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We study the structure of thermal spectral function of the stress-energy tensor inN ¼ 4 supersymmetric
Yang-Mills theory at intermediate ‘t Hooft coupling and infinite number of colors. In gauge-string duality,
this analysis reduces to the study of classical bulk supergravity with higher-derivative corrections, which
correspond to (inverse) coupling corrections on the gauge theory side. We extrapolate the analysis of
perturbative leading-order corrections to intermediate coupling by nonperturbatively solving the equations
of motion of metric fluctuations dual to the stress-energy tensor at zero spatial momentum. We observe the
emergence of a separation of scales in the analytic structure of the thermal correlator associated with two
types of characteristic relaxation modes. As a consequence of this separation, the associated spectral
function exhibits a narrow structure in the small frequency region which controls the dynamics of transport
in the theory and may be described as a transport peak typically found in perturbative, weakly interacting
thermal field theories. We compare our results with generic expectations drawn from perturbation theory,
where such a structure emerges as a consequence of the existence of quasiparticles.
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Introduction.—The dynamics of non-Abelian gauge
theories at finite temperature is at the heart of a vast
variety of physical processes, including the behavior of
electroweak and hadronic matter in the early Universe and
the multitude of complicated collective phenomena
observed in heavy ion collisions at RHIC [1–3] and
LHC [4–6]. Understanding how such dynamical phenom-
ena emerge from the underlying microscopic theory is an
important theoretical challenge.
Theoretical analysis of non-Abelian plasmas is a com-

plicated task. For static properties, such as pressure and
equation of state, resummed thermal perturbation theory [7]
and lattice gauge theory [8], respectively, provide a
satisfactory description in their complementary domains
of applicability, i.e., at weak and strong coupling.
Dynamical properties, such as transport coefficients and
emission rates, are, however, not directly accessible to
lattice calculations. At weak coupling, these properties can
be analyzed within perturbation theory [9–11] but even in
this limit, the complicated infrared structure of perturbative
diagrams limits the accuracy of those methods. Although

different approximation schemes and effective theories
have been developed over the years (see Ref. [7] for a
recent review), their applicability to the domain of inter-
mediate coupling remains limited. To a large extent, our
understanding of the dynamics in this region is based on
extrapolations from perturbative results.
These theoretical limitations provide a strong motivation

to study the plasma phase of other non-Abelian gauge
theories, for which methods of doing calculations at strong
coupling exist. In particular, for SUðNcÞ, N ¼ 4 super-
symmetric Yang-Mills (SYM) theory with an infinite
number of colors, Nc → ∞, the gauge-gravity duality
(holography) [12] provides a simple, classical computa-
tional tool for analyzing its properties in the limit of
(infinitely) large ‘t Hooft coupling λ ¼ g2YMNc. In recent
years, the duality was used to obtain new insights into the
dynamics of strongly coupled non-Abelian plasmas [13].
The duality also allows us to understand corrections to the
infinite coupling limit: on the gravity side, they are encoded
in the higher-derivative corrections to the Einstein-Hilbert
action. Such corrections are necessarily treated as small
perturbations of the original second-order equations of
motion. Extrapolating results to the regime of finite
coupling is subtle, since different physical quantities show
different degrees of sensitivity to the corrections [14] and
adding other higher-order terms may influence the result
significantly. Using these higher curvature terms, finite
coupling effects of both equilibrium and out-of-equilibrium
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dynamics of strongly interacting thermal gauge theories
have been explored [14–28].
In this Letter, we continue the study of nonperturbative

thermal physics at intermediate coupling by providing a
stringent test of the consistency of holographic extrapola-
tions. We show how an essential feature of weakly coupled
thermal field theories arises from holography—namely, we
observe the emergence of a separation of scales in the
relaxation of small fluctuations of the plasma at large, but
finite coupling, which gives rise to a narrow structure known
as the transport peak in the small frequency region of the
stress-energy tensor spectral function at zero spatial momen-
tum.The existence of such a structure is a generic expectation
for a perturbative plasma and lattice gauge theory. We thus
show that holographic extrapolations capture an important
qualitative feature of physics at intermediate coupling.
Gravity dual description at finite coupling.—The dual

description of N ¼ 4 SYM theory at infinite Nc and large
‘t Hooft coupling λ is governed by the low-energy effective
action of type IIB supergravity on AdS5 × S5. The leading-
order finite coupling correction corresponds to the four-
derivative term in the action proportional to α03. The action,
upon a reduction on S5, is given by

