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Abstract

Desminopathy is a subtype of myofibrillar myopathy caused by desmin mutations and 

characterized by protein aggregates accumulating in muscle fibers. The aim of this study was to 

assess the protein composition of these aggregates. Aggregates and intact myofiber sections were 

obtained from skeletal muscle biopsies of five desminopathy patients by laser microdissection and 

analyzed by a label-free spectral count-based proteomic approach. We identified 397 proteins with 

22 showing significantly higher spectral indices in aggregates (ratio >1.8, p < 0.05). Fifteen of 
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these proteins not previously reported as specific aggregate components provide new insights 

regarding pathomechanisms of desminopathy. Results of proteomic analysis were supported by 

immunolocalization studies and parallel reaction monitoring. Three mutant desmin variants were 

detected directly on the protein level as components of the aggregates, suggesting their direct 

involvement in aggregate-formation and demonstrating for the first time that proteomic analysis 

can be used for direct identification of a disease-causing mutation in myofibrillar myopathy. 

Comparison of the proteomic results in desminopathy with our previous analysis of aggregate 

composition in filaminopathy, another myofibrillar myopathy subtype, allows to determine 

subtype-specific proteomic profile that facilitates identification of the specific disorder.
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1. Introduction

Myofibrillar myopathies (MFM) are genetically and clinically heterogeneous muscle 

disorders characterized by focal myofibrillar destruction predominantly at the Z-discs and 

accumulation of massive aggregates of degradation products within muscle fibers [1,2]. 

Desminopathy is an MFM subtype caused by mutations in DES, the gene encoding desmin 

[3]. Desmin is a 53-kDa intermediate filament (IF) type III protein most abundant in 

skeletal, cardiac and smooth muscle cells [4]. It forms a cytoskeletal network that maintains 

the structural and functional integrity of the muscle [1,5]. Desmin cytoskeleton connects 

myofibrils to each other, the nuclear lamina and the sarcolemma [5].

More than 60 different disease-causing mutations in DES have been reported since the first 

description of desminopathy by Goldfarb et al. in 1998 [3,4]. The pattern of inheritance is 

autosomal dominant in most cases but autosomal recessive pattern of inheritance and 

sporadic forms have also been reported (see [6,4] for review). The age of onset is variable 

but in the majority of patients first symptoms occur between the 2nd and 4th decades of life 

[6–8]. Progressive muscle weakness involves distal and proximal limb muscles, truncal, 

neck, facial, bulbar and in some cases respiratory muscles [6,7]. Cardiac disease 

manifestations observed in about three-quarters of patients comprise cardiomyopathy, 

cardiac conduction defects and arrhythmias and are the major causes of premature death 

[4,6,7,9].

In vitro assembly analyses and transfection studies performed in muscle and non-muscle cell 

lines revealed that mutant desmin is unable to form stable IF networks. There is also 

evidence that it induces mitochondrial pathology and affects protein quality control (see [4] 

for review). Immunohistochemical studies of skeletal muscle biopsies from desminopathy 

patients demonstrated that the abnormal intracellular aggregates contain Z-disc and Z-disc 

associated proteins and those involved in protein degradation [10–13]. However, hypothesis-

free detailed analysis of the composition of the protein aggregates has not been attempted. It 

is expected that more complete knowledge of the aggregate components would provide 
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insights into pathomechanisms of this disease and help to identify specific biomarker 

candidates and therapeutic targets.

Over the past years, proteomic studies of myopathies were mainly aimed at the identification 

of protein biomarker candidates for diseases such as Duchenne muscular dystrophy (for 

review see [14]), hypokalemic myopathy [15], and sporadic inclusion body myositis [16]. 

But these studies used non-targeted total crude muscle protein extracts or soluble cytosolic 

protein fractions swamped with components that are irrelevant to the disease-related 

mechanisms and therefore blurred the results of proteomic analysis.

We set up a combined laser microdissection and label-free proteomic approach that enables 

identification and relative quantitation of proteins in abnormal aggregates selectively 

collected from skeletal muscle sections of MFM patients. We tested this approach in a study 

of filaminopathy, another subtype of MFM caused by FLNC mutations [17–20]. In the 

filaminopathy study, we were able to detect about 400 proteins, of which thirty-one were 

statistically significantly over-represented in protein aggregate samples from abnormal fibers 

with a ratio >1.8 to samples from clean unaffected regions. Among these proteins, filamin C 

(FLNC) showed the highest spectral index; many other aggregating protein components 

were newly identified [20]. This provided new information about disease-relevant proteins 

whose role in the pathogenesis of filaminopathy is being further examined by biochemical 

and functional studies.

