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Navigability of temporal networks 
in hyperbolic space
Elisenda Ortiz   1,2, Michele Starnini1,2 & M. Ángeles Serrano1,2,3

Information routing is one of the main tasks in many complex networks with a communication function. 
Maps produced by embedding the networks in hyperbolic space can assist this task enabling the 
implementation of efficient navigation strategies. However, only static maps have been considered 
so far, while navigation in more realistic situations, where the network structure may vary in time, 
remains largely unexplored. Here, we analyze the navigability of real networks by using greedy routing 
in hyperbolic space, where the nodes are subject to a stochastic activation-inactivation dynamics. 
We find that such dynamics enhances navigability with respect to the static case. Interestingly, there 
exists an optimal intermediate activation value, which ensures the best trade-off between the increase 
in the number of successful paths and a limited growth of their length. Contrary to expectations, 
the enhanced navigability is robust even when the most connected nodes inactivate with very high 
probability. Finally, our results indicate that some real networks are ultranavigable and remain 
highly navigable even if the network structure is extremely unsteady. These findings have important 
implications for the design and evaluation of efficient routing protocols that account for the temporal 
nature of real complex networks.

Transfer of information, mass, or energy is a key function in many natural and artificial complex systems, ranging 
from gene-regulatory networks1 and the brain2 to online and offline social networks3, the Internet4, and transpor-
tation networks5. Milgram’s experiment6 showed that some of these systems can be efficiently navigated, i.e., their 
elements are able to perform an effective information routing even though they do not possess global knowledge 
of the system. This surprising property was first explained by Kleinberg using a network model7,8, in which each 
node resides in the Euclidean plane and forwards information to the neighbor which is closer to destination. 
More recently, it has been suggested that the geometry of complex networks is not Euclidean but hyperbolic, as 
a result of the interplay between the popularity and similarity attributes of the nodes9–12. Within this framework, 
the observed topological properties of complex networks are naturally explained on the basis of a hidden metric 
space defining distances between nodes, and a connection probability dependent on such distances. Moreover, 
distances in the underlying hyperbolic geometry can guide greedy routing very efficiently in scale-free networks, 
meaning that the success probability of the process is extremely high, while the routing paths deviate only slightly 
from the topological shortest paths, following closely the geodesics in the hyperbolic plane13.

These advances in the understanding of the navigability of complex networks are framed within the traditional 
approach taking the structure of networks as static. However, this assumption has been recently challenged by the 
empirical observation of a temporal dimension in many natural and social systems14–17, demonstrating that nodes 
and edges switch on and off with several time scales. The empirical analysis of such temporal networks18 has 
unveiled new statistical properties, such as a heavy-tailed distribution of inter-event times between consecutive 
links, known as burstiness19, or the heterogeneous distribution of activity in social interactions20. Temporal effects 
have been shown to impact both the behavior of dynamical processes on networks21–25 and the connectivity of 
their corresponding static representations26,27. Time-respecting paths18, for instance, play a crucial role in slowing 
down or speeding up the spreading of information or diseases28, and certainly affect also the message routing 
throughout the network.

Although navigation is expected to be substantially different in temporal networks than in static ones, few 
empirical or theoretical works have been devoted to study the impact of the temporal dimension on the naviga-
bility of complex systems4,29,30. Some of these studies are concerned with the small world property31, while others 
aim at quantifying network vulnerability to temporary failures32, or explore temporal networks using greedy 
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walks that proceed from node to node by always following the first available contact33. However, the general 
mechanisms that guarantee an optimal routing in situations where the network’s structure changes with time, or 
where noise affects the communication paths, are not fully understood yet. Uncovering such mechanisms is thus 
a fundamental task, with a broad range of potential applications, for instance, in communication engineering34 
and system biology35.

Here, we tackle this issue by proposing a hybrid model to study the navigability of temporal networks and 
show that, surprisingly, temporal networks can be navigated more efficiently than their static counterparts. 
Furthermore, we show that some real networks are ultranavigable, meaning that they remain highly navigable 
even when the network topology is strongly dynamic. Our model considers static reconstructions of real net-
works and a simple node activation-inactivation dynamics. This allows us to control for the maximum duration 
of the routing process, as well as to discard peculiar features of specific real evolving systems, such as circadian 
rhythm36. The activation dynamics may represent temporal failures of nodes due to random unknown events, or 
noise. Our approach suggests a new greedy routing protocol in static networks, that combines standard greedy 
routing and a simulated activation dynamics, which can boost the navigability of some real networks, at the 
expense of elongated paths.