SIIB ¼ N2
c

8π2

Z
d5x

ffiffiffiffiffiffi
−g

p ðR − 2Λþ γW þ � � �Þ: ð1Þ

Here, Λ ¼ −6=L2 is the cosmological constant, W
is a four-derivative contraction of Weyl tensors (see
Refs. [21,22]), and γ ¼ α03ζð3Þ=8, where in terms of the
‘t Hooft coupling, α0=L2 ¼ λ−1=2. We shall henceforth set
L ¼ 1. The ellipsis in Eq. (1) stands for the OðγÞ correc-
tions to supergravity fields other than the metric: as argued
in Ref. [18], their presence can be ignored for the back-
ground under consideration. Also, the equations of motion
following from the 10d unreduced action and the 5d action
(1) are equivalent to OðγÞ, up to a field redefinition [18].
A thermal state of the N ¼ 4 SYM plasma is dual to a

black brane geometry in the 5d bulk. To leading order in γ,
the black brane metric derived from the action (1) is given
by [15,16]

ds2 ¼ r20
u
ð−fZtdt2 þ dx2 þ dy2 þ dz2Þ þ Zu

du2

4u2f
; ð2Þ

where fðuÞ ¼ 1 − u2, Zt ¼ 1 − 15γð5u2 þ 5u4 − 3u6Þ,
Zu ¼ 1þ 15γð5u2 þ 5u4 − 19u6Þ, and r0 is the nonextre-
mality parameter related to the Hawking temperature
via T ¼ r0ð1þ 15γÞ=π.
Retarded stress-energy tensor correlators and spectral

functions are computed from the dynamics of linearized
metric fluctuations [29–32]. At zero spatial momentum,
q ¼ 0, rotational invariance allows us to only consider the
metric fluctuation component hxy, with x and y being two
of the spatial coordinates. After introducing the variable

Z1 ¼ uhxy=r20, in Fourier space and to leading order in γ,
the equation of motion has the form [17,22]

Z00
1 −

1þ u2

uf
Z0
1 þ

w2

uf2
Z1 ¼ γ

X4
i¼0

S̃iðu;wÞZðiÞ
1 ; ð3Þ

where w≡ ω=2πT and ZðiÞ
1 ≡ ∂iZ1=∂ui. The right-hand

side of Eq. (3) can be rewritten to include only Z1 and Z0
1 at

the expense of introducing terms at the order Oðγ2Þ:

X4
i¼0

S̃iðu;wÞZðiÞ
1 ¼ S0ðu;wÞZ1þS1ðu;wÞZ0

1þOðγÞ; ð4Þ

where S0 and S1 can be found in Ref. [22]. The resulting
ODE is now of second order and can be formally solved
(e.g., numerically) for any finite γ, thus effectively resum-
ing a set of γ-dependent corrections [14]. This procedure is
analogous to finding a bound state wave function with a
nontrivial electric charge dependence from leading-order
potentials in quantum mechanics.
The retarded correlator GR

xy;xy and its associated spectral
function ρxy;xyðω; qÞ ¼ −2ImGR

xy;xyðω; qÞ are determined
from the normalized solutions Z1ðu;ωÞ to Eqs. (3)–(4),
obeying the incoming wave boundary condition at the
horizon [23,29]:

ρxy;xyðω;qÞ¼
N2

cr40
2π2

lim
u→0

1

u
Im½Z1ðu;−ωÞZ0

1ðu;ωÞ�: ð5Þ

The relation to the shear viscosity η is given by the formula
(see, e.g., Ref. [33])

ρxy;xyðω; 0Þ ¼ 2ηωþOðω3Þ: ð6Þ

Thus, the shear viscosity is proportional to the value of the
function ρxy;xyðω; 0Þ=ω at the origin. Here, we compute
ρxy;xyðω; 0Þ numerically and nonperturbatively in γ ∼ λ−3=2,
which enables us to extrapolate the results to intermediate λ.
The transport peak.—The poles of GR

xy;xy coincide with a
discrete set of relaxation modes of the black brane known
as quasinormal modes (QNMs) [29,31]. The spectrum of
these modes in the complex w plane is shown in the left
panel of Fig. 1 for several values of γ at q ¼ 0. At infinite
coupling (γ ¼ 0), the black brane QNM spectrum consists

of a discrete set of complex frequencies ωðiÞ
C , i ¼ 1; 2;…,

with comparable real and imaginary parts [34]. At small,

but nonvanishing γ, the modes ωðiÞ
C are altered perturba-

tively [14,20]. Moreover, one also observes the emergence

of a new set of modes, ωðiÞ
I , concentrated along the

imaginary axis [22]. The appearance of these purely
dissipative modes has been observed also for
other higher-derivative backgrounds, in particular, for
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Gauss-Bonnet gravity, where the coupling parameter can be
treated nonperturbatively [22,23].
For very small γ, the modesωðiÞ

C closest to the real axis all

have jωðiÞ
C j ≪ jωðiÞ

I j, which is consistent with the fact that

the new modes ωðiÞ
I decouple from the spectrum as γ → 0.

