conditions because, as we show above, there are several other stable fixed points, each with its own 
basin of attraction. This is illustrated in Fig. 3, where we show the vector field in the plane ρ ρ( , )a a

1 2  for 
the case of two competing networks in the limit v → ∞. For any fixed value of λ λ> c

2 and σ >  σc(λ; 2), 
the coexistence solution is an unstable saddle point. This implies that one of the networks will eventually 

Figure 2. (a) Regions of maximal possible coexistence in the mean-field approximation as a function of λ 
and σ for 5 networks evaluated from Eq. (8). (b) Stability regions for the full stochastic model with a real 
underlying topology. For details see Supplementary Information. The inset shows nc versus the inverse slope 
of linear fits to the respective lines. (c) The most probable configuration reached from empty initial 
conditions for two networks. The dashed line corresponds to the empirical stability of the two networks. The 
insets (x and y axes each denote the activity from 0 to 1) show the basins of attraction in the mean-field 
approximation for σ =  0.8 and λ λ/ = 4c

1  (left), λ λ/ = 6c
1  (center), and λ λ/ = 8c

1  (right).
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prevail, independently of the initial conditions (Fig. 3 top right). At the critical point σ =  σc (λ; 2), the 
system undergoes a subcritical pitchfork bifurcation with the appearance of two unstable saddle points 
moving away from the (now stable) coexistence solution as σ is decreased (Fig. 3 top left and bottom). 
The subcritical character of the bifurcation is akin to first-order phase transitions. Indeed, an infinitesi-
mal increase in the value of σ near the critical point makes the system jump from stable coexistence to 
the domination of one of the networks. Decreasing the value of σ afterwards does not bring the system 
back into the coexistence state, as this type of bifurcation implies a hysteresis effect, as shown in the inset 
of Fig. 3. The two saddle points that emerge below the critical line determine the basin of attraction of 
the coexistence solution. This basin (depicted in blue in the top left plot of Fig. 3) is very narrow for low 
densities of active nodes, as found at the beginning of the evolution. This makes the system sensitive to 
stochastic fluctuations; a small perturbation of the initial conditions may push the system into a state of 
domination of one network. We finally note that, in contrast to other nonlinear models of population 
dynamics, our system does not exhibit limit cycles.

Real-world topology. The analysis presented in the previous section is based on two strong and 
unrealistic assumptions: the fully mixed hypothesis of the underlying off-line social network and the 
absence of fluctuations in the densities of active users. The first assumption has a strong impact on the 
value of the critical threshold λc

1 and the fraction of active users in a single network when λ λ> c
1. 

Fluctuations have an important impact mainly at the beginning of the evolution, when the number of 
active users is small, which is when the finite system size becomes especially relevant. Such fluctuations 
can induce the system to change stochastically from one basin of attraction to another, leading the system 
to different steady states—either coexistence or domination—even if it starts from the same initial 

Figure 3. Mean-field approximation in the limit v → ∞ (this reduces the system dimension from 4 to 2 and 
allows the diagram to be plotted, see Supplementary Information). Top: Left: Stable coexistence solution 
(λ λ/ = 4c

1 , σ =  0.8). The basin of attraction for the coexistence solution is marked in blue. Right: Only the 
domination solution is stable (λ λ/ = 4c

1 , σ =  1.2). Bottom: Bifurcation diagram for two OSN layers showing 
subcritical pitchfork bifurcation at σ = σc for λ λ/ = 4c

1 . The inset shows the hysteresis induced by this type 
of bifurcation.
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configuration with identical parameters. Once the system is in the coexistence state and has approached 
its full size, the relative importance of fluctuations decreases as the expected time for the system to jump 
out of the basin of attraction of the coexistence solution due to fluctuations diverges exponentially with 
the system size. To understand the effects of the above assumptions within a real scenario, we performed 
large-scale numerical simulations of our model on a real social network, the Slovakian friendship-oriented 
OSN Pokec13,34 in 2012. The size of this network ( . ×1 2 106 users) represents 25% of the population of 
Slovakia but demographic analysis shows that it covers a much larger fraction of the population suscep-
tible to ever participate in OSNs. This makes Pokec a very good proxy of the underlying social structure.