We present here a differential proteomic study performed in five desminopathy patients. Our 

combined laser microdissection and mass spectrometry approach was applied to unravel the 

composition of protein aggregates that occur within affected muscle fibers of these patients 

and compared the results with our previous findings in filaminopathy. In addition, we 

searched the mass spectrometric data for mutant desmin peptides to see if this approach 

would allow to identify disease-causing mutations directly on the protein level.

2. Material and methods

2.1. Patients

Skeletal muscle samples from five desminopathy patients carrying different DES-mutations 

were identified as suited for laser microdissection and to be included in this study. In each 

patient the diagnosis was confirmed by genetic analysis and histological and 

immunofluorescence studies on skeletal muscle sections as described [21,22]. One patient 

carried a p.N116S mutation [9] in the α-helical segment 1A of desmin and one patient a 

p.E245D mutation in the α-helical segment 1B [23]. Two patients harbored desmin 

mutations in the central α-helical-core 2B-region (p.L392P [21] and p.D399Y [24]). The 

remaining patient carried the p.P419S mutation [21] in the tail-domain of desmin. Detailed 

information on the patients is provided in Table 1. Informed consent was obtained from each 

patient (in accordance with The Code of Ethics of the World Medical Association 
(Declaration of Helsinki) for experiments involving humans with the approval of the ethics 

committee of the Ruhr-University Bochum ([#4368-12]).
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2.2. Laser microdissection

Tissue excised at muscle biopsy was cut into pieces of about 0.5 cm3, embedded into Tissue-

Freezing Medium® (Leica Microsystems, Wetzlar, Germany) and frozen in liquid nitrogen. 

An established combined laser microdissection and label-free proteomic approach was 

applied for sample analysis as described [20]. Immunofluorescence staining was performed 

to detect areas of protein aggregation in muscle fibers: 10 µm frozen sections of muscle 

samples were incubated with a primary antibody directed against myotilin (mouse 

monoclonal, RS034, Novocastra/Leica Microsystems, Wetzlar, Germany) in 1:20 dilution in 

PBS (0.1 M NaCl + 3 mM KCl + 1 mM KH2PO4 + 5 mM Na2HPO4, pH 7.4) for 1 h at 

room temperature (RT) followed by incubation with a secondary antibody conjugated with 

DyLight 488 (goat anti-mouse IgG antibody, Dianova, Hamburg, Germany, 1:1000 in PBS) 

for 45 min at RT. A total area of 250,000 µm2 of aggregate-containing sections in abnormal 

fibers, thereafter referred to as “aggregate samples”, and an area of 250,000 µm2 of 

aggregate-free sections in normally looking muscle fibers, referred to as “controls”, were 

collected into tubes with 40 µl formic acid (FA; 98–100%) by laser microdissection (LMD 

6500, Leica Microsystems, Wetzlar, Germany). After incubation for 1 h and sonication for 5 

min (RK31, BANDELIN electronic, Berlin, Germany) the samples were centrifuged (5 min, 

10,000 rpm, RT) and frozen at −80 °C.

2.3. In-solution digestion

For the tryptic in-solution digestion FA was removed from samples by vacuum vaporization 

(Rotational-Vacuum-Concentrator RVC2-25CDplus, Martin Christ GmbH, Osterode am 

Harz, Germany) and the collected tissue material was diluted in 50 mM ammonium 

bicarbonate (pH 7.8) to a final volume of 74.25 µl. The samples were reduced for 20 min at 

56 °C in 0.25 µl 2 M DTT followed by alkylation with 0.55 M iodoacetamide for 15 min in 

the dark at RT. The pH was adjusted to 7.4 before adding 1 µl of 1% Trypsin Enhancer 

ProteaseMAX™ Surfactant (Promega, Mannheim, Germany) in 50 mM NH4HCO3 (pH 

7.8). The digestion was initiated by adding 1.8 µl of a trypsin (Serva Electrophoresis GmbH, 

Heidelberg, Germany) solution (1 µg/µl 50 mM acetic acid), performed overnight at 37 °C 

and stopped by the addition of 5.25 µl 10% TFA. After purification with OMIX C18 tips 

(Varian, Agilent Technologies, Boeblingen, Germany) and concentration for 5 min in 

vacuum the final volume was adjusted to 63 µl with 1% TFA. 15 µl were used for each mass 

spectrometric analysis.