Next, we set our analysis upon five different empirical networks: ArXiv collaborations (ArXiv), US 
Commodities networks (Commodities), Metabolic networks (Metabolic), the Internet at the autonomous sys-
tem level (Internet) and the World Trade Web (WTW). Detailed descriptions of the data sets can be found in 
Methods.

Greedy routing on temporal networks
Information packets, or other assets, are transferred in a network from a source node to a destination one by 
following greedy routing in hyperbolic space11. We consider a two-dimensional hyperbolic plane of constant neg-
ative curvature where each node i has polar coordinates (ri, θi), see Methods. The implementation of the routing 
algorithm requires that there is only one packet per source-destination pair, that each node knows its coordinates, 
the coordinates of its neighbors in the network, and the coordinates of the destination node. Then, the node 
holding the packet will transfer it to its neighbor with the smallest hyperbolic distance to the destination node.

We take the hyperbolic embedding of the largest connected component37 of each real complex network, that 
we refer as the static map  G S( , )0 , where G0 stands for the static graph and S is the underlying metric space 
where the nodes have permanent coordinates. Next, we generate several synthetic temporal networks by applying 
a Poissonian activation-inactivation dynamics on its nodes. We consider that nodes can be in an active state, 
being able to receive and forward information, or in an inactive state, in which case they cannot receive neither 
forward information packets. At each time step t, each node i is active with probability ai. Thus, at each time step 
t, a graph Gt is defined, in which only active nodes and the links between them are present. The sequence of 
graphs G{ }t t T1,2, = = …  constitutes a synthetic temporal network of length (duration) T. The activation probabil-
ities control the density of the temporal networks, affecting the probability of a message being sent. For instance, 
in the case of a constant activation probability set equal for all nodes, ai = a, each graph Gt has an expected aver-
age degree equal to =k a kt , where k is the average degree of the original static network.

Therefore, the greedy routing acts on a temporal map M G S( , ) depending on the temporal network  and the 
underlying hyperbolic space S. The greedy forwarding algorithm is implemented sequentially on the temporal 
map M G S( , ), so there is one attempt to forward the information packet for each time step t. At time t, the node 
holding the information packet tries to forward it to its neighbor with the lowest distance to the final destination. 
If the neighbor is active at time t, then it receives the packet. Otherwise, the packet remains at the holding node. 
The model with a = 1 corresponds to greedy routing on the original static network, with all nodes active at all 
times, for a number of steps equal to T. Therefore, the network’s duration T can be interpreted as the maximum 
lifetime of information packets. In this scenario, a greedy path is successful when a packet reaches its destination 
in a time t ≤ T, and unsuccessful otherwise. In the limit of T → ∞, all packets are expected to be able to reach 
their destination because the number of different paths that can be realized by greedy routing on the temporal 
networks grows with T.

We run numerical simulations for different network’s duration T, taking a number of random source–destina-
tion pairs which is the minimum between 105 and N(N − 1)/2, where N is the number of nodes of the network. In 
numerical experiments varying the activation probability, the random subset of source–destination node pairs is 
kept the same, while it is changed when varying T.

Results
We first consider a constant activation probability set equal for all nodes, ai = a. In this case, the model is charac-
terized by two parameters, the activation probability a, which controls the activation dynamics, and the network’s 
duration T, which represents the maximum lifetime of information packets. We evaluate the performance of 
greedy routing on the temporal map by measuring two main quantities: the success ratio ps, defined as the fraction 
of packets that successfully reach their destination within a time T over the total number of source-destination 
pairs considered; and the average topological stretch s  of successful greedy paths, where the stretch is defined as the 
ratio between the hop-length of a greedy path and the shortest path between the corresponding source and desti-
nation nodes. The stretch tells us how much the successful greedy paths are longer with respect to the shortest 
ones.