We first study the coexistence space in the plane (σ,λ) in the case nl =  5. To do so, for each value of 
λ and σ we first set the system to the coexistence solution ρ ⁎a . We then apply a small positive perturba-
tion to one of the networks ρ ρ δρ→ +⁎ ⁎a a a

1 1 1 . The evolution of the system after this perturbation can 
be used to determine the stability of the coexistence state (simulation details can be found in the 
Supplementary Information. The results are shown in Fig.  2b. Even though the position of the critical 
point of a single network λc

1 of the real Pokec network is extremely different from the mean-field pre-
diction, the critical lines as a function of the ratio λ λ/ c

1 follow a linear trend, as in the mean-field pre-
diction. Interestingly, the slopes of these lines (although they are different from those in the mean-field 
case) scale with nl in the same way as in the mean-field case (see the inset in Fig. 2b).

However, the stability of the coexistence solution per se does not guarantee that coexistence is reached 
from any initial configuration. This is particularly relevant when the evolution starts from empty net-
works, as fluctuations in the number of active users at the beginning of the evolution can induce the 
system to jump from one basin of attraction to another. Therefore, to determine the effective coexistence 
space in the plane (σ,λ), we evaluate the probability that a state of coexistence of a certain number of 
networks is reached when starting from empty networks. In the case of two competing networks, we 
define the effective critical line σ λ( ); 2c

eff  as the line below which the probability of the two networks 
reaching coexistence is greater than 1/2.

Figure 2c shows the results of this program for two competing networks and v = 4. The effective crit-
ical line follows the critical line in Fig.  2b for low values of λ and saturates at a constant value when 
λ λ/  1c

1 . This result can be understood in terms of the shape of the basin of attraction of the coexist-
ence solution near the origin. Indeed, only in this region are fluctuations important enough to make the 
system change from one basin to the other. As an illustration, in the inset of Fig. 2c we show such a basin 
for nl =  2 and different values of λ in the mean-field approximation. As can be observed, the shape of 
the basin in the neighborhood of ρ , ~ 0a

1 2  is almost independent of the value of λ, which explains why 
the probability of reaching the coexistence state saturates at a constant value.

This saturation effect is similarly observed for systems of more networks, where the effective critical 
lines of higher coexistence states successively saturate at lower values; that is 
σ σ σ(∞ ) > (∞ ) > (∞ ); 2 ; 3 ; 4c

eff
c
eff

c
eff , which narrows the effective coexistence region in the plane 

(σ,λ) for large numbers of networks. This is particularly relevant because, although our theory allows for 
the coexistence of an arbitrarily large number of networks, the stochastic nature of the dynamics, coupled 
with the narrow form of the basin of attraction at low densities of active users, makes such coexistence 
highly improbable. Therefore, our model predicts—even without knowledge of the exact empirical 
parameters—a moderate number of coexisting networks in a large fraction of the parameter space.

The results shown in Fig. 2c are obtained for a fixed value of the parameter v. While this parameter 
has no influence on the stability of the coexistence solution, and thus no effect on the results shown in 
Fig. 2b, it has a strong influence on the probability of reaching coexistence. Indeed, when v is finite, the 
last term in Eq. (3) acts, at the beginning of the evolution, as a temporal boost that increases the fraction 
of active users in each network. This mechanism drives the system closer to the coexistence state where 
its attractor is broader. Figure 4 shows the simulation results of the probability of reaching coexistence 
as a function of v for two competing networks. For small values of v, the initial boost is large and the 
system almost always ends up in the coexistence state. For larger values of v, the probability decreases 
significantly. We conclude that a higher boost—hence a smaller value of v—favors the effective reachabil-
ity of the coexistence state; whereas a small boost reduces that probability dramatically. Since v is related 
to the influence of mass media, these results show that mass media influence plays a crucial role in the 
diversity of the digital ecosystem.