2.4. Nano-HPLC and mass spectrometry

Nano-HPLC was performed on an UltiMate 3000 RSLCnano LC system (Dionex, Idstein, 

Germany). Samples were loaded on a trap column (Dionex, 75 µm × 2 cm, particle size 3 

µm, pore size 100 Å) with a flow rate of 10 µl/min with 0.1% TFA. After washing, the trap 

column was serially connected with an analytical C18 column (Dionex, 75 µm × 25 cm, 

particle size 2 µm, pore size 100 Å). The peptides were separated with a flow rate of 400 

nl/min using the following solvent system: (A) 95% ACN, 0.1% FA; (B) 80% ACN, 0.1% 

FA. After a first gradient from 4% A to 40% B about 95 min a second gradient from 40% B 

to 95% B (2 min) and finally a gradient from 95% to 5% B were applied.
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The HPLC system was on-line connected to the nano-electrospray ionization source of a 

LTQ Orbitrap Velos mass spectrometer (Thermo Fisher Scientific, Dreieich, Germany). In 

the ESI-MS/MS-analysis MS spectra were scanned between 300 and 2000 m/z with a 

resolution of 30,000 and a maximal acquisition time of 500 ms. Lock mass 

polydimethylcyclosiloxane (m/z 445.120) was used for internal recalibration. The m/z 

values initiating MS/MS were set on a dynamic exclusion list for 35 s and the 20 most 

intensive ions (charge > 1) were selected for MS/MS-fragmentation in the ion trap. 

Fragments were generated by low-energy collision-induced dissociation (CID) on isolated 

ions with collision energy of 35% and maximal acquisition time of 50 ms.

2.5. PRM analysis on a quadrupole-orbitrap mass spectrometer

Parallel reaction monitoring (PRM) analyses were performed on two replicates of aggregate 

and control samples from one desminopathy patient (ID 4, more details are provided in 

Table 1). Two different proteins, desmin and FLNC, respectively three unique peptides for 

each protein were chosen for PRM: for desmin the peptides DNLLDDLQR (551.2804 m/z, 

2+), EEFAENNLAAFR (632.3081 m/z, 2+) and VAELYEEELR (625.8168 m/z, 2+) and for 

FLNC the peptides GAGTGGLGLAIEGPSEAK (792.9150 m/z, 2+), SLTATGGNHVTAR 

(642.8364 m/z, 2+) and VHVQPAVDTSGVK (668.8646 m/z, 2+). The analyses were 

performed using a Q-Exactive mass spectrometer (Thermo Fisher Scientific) as described 

previously with some modification [25,26]. In brief using a nano-electrospray source 

ionization was performed with a spray voltage of 1500 V and capillary temperature of 

250 °C. In all experiments, a full mass spectrum at 70,000 resolution at m/z 200 (AGC target 

1 × 106, 250 ms maximum infection time, m/z 350–1400) was followed by a PRM scan at 

35,000 resolution at m/z 200 (AGC target 2 × 105, 120 ms maximum injection time, 

isolation window of ±2) whereas all selected precursors from the inclusion list were scanned 

individually in one PRM scan. Ion dissociation was performed at normalized collision 

energy of 25% and a fixed first mass at 100 m/z.

For the analysis of the 6 peptides, LC separation was performed as described above with a 

trap column (Dionex, 300 µm × 5 mm, particle size 5 µm, pore size 100 Å) and an analytical 

C18 column (Dionex, 75 µm × 50 cm, particle size 2 µm, pore size 100 Å). Prior to nano-LC 

separation, the digested samples were spiked with a known concentration (100 fmol) of a 

heavy labeled peptide (LQEEIDAVLPN(KLYS(+8 Da)), Heavy Peptide™, AQUA Ultimate, 

Thermo Fisher Scientific) which provides an internal standard as quality control.