In the Supplementary Material, we also give results for the average geometric stretch sg , which is defined anal-
ogously to s  but considering the hyperbolic lengths of greedy and shortest paths; and the average coverage κ, 
which informs of the average number of different visited nodes against the average number of nodes that com-
pound a successful path.
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Effects of network dynamics on navigability.  The success ratio ps is a key parameter in determining the 
navigability of complex networks. A large success ratio, close to p 1s ∼ , means that almost all nodes can be 
reached by a message sent by any other node. On the contrary, if ps is small, information can not be successfully 
transmitted from most nodes. Figure 1, top row, shows the fraction of successful paths ps as a function of the 
network duration T, for different values of the activation probability a. The success ratio varies considerably 
across different static networks (a = 1), ranging from very low success ratio for the ArXiv, to p 1s ∼  for the WTW 
and the Internet, which indicates a better congruence of these systems with their underlying geometry. 
Remarkably, for sufficiently large T, the success ratio in all temporal networks (a < 1) under consideration is 
larger than the one achieved on their static counterparts (dashed line, top row Fig. 1 and Table 1 in Methods). This 
effect is particularly evident for the cases where ps in the static map is rather low, such as for the ArXiv network, 
where the success ratio increases from ps = 0.24 for a = 1 to ps = 0.90 for a 0 2∼ . . Nonetheless, when the static 
success ratio is high (e.g. Internet), ps on the temporal maps increases too.

As expected, ps is a growing function of the network duration T: the larger the maximum lifetime of the pack-
ets, the higher ps. In the limit of T → ∞, ps is expected to reach its maximum since, for any pair of nodes, all dif-
ferent paths between them will be available at some time, ensuring that a successful one will certainly arise. This 
implies that the success ratio always increases with T, although the growing rate can be extremely slow for very 
large T. Oppositely, in the routing on static networks, ps does not vary with T because no new paths are added by 
increasing the lifetime of information packets.

Our results show that, surprisingly, it is more efficient to have some (or even a great number of) nodes inactive 
than having all nodes active and contributing to the routing process. The reason for this behavior is rooted in 
the fact that, with a = 1, some packets might get stuck into topological traps. From the greedy routing definition, 
indeed, it is clear that if a packet comes back to a node twice, it will come back again, and the loop would continue 
forever with the packet never reaching its destination.

To understand this mechanism, consider a node i sending a packet to his neighbor j, because j is the closest 
(among all i’s neighbors) to destination node k. If during the next time step, node i turns out to be the closest 
node to destination k among j’s neighbors, then the packet will return to i. As long as no topological change takes 
place in the network, this process will repeat endlessly. Any cycle involving a packet coming back to a node twice 
constitutes a topological trap, See Fig. 2. In contrast, if a < 1, the topology of the network changes at each time 
step, hence the packet is able to escape any topological traps it may encounter along the route and eventually reach 
its destination. Nevertheless, the new successful path followed by the packet will deviate from the geodesic con-
necting the two nodes in the hyperbolic plane, thus the path length will necessarily be longer than the shortest.

Figure 1.  Success ratio ps (top row) and average stretch s̄  (bottom row) as a function of T, for different values of 
the activation probability a, in five real networks. The success ratio and the average stretch in the static map, a = 
1, appear plotted with dashed lines.

Network N E k kmax γ ps s

ArXiv 2121 5473 5.16 70 2.86 0.24 1.14

Commodities 374 1090 5.83 86 2.61 0.57 1.19

Metabolic 1008 3285 6.51 143 2.53 0.77 1.17

Internet 23748 58414 4.92 2778 2.10 0.97 1.11

WTW 189 550 5.82 110 2.22 0.98 1.04

Table 1.  Topological properties and navigation performance values of five real static maps  G S( , )0 . From left 
to right: number of nodes, number of edges, average degree, maximum degree, exponent of the power-law 
degree distribution, success ratio and average topological stretch.
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The average topological stretch s , defined as the ratio between the hop-length of greedy paths and the corre-
sponding shortest paths in the network, is also a measure of navigation efficiency. From its definition, it holds that 

≥s 1. A small stretch, s̄ 1 , indicates that most packets follow a route very close to the shortest one, while if 
s 1, paths are much longer. Figure 1, bottom row, shows the average stretch s  as a function of the network’s 

duration T, for different values of the activation probability a. As for the success ratio, s  is also an increasing func-
tion of T. Indeed, the larger the duration T, the lengthier the paths that become successful, and these very long 
paths increase the average stretch.