As γ increases, the distance between neighboring modes in
both sets decreases and they all move toward the real axis.
At sufficiently large γ, a separation of scales emerges in the
behavior of the two types of modes, which has important
consequences for the structure of the spectral function. To
illustrate this separation of scales, we use an appropriate
Mittag-Leffler expansion for the retarded thermal correlator
GRðω; q ¼ 0Þ, assumed to be a meromorphic function in
the finite complex frequency plane, obeying the symmetry
property GR�ðwÞ ¼ GRð−wÞ for real w and having the
asymptotic behavior GR ∼w4 lnw at jwj → ∞:

GR
xy;xyðw;0Þ¼

iRI;1

w−wI;1
þ RC;1

w−wC;1
−

R�
C;1

wþw�
C;1

þP4ðwÞþw5
X
l>1

RI;l

jwI;lj5ðw−wI;lÞ

þw5
X
n>1

�
RC;n

w5
C;nðw−wC;nÞ

þ R�
C;n

w�5
C;nðwþw�

C;nÞ
�
:

ð7Þ

Here RI;l and RC;n are the residues at the poles w ¼ wI;l

and w ¼ wC;n, respectively, P4 ¼ c0 þ ic1wþ c2w2þ
ic3w3 þ c4w4, and ci, RI;l ∈ R. The form of the expansion
(7) was chosen to single out the contributions of the three
poles closest to the origin. Let us define

ΓT ≡−ImwI;1; ΓP≡−ImwC;1; μT ≡RewC;1: ð8Þ

Then, at w ≪ 1, we have

ρxy;xyðw; 0Þ=w ¼ −
2RI;1

w2 þ Γ2
T
− 2c1

þ 8μTΓPReRC;1 þ 4ðμ2T − Γ2
PÞImRC;1

ðμ2T þ Γ2
PÞ2

þOðw2Þ: ð9Þ

In the limit λ → ∞ (γ → 0), since ΓT → ∞ and
RewC;n ∼ ImwC;n ∼ n, the spectral function has no struc-
ture around w ¼ 0 [32,35] and the main contribution to the
shear viscosity comes from the coefficient c1 in Eq. (9). At
finite coupling, however, a characteristic new shape of the
spectral function centered around w ¼ 0 emerges as a
consequence of the new pole at w ¼ wI;1 ¼ −iΓTðγÞ
moving up the imaginary axis with γ increasing.
A priori, the supremacy of this new pole is not guaranteed
since all the poles move toward the real axis as γ increases,
but it turns out that it decouples from the contributions of
wC;n. In Fig. 1, we show that the ratios ΓT=μT and ΓP=μT
are rapidly decreasing functions of γ. With ΓT=μT ≪ 1,
ΓP=μT ≪ 1 and the ratio of residues remaining, as we
checked, bounded, it is clear that the first term in Eq. (9)
becomes dominant already for γ ∼ 10−2. In Fig. 1, we also
show the second purely dissipative mode, Γ2 ≡ −ImwI;2,
which remains comparable to μT for all γ. This means that
its contribution to the spectral function is broad, since it
overlaps with the contribution of wC;1.
Thus, we find that at large but finite coupling, the low-

frequency part of the thermal spectral function is dominated
by the contribution of the smallest purely dissipative pole
(quasinormal mode). We can therefore identify the two
distinct frequency regions in the spectral function

ρHolxy;xyðwÞ ¼ wρHolL ðwÞ þwρHolH ðwÞ; ð10Þ
where ρHolL comes from wI;1 and is dominant in the region
w≲ ΓT , while ρHolH contains contributions from all the
remaining poles. For well-separated scales, ρHolL is well
approximated by