2.6. Data processing, database search and detection of desmin mutants on the protein 
level

For database search, the raw files were transformed into *.mgf-files (ProteomDiscoverer 1.3, 

Thermo Fisher Scientific), imported in ProteinScape™ (version 2.1, Bruker Daltonics, 

Bremen, Germany), analyzed using Mascot (Matrixscience, London UK), and searched 

against DecoyDatabaseBuilder [27] containing the entire Uniprot/Swissprot (release 2011/6, 

529056 entries) with one additional shuffled decoy for each protein. The following search 

parameters were used: peptide mass tolerance of 10 ppm, fragment mass tolerance of 0.5 Da, 

one allowed missed cleavage and carbamidomethylation (C), oxidation (M) as well as 

phosphorylation (S, T, Y) as variable modifications.
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For the detection of desmin mutants on protein level the used database was extended by 

protein sequences of all known desmin mutations. Searches were done against the extended 

database with the same search parameters as above. The quality of MS/MS-spectra of 

mutant peptides was monitored manually (Xcalibur™, thermo Fisher Scientific) by 

theoretical fragmentation using the MS-Product software tool (ProteinProspector™ 5.10.4, 

University of California, San Francisco, USA). The charge states of all abundant fragment 

ions were determined from their isotopic pattern and compared to theoretical ions.

2.7. Protein quantitation by spectral index calculation

After peptide identification, an algorithm similar to the ProteinExtractor in ProteinScape 

which is using a given minimal peptide score (minPepScore) and minimal peptide count per 

protein (minNrPeps) was applied as described [20]. A minNrPeps of 2 was used for the 

given data of aggregate and control samples to exclude “one hit wonders”, which yielded a 

minPepScore of 20 for the comparison between aggregate and control desminopathy 

samples. A minPepScore of 21 was calculated for the comparison of aggregate samples from 

desminopathy and filaminopathy patients. Among the proteins in these lists, every peptide 

spectrum match (PSM) was extracted.

These PSMs were further processed using the PivotTable function of Microsoft Excel 

resulting in a table representing spectral counts for every peptide belonging to a certain 

protein. A spectral index (SI) based on spectral and peptide counts was calculated as 

described previously [28,29] and subsequently used as basis for label-free quantitation. In 

brief, spectral index calculation was performed for each sample by summing up all spectral 

counts belonging to the respective protein and the multiplication of this value by the 

normalization factor for the individual sample. This factor was calculated by dividing the 

mean of total spectral counts (considering all aggregate and control samples) by the total 

spectral counts in a given sample. Because of protein sequence homologies some identified 

peptides may have been assigned to more than one protein. To avoid this, peptides were 

considered only if unique within the complete dataset. To identify proteins that are over- or 

under-represented in desminopathy aggregates, the ratio between the averaged spectral index 

in aggregate and control samples was calculated for each detected protein. Furthermore, 

results of proteomic analysis of aggregate samples were compared with data from our 

previous study in filaminopathy [20] to identify differences in proteomic profiles. In both 

analyses an unpaired two-tailed t-test (equal variances assumed) was conducted for each 

protein. A protein was considered as over-represented when the aggregate–control ratio 

reached >1.8 and p-value was <0.05.

2.8. Relative quantitation based on PRM analysis

Data analysis was performed using Proteome Discoverer (version 1.3, Thermo Fisher 

Scientific) and Pinpoint (version 1.2, Thermo Fisher Scientific). For all analyzed peptides 

the areas under the curve (AUC) of all PRM transitions were computed by the software 

(Suppl. Fig. 3). Relative quantitation of the selected peptides for desmin and FLNC were 

based on the peak area of the three most intensive fragment ions. The total signal was 

calculated by normalizing all peak areas of selected fragments in a sample group.

Maerkens et al. Page 6

J Proteomics. Author manuscript; available in PMC 2016 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.9. Validation of proteomic findings by immunofluorescence studies

Double immunofluorescence studies were performed for validation of the proteomic data. 6-

µm-thick frozen skeletal muscle sections from patients with desminopathy were incubated 

with primary antibodies directed against the following selected proteins identified as 

significantly over-represented or decreased in aggregate samples: desmin, Xin actin-binding 

repeat-containing protein 2 (Xirp2), αB-crystallin, Nebulin-related-anchoring protein (N-

RAP), Xin actin-binding repeat-containing protein 1 (Xin), vimentin, four and a half LIM 

domains protein 1 (FHL1), sarcosynapsin, versican core protein, tubulin beta chain, 

myopalladin, supervillin, cold shock domain-containing protein A (CSDA), flotillin-1, 

FRAP-related protein 1, myomesin-1 and myomesin-2. Antibodies against FLNC and 

myotilin were used as sensitive tools to detect areas of pathological protein aggregation in 

desminopathies [4]. A complete list of primary antibodies used in the current study, 

including information about clones, sources and dilutions, is provided in Supplemental Table 

1.