It is important to note that the shortest paths between two nodes in M G S( , ) may be much longer than the 
shortest path in the corresponding static maps, because of time-respecting paths. This is particularly true for very 
sparse temporal networks, i.e. with low activation probability. Therefore, s  is always greater in temporal maps than 
in the corresponding static ones, as shown in Fig. 1, demonstrating that the activation dynamics is responsible for 
creating lengthier successful paths.

This effect is clearly visible in those data sets where ps in the static networks is low, such as the ArXiv or 
Commodities. In these networks, the large increase in the success ratio due to the activation dynamics comes with 
a large growth in the average stretch. The probability of finding much more successful tracks is increased at the 
cost of choosing longer paths. On the contrary, if ps in the static maps is high, such as for the Internet or the 
WTW, s  shows a small increase in the temporal maps. These different profiles correspond to the different geome-
tricity of the considered networks. In fact, the less congruent topology and geometry are, the larger the number 
of topological traps present in S( , )M G  and the larger the potential increase in success. Temporal maps with 
limited congruency, such as ArXiv or Commodities, show the larger gains in success overcoming traps at the 
expenses of a notable increase in s , and longer durations T. On the contrary, networks with a conspicuous latent 
geometry, like the Internet and the WTW, are not characterized by a large number of topological traps, hence s  
does not rise as much.

Interestingly, different effects are obtained on the success ratio and the stretch depending on the activation 
probability. The lowest values of s  are found for intermediate values of a, while ps generally increases as the activa-
tion probability decreases, down to a value for which the network becomes too inactive, and then ps becomes 
lower again. In most networks, ps remains almost unchanged if the activation probability is set equal to a = 0.3 or 
to a = 0.1 in the limit of large T, while s  significantly increases if the activation decreases from a = 0.3 to a = 0.1, 
specially for the Internet and the WTW. Conversely, choosing a = 0.6, ps grows from 0.96 in the static case to 0.99 
for the Internet and from 0.99 to 0.997 in the WTW, but the stretch increases very little from s 1 11= .  to s 1 76≈ .  
for the Internet, and from = .s 1 04 to ≈ .s 1 29 for the WTW. This indicates it may exist an optimal activation 
probability that maximizes the increase in the success ratio and minimizes the increase in the stretch.

Optimal activation probability.  Top row of Fig. 3 shows s  as a function of the activation probability a, for 
several values of the network’s duration T. Interestingly, the average stretch is not a strictly decreasing function of 
a, but it reaches a minimum for some intermediate value. On the one hand, when the activation probability is very 
small, the stretch is typically large because of the lack of available active neighbors. The packet will usually remain 
in the holding node or it will be transferred erratically, resulting in an increase of s . On the other hand, if a 1 , 
the topology of S( , )M G  is similar to the static one, so the packet tends to fall into the same topological traps 
spending a long time moving in cycles (thus increasing the stretch) before it succeeds to escape the loop. 
Remarkably, the minimum of s  is reached for some optimal value of the activation probability, a = aO.

This feature is addressed in more detail in the bottom row of Fig. 1, which shows the ratio between the success 
ratio and the average stretch (p s/s ) as a function of the activation probability a. Since p 1s ⩽  and s 1⩾  by defini-

Figure 2.  Representation of a topological trap, in Euclidean space. Greedy routing demands sending the 
information packet always to the neighbor closest to destination. Consequently, in (a) the packet never stops 
jumping between nodes i and j and is captured by the topological trap, while in (b) the inactivation of i enables 
the packet to follow an alternative route through l and successfully reach the destination node k.
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tion, perfect navigability is reached when = =p s 1s , and thus =p s/ 1s . The ratio p s/s  represents a measure of the 
trade-off between the increase in both the success ratio and the stretch. The larger the ratio, the more efficient the 
navigation.