The temporal evolution of the process also shows interesting patterns. Figure  5 shows typical reali-
zations of the process below and above the effective critical line in the case of two competing networks. 
It should be noted that in both cases, during the first stage of the evolution, the two networks acquire a 
very similar number of active users, making the forecasting of which network will eventually prevail very 
difficult. In a second stage, the symmetry is broken and one of the networks starts dominating, while 
the activity of the other declines. This pattern of “rise and fall” has been observed in many real OSNs35. 
In our model, however, such behavior is a consequence of the non-linear coupling between the net-
works, without the need to introduce an exogenous mechanism to explain it20. Meanwhile, the effective 
critical lines shown in Fig. 2c separate regions in a probabilistic way. This implies that in the vicinity of 
these lines, it is possible to find realizations that, with the same parameters and initial conditions, have 
opposite fates. This is illustrated in Fig. 6 where we show two different realizations of three competing 
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networks. In the first column of Fig. 6, we show one such realization where two out of three networks 
coexist and, in the second column, a realization where only one of the three networks prevails.

Discussion
OSNs constantly compete to attract and retain users’ attention. From this point of view, OSNs and other 
digital services can be understood as forming a complex digital ecosystem of interacting species that 
compete for the same resource: our networking time. In this work, we have introduced a very general 
and concise theory of such an ecosystem. Akin to standard ecological theories of competing species, the 
fitness of OSNs increases with their performance following a preferential attachment (or rich-get-richer) 
mechanism. However, unlike the case of standard ecology, the total fitness of the system is a conserved 
quantity, which induces diminishing returns in the fitness of each network. Over a range of parameters, 
the combination of these two mechanisms leads to stable states of coexistence of many networks, in stark 
contrast to the competitive exclusion principle14.

However, stable coexistence is only possible across a range of the parameter space, which is delimited 
by a critical line. At that critical line the system undergoes a subcritical pitchfork bifurcation akin to 

Figure 4. Probability of reaching the coexistence state for two networks for different values of v, for 
λ λ/ = 6c

1  and σ =  0.70. The yellow area denotes one standard deviation (from top to bottom).

Figure 5. Evolution of the fraction of active users (top) and the fraction of total users (bottom) for two 
competing networks. The first column corresponds to the parameters λ λ/ = 5c

1 , σ =  0.5, and v =  4 which 
lies in the coexistence region. The second column represents the parameters λ λ/ = 5c

1 , σ =  0.75, and v =  4, 
which lies in the dominance region.
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a first-order phase transition. Our model thus predicts that a minimal change or perturbation in the 
interactions between the different networks can have a catastrophic effect on the fate of the system. In 
any case, due to the stochastic nature of the dynamics and the multitude of fixed points, a stable coex-
istence solution is not always reached. The probability of reaching such a solution is an indicator of the 
diversity observed in the digital ecosystem. Interestingly, we find that over a large proportion of the 
parameter space the most probable outcome is the coexistence of a moderate number of digital services; 
in agreement with empirical observations. This number is, in general, greatly affected by the magnitude 
of the mass media influence.

The flexibility of our theory allows us to reproduce, with only three parameters, a large number of 
possible outcomes that have been observed empirically. Moreover, it can easily be modified to account 
for more complex situations, such as intrinsic differences between the networks or different launch times. 
This would allow an understanding to be gained of the extent to which higher intrinsic performance 
of one network can overcome the launch time advantage of another. Our model can also be extended 
to incorporate a description of the worldwide ecology of OSNs by incorporating different underlying 
societies that would represent different countries. It remains a task for future research to validate our 
assumptions regarding the coarse-grained coupling mechanism.
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This Article contains a typographical error in Equation (7).
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