Sections were incubated overnight at 4 °C with primary antibodies, followed by three 

washing steps with PBS for 5 min and an incubation with isotype specific secondary 

antibodies conjugated with DyLight 488 (Dianova, Hamburg, Germany, dilution 1:1000) or 

Texas Red (Dianova, Hamburg, Germany, dilution 1:400) for 45 min at RT. The staining 

procedure was concluded by three washing steps with PBS for 5 min.

3. Results

A typical histopathological hallmark of desminopathy is a massive protein aggregation in 

amuscle fiber. The composition of these protein aggregates is largely unknown. To 

understand which proteins are involved in aggregate formation we applied an established 

combined laser microdissection and label-free proteomic approach [20]. This highly 

sensitive approach was used to analyze both aggregate and aggregate-free sections of 

skeletal muscle biopsies from patients which enable quantitation of proteins by spectral 

index calculation. Abnormal fibers harboring protein aggregates were detected by 

immunofluorescence staining using an antibody directed against myotilin, a widely used 

marker for protein aggregates in desminopathies. In each muscle biopsy the number of 

abnormal fibers was sufficient to collect a combined aggregate area of 250,000 µm2. In this 

material, a total of 397 different proteins have been identified and quantified. Using 

significance level parameters of p-value <0.05 (unpaired two-tailed t-test, equal variances 

assumed) and regulation factor >1.8 (if applicable), we identified 22 proteins with a 

significantly higher spectral index in aggregate samples compared to controls (Table 2) and 

12 proteins significantly under-represented in aggregate samples (Table 3). Proteins listed in 

Tables 2 and 3 are ordered by the mean sum of unique peptides detected in protein 

aggregates and control samples normalized by the number of total counts. To estimate 

similarities and differences in the composition of protein aggregates in desminopathy and 

filaminopathy and to identify potential differential biomarkers specific of desminopathy, we 

compared the results of label-free quantitation for desminopathy with the results of 

filaminopathy from our previous proteomic study [20] (Table 4). This comparison revealed 

that the averaged spectral index of desmin was higher in desminopathy samples (ratio 1.7) 
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but the result was not statistically significant (p-value 0.15). Estimates of individual 

variability among desminopathy patients (aggregate samples compared to intraindividual 

controls) were in a wide range (ratios from 1.9 to 8.3) and showed an overlap with findings 

in filaminopathy patients (ratios from 3.6 to 5.0) (Fig. 1A). Averaged spectral indices of 

FLNC and its binding partner Xin were significantly higher in filaminopathy than in 

desminopathy (Table 4). Individual ratios of FLNC (spectral index in aggregate samples 

compared to intraindividual controls) ranged from 1.3 to 4.0 in desminopathy patients and 

from 6.2 to 8.9 in filaminopathy patients (Fig. 1B).

3.1. Validation of proteomic data

The results for 15 proteins with a significantly higher (Table 2) and two with significantly 

lower spectral indices in aggregates (Table 3) were validated by double immunofluorescence 

staining. To visualize abnormal fibers harboring aggregates, cryosections of skeletal muscle 

samples were immunostained with antibodies directed against myotilin or FLNC. As 

expected, aggregates displayed an increased immunoreactivity for the disease causing 

protein desmin (Suppl. Fig. 1), which was identified as a significantly enriched protein in the 

desminopathy aggregates. Abnormal fibers also showed increased immunoreactivity for the 

proteins myopalladin, N-RAP, tubulin beta chain, FRAP-related protein 1, CSDA, flotillin-1, 

sarcosynapsin, supervillin, versican core protein, FHL1, FLNC, αB-crystallin, Xin, Xirp2, 

and vimentin (Figs. 2, 3, Suppl. Fig. 1), consistent with the proteomic data. In addition, 

aggregates showed a decreased immunoreactivity for the M-band proteins myomesin-1 and 

myomesin-2 (Fig. 4) corresponding to a decrease seen on proteomic assessment.

In the PRM analysis, three desmin specific and three FLNC specific peptides were analyzed. 

A spiked-in heavy labeled peptide with a known concentration provided an internal standard 

as quality control. The selected fragment ions of the targeted peptides for desmin and FLNC 

showed markedly higher intensities in aggregate samples compared to controls (Fig. 6, 

Suppl. Fig. 2). These findings are consistent with the results of relative quantitation by 

spectral index calculation. The fragment ions of the internal standard showed similar 

intensities in all samples. This underlines the reproducibility of our PRM analyses.