For each network under consideration, it exists an optimal value aO of the activation probability that maxi-
mizes the trade-off between success ratio and stretch. For the ArXiv and the Commodities, the curves of the ratio 
p s/s  as a function of a depend on the duration T, with larger p s/s  for smaller T, while for the Internet and the 
WTW, these curves are independent of T and collapse. Figure 3 shows that the WTW combines the largest suc-
cess ratio with the smallest stretch, followed by the Internet, Metabolic, Commodities and the ArXiv networks.

However, it is important to remark that the p s/s  ratio is always higher for the static maps than for the temporal 
ones. For instance, the static value for the Internet is = .p s/ 0 87s  (see Table 1 in Methods), while in the temporal 
network it does not exceed 0.70. This is due to the fact that in temporal maps a large gain in the success, which is 
bounded with a top value of 1, necessarily comes with an increase in the stretch, which can be quite limited, as for 
the Internet or the WTW, but it is unbounded.

Heterogeneous activation dynamics.  In this section, we analyse how navigation is affected by an activa-
tion probability which varies across nodes. We do it in two different fashions: (i) constant activation probability 
a < 1 only for nodes whose degree belongs to a certain interval, and (ii) activation probability linearly depending 
on nodes’ degrees.

Activation of nodes within degree intervals.  Here, the random activation dynamics is targeted to subsets of equal 
number of nodes with degrees in a certain range of values. We measure the success ratio when only one of these 
subsets of nodes is randomly activated-inactivated with constant a and the rest of the network remains active. To 
implement this prescription, we order all nodes in a network from highest to lowest degree and divide this sorted 
list in segments of same number of nodes. The node bins are then labeled using the average degree k of the nodes 
belonging to that bin. The size of the bins has been set to ξ = 5% of the total number of nodes N.

This method aims at identifying which degree intervals have a major contribution to the destruction of topolog-
ical traps, and hence specially boost the success. We find that all temporal maps M G S( , ) experience a sudden 
increase in ps when k is at its maximum, see Fig. S2 in SM. In scale-free networks, node degrees are distributed as a 
power-law ∼ γ−p k k( )  (the γ values for the considered networks are reported in Table 1, Methods). This means that 
the interval kmax contains not only the biggest hub but also several densely connected nodes. Therefore, our results 
imply that switching on and off nodes with low degree has a limited effect on the efficiency of navigation. In fact, the 
higher the degree of a node the more radical the changes it can induce in the direction of a greedy path.

When we construct the bin with temporal behaviour by sampling the nodes uniformly at random from any 
part of the degree spectrum, so that the bin is approximately characterized by the k of the entire network, we find 
a low ps close to the static and similar to that obtained for bins of low degree nodes. Therefore, not all nodes are 
equally able of beating topological traps, and the increase in success mostly relies on activation dynamics affecting 
densely connected nodes. Also, notice that activating with a < 1 some randomly selected nodes is not equivalent 
to activating the whole network with the corresponding average probability a a1 (1 )ξ= − − . This is due to the 
fact that, while navigating the network, some nodes are visited more often than others. If all visited nodes can 
activate with some <a 1, the actual noise affecting the network becomes effectively greater than in our 
implementation.

When information packets are able to escape cycles, and the success rises due to the emergence of new 
(lengthier) successful paths, the average stretch increases too. We corroborate this statement in the bottom row of 
Fig. S2 in SM, which shows that the maximum stretch precisely occurs at kmax in all networks. As expected, the 

Figure 3.  Average stretch, s  (top row), and success ratio divided by the average stretch, p s/s  (bottom row) as a 
function of a. Each curve corresponds to a different value of the duration T. Notice the rightmost point is not 1 
(the static reference) but 0.96. The optimal activation aO of each network is observed as a maximum in the plots 
of the bottom row. The approximate values of aO for each network are: ≈ .a 0 25O

Arx , a 0 25O
Com ≈ . , a 0 33O

Met ≈ . , 
≈ .a 0 60O

Int  and a 0 67O
WTW ≈ . .
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highest s  is always found for the minimum activation a = 0.1, which corresponds to the situation where packets 
find most nodes along their routes to be inactive so they are constantly redirected, thus producing long greedy 
paths. Interestingly, at kmax the s  for a = 0.9 considerably varies across networks, with the ArXiv exhibiting the 
highest value, then Commodities, Metabolic, Internet and finally the WTW. This supports the idea that more 
congruent networks posess less topological traps. In general it is also satisfied that a values around aO display 
lower s  at kmax.