FIG. 1. Left: Poles of the N ¼ 4 SYM stress-energy tensor correlator GR
xy;xyðw; 0Þ for γ ¼ 10−3 (black solid circles), γ ¼ 10−2 (blue

crosses), and γ ¼ 2 × 10−2 (red empty circles) in the complex plane of normalized frequencyw ¼ ω=2πT. Right: Imaginary parts of the
poles closest to the origin normalized by the real part of the first complex mode [see Eq. (8)] as functions of the (inverse) coupling.
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ρHolL ≈
4πTηΓ2

T

w2 þ Γ2
T
≈

2π2N2
cT4ð1þ 135γÞ

ð373γ − ln 2Þ2w2 þ 4
; ð11Þ

where the shear viscosity η is introduced through Eq. (6),
and the approximate analytic result on the right-hand side
follows from the hydrodynamic calculation of Z1 to
leading order in w and γ [22]. In this limit, transport is
controlled by a single QNM, which leads to a narrow
structure in the spectral function—a transport peak. With
the above normalization, the area under the low-energy part
of ρHolxy;xyðwÞ=w is simply given by 4πTηΓT.
Numerically computed spectral functions at q ¼ 0

[cf. Eq. (5)] are shown in Fig. 2. In the left panel, we
plot the low-frequency region, which at very strong
coupling (small γ) shows no characteristic structures for
ω ≪ T, indicating the absence of (colored) quasiparticle
excitations [35]. As the coupling decreases (γ increases), a

transport peak, associated with the dissipative mode ωð1Þ
I ,

emerges. The high-frequency part of the spectral function
for different values of γ is shown in the right panel of Fig. 2.
For small γ, the high frequency asymptotics of the spectral
function is comparable to that of the γ ¼ 0 limit
[ρHolxy;xyðwÞ ∼w4], which for ω ≫ T is fixed by conformal
symmetry. At intermediate coupling, however, narrow
structures emerge in the region w≳ μT . These structures
reflect the fact that the imaginary parts of the QNMs in the

set ωðiÞ
C are also small, as already observed in other channels

in Ref. [22]. In the limit in which the widths of these
structures are much smaller than their real parts, they may
be viewed as long-lived bosonic colorless excitations,
possessing the same quantum numbers as the stress-energy
tensor.
From strong to weak coupling.—We now compare the

holographic results for the spectral function extrapolated to
the regime of finite coupling to the expectations arising
from perturbative thermal field theory. For sufficiently large
γ, the separation of scales and the emergence of the
transport peak in the low-frequency region of the spectral

function implies that transport phenomena occur at much
longer time scale, tT ∼ ℏ=ΓTkBT, than the typical time
scales of other microscopic processes in the plasma, which
occur at times tmicro > ℏ=μTkBT. This is reminiscent of the
dynamics of weakly coupled non-Abelian plasmas, where
the hierarchy of energy scales ϵn ∼ λnT emerges for λ ≪ 1.
As a consequence of the scattering processes among the
plasma constituents, at finite T, both bosons and fermions
acquire thermal masses squared μ2T ≡m2

T=T
2 ∼ λ and

(momentum-dependent, dimensionless) thermal widths
[36] Γp ≡ γT=T ∼ λ2 ≪ μT for typical momenta, p ∼ T
(we use the same notations as in holography to emphasize
the similarity). Therefore, both bosons and fermions in
N ¼ 4 SYM theory can be treated as well-defined colored
quasiparticles.
As expected, these dynamical scales manifest themselves

in the structure of thermal correlators of gauge-invariant
operators. Since the in-medium quasiparticles are colored,
they only contribute to the correlator via loop diagrams. For
the q ¼ 0 stress-energy tensor spectral function, a closed-
form expression can be obtained in the strict λ ¼ 0 limit.
For N ¼ 4 SYM, the spectral function is [35]

ρλ¼0
xy;xy

w
¼ cδðwÞ þ 9c

8

�
ρBðwÞ þ 2

3
ρFðwÞ

�
w3; ð12Þ

where c ¼ 2π2N2
cT4=15, ρB ¼ ½1þ 2nBðπwÞ� and ρF ¼

½1 − 2nFðπwÞ�, with nB and nF being the free Bose and
Fermi distributions, respectively. In analogy with Eq. (10),
the expression (12) also exhibits two distinct frequency
regions: the high-frequency region, proportional to w3,
originates from a branch cut associated with the creation of
the particle-antiparticle pairs with opposite spatial momen-
tum; the low-frequency region, proportional to δðωÞ, arises
from the free zero momentum particles. The infinite slope
of ρxy;xyðw; 0Þ at the origin implies that at λ ¼ 0, the shear
viscosity diverges.
Small coupling corrections to the spectral function

preserve the existence of these two distinct structures

FIG. 2. Dimensionless spectral function ρ̄xy;xyðω; qÞ≡ ðπ2=N2
cr40Þρxy;xyðω; qÞ as a function ofw ¼ ω=2πT for γ ¼ 10−3 (black, solid),