3.2. Detection of mutant desmin in protein aggregates

In order to demonstrate expression of mutant desmin and its presence in protein aggregates 

we searched the mass spectrometric data against an extended protein database. The 

identification of mutant desmin variants as components of aggregates supports their 

involvement in mechanisms leading to aggregate formation and gives us new important 

insights in the overall disease pathomechanisms. We identified mutant peptides 

corresponding to the causative gene mutation in 3 patients with desminopathy: for p.N116S 

the mutation-specific peptide VELQELSDR, for p.L392P the mutation-specific peptide 

EYQDLPNVK, and for p.D399Y the peptide MALYVEIATYR (Table 5). The quality of 

MS/MS-spectra (Fig. 5) of mutation-specific peptides was validated manually by theoretical 

fragmentation. The charge states and m/z of all abundant fragment ions were determined 

from their isotopic pattern and compared to theoretical ions. For the mutation-specific 

peptide VELQELSDR of the DES-mutation p.N116S the masses of the b-type fragment ions 

b2 to b8 and of the y-type fragment ions y1 to y8 could be assigned (Fig. 5 A, B). Peptide 
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EYQDLPNVK including DES-mutation p.L392P was unequivocally identified by 

assignment of masses of the b-type fragment ions b2 and b3 to b8 respectively the y-type 

fragment ions y2 to y9 (Fig. 5 C, D). The mutation-specific peptide MALYVEIATYR of the 

DES-mutation p.D399Y has been confirmed by assignment of the b-type-fragment ions b3 

and b5 to b9 as well as the y-type fragment ions y2 to y9 (Fig. 5 E, F).

4. Discussion

Focal protein aggregation in the affected skeletal muscle fibers is a histological hallmark of 

myofibrillar myopathies. This is also the case in desminopathy, a subtype of MFM caused by 

mutations in DES, the gene encoding desmin. Previous immunolocalization studies revealed 

an accumulation of many proteins in the abnormal aggregates seen in muscle fibers of 

desminopathy patients but these analyses were restricted to pre-selected proteins [10]. We 

now applied a newly established proteomic approach [20] to get a better view of aggregate 

composition. The main goal of our study was to detect disease-relevant proteins that may 

provide new insights into pathomechanisms and identify a specific proteomic profile that 

may help to distinguish desminopathy from other MFM subtypes. An additional aim of our 

study was to detect mutant desmin directly on the protein level to confirm its expression in 

muscle fibers and localization in aggregates. The localization of mutant desmin peptides 

within the aggregates is not only important for unraveling the mechanisms leading to 

aggregate formation and the clarification of pathomechanisms involved in desminopathy but 

also for providing tools for the identification of MFM-relevant mutations in genetically 

unresolved MFM cases.

We analyzed skeletal muscle samples from five patients with different DES mutations. 

Considering the rareness of the disease that clearly limits the availability of muscle samples, 

this is a respectable number. Age at biopsy, disease duration and the site of biopsy varied 

between the patients but our previous study in filaminopathy, another subtype of MFM, 

suggested that these variables do not significantly influence the composition of protein 

aggregates [20]. Laser microdissection was used to collect aggregate samples from abnormal 

fibers and aggregate-free control samples from normally looking muscle fibers. A great 

advantage of this method compared to the use of homogenates is that it allows to separate 

affected tissues from normal instead of dealing with a complex mixture of different cell 

types. Mass spectrometric analysis and subsequent spectral index calculation enabled a 

relative quantitation of proteins. To estimate the abundance of detected proteins and reduce 

the risk of false positive results, we defined a cutoff value of a minimum ratio of 1.8 for 

proteins to be considered as over-represented in aggregates.