Linear activation depending on degree.  Here, we study the navigability of temporal maps in which the activation 
probability of a node i, ai, depends linearly on its degrees ki, such as

a k bk c( ) (1)= + .

For b > 0, the activation probability is proportional to the node’s degree so the larger the degree the more 
active is the node; if b < 0, the opposite is true, and if b = 0 we recover the case of constant activation probability. 
The average activation probability a of the whole network, = ∑−

=a N a k( )i
N

i
1
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the coefficients b and c. We set the average activation probability a as an independent parameter, and choose c so 
that = −c a bk. The constraints for the coefficient b arise from the network’s minimum and maximum degree, 
kmin and kmax, respectively, as 
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For each network under consideration, we choose two values of the coefficient b (one positive and one neg-
ative) that ensure the highest heterogeneity in the activation probability, without completely inactivating any of 
the nodes, i.e. a(kmin) > 0 and a(kmax) > 0. Details regarding the choice of the coefficient can be found in the SM.

Figure 4 shows the effects of a heterogeneous activation probability of nodes, positevely (b > 0) and negatively 
(b < 0) correlated to their degree k, compared with constant activation probability (b = 0), for = .a 0 5. We 
observe that when the activation probability is proportional to k, all S( , )M G  tend to exhibit lower success ratios 
than in the case with the same a but constant activation probability. This effect can be understood by considering 
that highly connected nodes are visited more often than the rest during the routing process. Consequently, the 
system exhibits an effective a higher than 0.5, which induces lower ps values (closer to the static reference) as 
shown in previous results. The same reasoning explains the observed behaviour of the stretch s  in bottom row of 
Fig. 4. For all networks and when b > 0, the tendency of s  is comparable to that found for a 0 5> .  in the constant 
activation case, see bottom row Fig. 1. This feature is specially noticeable for the Internet, where s  growth is simi-
lar to the obtained for = .a 0 9.

On the opposite situation, for b < 0, when the activation probability gets lower as nodes become more con-
nected, the reversed phenomenon occurs. Figure 4 (bottom row) shows that for all M G S( , ), the s  resembles that 
found for low constant a’s. Moreover, a small increase in ps with respect to b = 0 is visible for the ArXiv, the 
Commodities, and the Metabolic networks in top row of Fig. 4. The cause is an effective overall activation < .a 0 5. 
For the Internet, ps still grows higher for b < 0 than for b = 0, though it is barely appreciable, and it requires large 
T. For the WTW, ps reaches 1 for any b so we can not observe an incremented ps. However, we note that ps growth 
for the WTW is retarded when b < 0, just as happens for the Internet. In these two last networks, the influence of 
the largest hub on the routing performance is remarkable due to their strong hierarchical nature. For this reason, 
the time T needed for achieving ∼p 1s  is noticeably enlarged in the event that the main hub is poorly activated.

Discussion
Navigability is a primary function in many complex networks that, as we have shown, can be strongly affected 
by temporal alterations in the activity of nodes. The interplay between the activation dynamics generating the 
temporal networks and the greedy routing process, indeed, yields a rich phenomenology. The activation process 
can be understood as the result of random events, like service failures, or, alternatively, it could be thought as part 
of a local information transfer protocol applied by the node holding the packet in a static network, so to boost the 
success of the routing operation at a limited cost.

Our results show that, surprisingly, temporal maps can be navigated more efficiently than the corresponding 
static ones, even though the number of simultaneously available paths to transfer the packets is greatly reduced. 
Interestingly, the number of successful paths, in which the packet reaches its destination, is increased due to the 
activation dynamics. This increase in the success ratio ps comes at the cost of a growth in the stretch s , meaning 
that longer paths are required to successfully deliver the packet. However, the ratio between the success and the 
stretch, p s/s , shows a non-trivial behavior as a function of the activation probability, unveiling the existence of an 
optimal value which maximizes the increase in the success and at the same time minimizes the increase in the 
stretch.