γ ¼ 10−2 (blue, dot-dashed) and γ ¼ 2 × 10−2 (red, dashed). The left and right panels show different frequency ranges.
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[35], making the scales at which each of the processes
dominates apparent. Since quasiparticles acquire thermal
masses, thresholdlike effects occur at w ∼ μT , separating
this contribution from the origin. Because of those effects,
“cusps” are observed in certain correlators in this region
[37], which may be compared to the narrow structures
shown in the holographic computation. However, these
structures were not observed in the evaluation of the stress-
energy tensor spectral function in Ref. [38].
The low-frequency part is more subtle. The contribution

proportional to δðωÞ emerges as a consequence of a
pinching pole in a loop calculation and is the zero coupling
manifestation of the transport peak. At finite coupling, the
width of the in-medium propagators regularizes this pole
and the delta function acquires a width ΓT ∼ λ2 [39]. This
contribution is, therefore, parametrically distinct from the
high-frequency region. In perturbation theory, contribu-
tions coming from the momenta of order ΓTT suffer from
infrared problems which demand resummation of certain
classes of diagrams, achieved via an effective kinetic
theory [9,10]. The analysis of the spectral function using
the effective kinetic theory has been performed in
Refs. [36,40–43]. In particular, in Ref. [43] it was argued
that in a scalar finite-temperature field theory, the transport
peak in ρxy;xyðwÞ=w at weak coupling arises as a conse-
quence of a branch cut along the imaginary frequency axis
in the expression for the retarded correlator, with nonuni-
form discontinuity along the cut peaked at Imw ∼ λ2. It is
also known that for current-current correlators in QCD,
the low-frequency region is well approximated by the
Lorentzians as the coupling increases [41], which is
consistent with our holographic extrapolation.
Discussion.—The qualitative similarities between our

holographic extrapolation and perturbation theory expect-
ations are quite remarkable. Nevertheless, we would like to
stress that the extrapolation we used does not capture the full
contribution from higher orders of the γ expansion. While
both Eqs. (4) and (5) are accurate to leading order in γ, it is
unclear whether the corrections resummed by nonperturba-
tive solutions of Eq. (4) are the most relevant ones.
Furthermore, since these corrections are induced by
higher-derivative terms, their magnitude depends on the
momentum scale, apparently making them larger as w
increases. For this reason, we expect our extrapolation to
better describe the low-frequency dynamics of the plasma,
while the high-frequency part, including the structures at
w ∼ μT , may bemore sensitive to other effects.While further
analysis of the different corrections is needed, in the absence
of higher-derivative supergravity corrections at higher orders
in α0, the recovery of many qualitative features of a weakly
coupled plasma suggests that this type of extrapolation
captures essential aspects of the full result.
One of those qualitative aspects is the observation of a

well-defined transport peak. Based on the analysis of
transport, this structure may be taken as an indication of

the existence of quasiparticles in the holographic calcu-
lation. However, even if the narrow structures observed at
finite frequency in Fig. 2 correspond to approximate states
in the thermal ensemble in the large Nc limit, they would
not contribute to the leading Nc correlator since those
excitations must be colorless. In contrast, in the perturba-
tive computation, both bosonic and fermionic quasipar-
ticles are in the adjoint representation, and they contribute
to the connected correlator to order N2

c. It is remarkable that
the holographic calculation, without any explicit reference
to quasiparticles, captures these distinct features of the
stress-energy tensor correlator. It would be interesting to
explore whether, as predicted by the quasiparticle picture, a
transport peak occurs at the same parametric scale ΓT in the
spectral functions of other conserved currents.
Finally, we would like to stress that even after the

extrapolation to intermediate coupling, the retarded corre-
lator in the holographic calculation remains a meromorphic
function. Although the precise analytic structure of this
correlator at small nonzero coupling remains unknown,
the expectation in perturbation theory [43–47] is that the
retarded functions develop branch cut singularities in the
complex frequency plane. It would be interesting to further
understand how these singularities could emerge in holog-
raphy, beyond what was observed in Ref. [22], as well as in
nonconformal plasmas [48].
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