More realistic forms of the activation probability, i.e., when the dynamics only affects a subset of nodes or 
when the activation is correlated with the degree, show similar results. This analysis uncovered the role of highly 
connected nodes in the routing process, which are mainly responsible for the larger success ratio achieved in tem-
poral maps. Contrary to expectations, our findings suggest that it is possible to improve the routing performance 
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by switching on and off the hubs of the network more often than the rest of the nodes. Finally, the navigability 
of some real networks, like the Internet and the WTW, remains extremely high in the temporal maps. In fact, 
time-varying effects increase even more the high success rate associated to the static maps, at the cost of a very 
small increase in the stretch, slowly growing with T, a feature that we name ultranavigability. Even more, temporal 
changes in the structure of these networks increase the success even if the activation probability is very low. At 
the same time, the high routing success observed in these networks could be due in part to temporal behavior 
in the system, although this possibility has not been acknowledged before and all the merit for their navigability 
properties has been accredited to their static architecture.

Our work sets a first attempt to measure the effects of temporal dynamics on the navigability of real net-
works. It has been increasingly recognized, indeed, that networks are dynamic entities that evolve in time, with 
connections being established and terminated for different reasons. This study paves the way towards a better 
understanding of the role of the network’s temporal dimension in navigation processes, and provides hints for 
developing better routing strategies exploiting such dynamics. Further research is in order to extend our results. 
One may consider more sophisticated generative models of temporal networks, that may, for instance, incorpo-
rate a bursty dynamics of links or nodes.

Methods
Empirical data.  Here we give a brief description of the five networks considered in our study and source 
references for their data. In Table 1, we report the values of different metrics for the five networks. Notice that we 
used the giant connected component in all cases.

ArXiv.  The ArXiv network is a graph representing co-authorship of papers38, elaborated from data of the free sci-
entific repository ArXiv. The nodes are authors which are connected if they have co-authored a paper belonging to 
category “Disordered Systems and Neural Networks” (cond-mat.disnn). The data considers only papers from up to May 
2014, with the word “networks” in the title or abstract. The hyperbolic embedding of this network comes from ref.39.

US Commodities.  The commodities network40 is a representation of the flows of services and goods (in USD) 
exchanged between industrial sectors during year 2007 in the United States. The hyperbolic embedding of this 
network comes from ref.41.

Metabolic.  The metabolic network used in this study corresponds to the one-mode projection of metabolites of 
the bipartite metabolic network of the bacterium E. coli. In this representation, two metabolites are connected if 
they participate in the same biochemical reaction. We use the data originally extracted from the BiGG database42 
and reconstructed in43 as a spatially embedded network.

Internet.  We use the connectivity data for the Internet at the autonomous systems level collected by the 
Archipelago project44 corresponding to June 2009 and reconstructed as a network embedded in hyperbolic space 
in ref.11.

WTW.  The world trade web consists of significant trade exchanges between countries. We use the network cor-
responding to the most recent data available, the year 2013, and its embedding as given in ref.45.

Hyperbolic maps.  In the hyperbolic hidden metric space, every node i has coordinates (ri, θi). Embedding 
a network in a metric space means constructing a map that correlates topology and geometry. The idea is that a 
link between two nodes in the topology exists with a certain probability p(d) that depends on their distance d, 

Figure 4.  Success ratio ps (top row) and average stretch s  (bottom row) as a function of T for = .a 0 5, see Fig. S4 
in SM for other values of a. Solid lines designate constant activation of nodes, while symbols indicate that nodes 
activate linearly with b > 0, or b < 0. The minimum and maximum activation probabilities allowed are 10−3 and 
1–10−3 respectively. As a reference, the values for the static networks, a = 1, are given in Table 1.
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measured in the hidden metric space, such that nodes with higher probabilities of being connected are closely 
positioned in the geometric space9. Therefore, p(d) needs to be a decreasing function of distance between nodes. 
In the hyperbolic plane, the distance between nodes dij is calculated using the hyperbolic law of cosines:

θ= − ∆d r r r rcosh( ) cosh cosh sinh sinh cos (3)ij i j i j ij

It has repeatedly been shown that real networks can be embedded into a hyperbolic plane11,43, in a way that 
all relevant topological properties of the networks, such as the small world property, the degree distribution, 
degree-degree correlations, the clustering coefficient, and degree-thresholding topological self-similarity9 are 
reproduced by the model.
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