In total, 397 proteins have been identified in the patients' samples, 22 of them showing a 

statistically significant higher spectral index in aggregate samples compared to control 

samples. Most of these proteins were three or more times more abundant or exclusively 

present in aggregates. Only seven of these 22 proteins, namely desmin and its binding 

partners αB-crystallin [30] and vimentin [31], and the Z-disc protein FLNC and its 

interaction partners Xin [32], Xirp2 [20] and Hsp27 [20], were previously identified as 

aggregate components by immunohistochemistry [10,33]. This study adds 15 further 

proteins accumulating in aggregates, most of them validated by double immunofluorescence 
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and PRM studies, and thus provide new information about proteins involved in aggregate 

formation and therefore relevant to the pathogenesis of desminopathy. As an example, two 

of the newly identified aggregate proteins, N-RAP and myopalladin, are associated with the 

Z-disc or its developmental precursors which corresponds well with findings from 

ultrastructural studies in MFM showing that myofibrillar pathology starts from the Z-disc 

region [1,2,18]. At the same time, immunolocalization studies have shown that not all 

known Z-disc proteins are involved in this process [10,20]. Indeed, our proteomic data show 

that the two Z-disc proteins α-actinin-3 and the α-actinin binding partner PDZ and LIM 

domain protein 5 [34] are significantly decreased in aggregate samples of desminopathy 

patients. These and many other results derived from proteomic analysis provide new 

information about Z-disc protein involvement in the pathogenesis of desminopathy.

Our proteomic and immunolocalization data confirmed that, consistent with previous 

findings, desmin binding partners αB-crystallin and vimentin accumulate in aggregates [10]. 

Desmin is not part of the Z-disc but colocalizes and interacts with Z-disc proteins. It also 

interacts with myomesin-1 [35], a protein that crosslinks myosin filaments at the sarcomeric 

M-band. However, as previously observed in filaminopathy patients [20], the M-band 

components myomesin-1 and myomesin-2 were significantly under-represented in 

aggregates, as was validated by our immunolocalization analysis. These findings underline 

that only a subset of sarcomeric proteins and not all binding partners of mutated MFM 

proteins are involved in aggregate formation.

Dysfunctions in protein quality control and protein degradation via the ubiquitin-proteasome 

system (UPS) and the autophagic-lysosomal pathway seem to play an essential pathogenic 

role in desminopathy (see [4] for review) and other MFM subtypes [12,36]. 

Immunolocalization studies in desminopathy, myotilinopathy and filaminopathy 

demonstrated that abnormal muscle fibers show a markedly increased immunoreactivity for 

a number of UPS and autophagy proteins [36–38]. Expanding these findings, our proteomic 

analysis revealed that tubulin beta that is involved in regulation of autophagy [39], and 

proteasome subunit beta type-4 also accumulates in desminopathy aggregates.

Dysfunction of the UPS can induce apoptosis [40] and there is evidence for crosstalk 

between autophagy and apoptosis [41,42]. This suggests that apoptosis may be a relevant 

mechanism of muscle fiber death in MFM. Indeed, nuclear apoptosis was found in MFM 

subtypes αB-crystallinopathy and Bag3-myopathy but not in a series of six MFM patients 

with unknown causative mutation [43–45]. The role of apoptosis in desminopathy is unclear 

but it is known that desmin interacts with apoptosis-related proteins (see [4] for review). In 

this context, it is noteworthy that the accumulation of the apoptosis-associated FRAP-related 

protein 1 and CSDA in abnormal fibers in desminopathy muscle samples is in agreement 

with previous findings [46–48]. CSDA was previously shown to be upregulated during 

hypoxia upon damage of human skeletal muscle cells and induction of apoptosis [49].

Comparing our findings in desminopathy with the results of our previous proteomic study in 

filaminopathy [20], we find an overlap of proteins accumulating in aggregates. Desmin, 

FLNC, Xirp2, αB-crystallin, N-RAP, Xin, Hsp27, vimentin and myopalladin showed a 

significant accumulation in both MFM subtypes. This indicates that these diseases share 
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similar pathomechanisms and expands information obtained in previous immunolocalization 

studies [10,20,22,36]. But we also found significant differences in protein composition 

suggesting that proteomic profiling may allow the differentiation of MFM subtypes. This 

would be helpful in differential diagnosis, particularly in view of the fact that clinical and 

histopathological features of various MFM subtypes overlap and therefore are usually not 

specific [2].

Ranking the proteins that are significantly enriched in aggregates by their spectral indices 

reveals that desmin is the most prominent protein accumulating in desminopathy as FLNC is 

in filaminopathy [20]. However, this is only a semi-quantitative evaluation with known 

limitations [20]. Although the mean spectral index of desmin was higher in desminopathy 

than in filaminopathy aggregates, the difference was not statistically significant. 

Furthermore, individual desmin ratios varied considerably between desminopathy patients. 

This variability might be related to the domain location of the causative desmin mutations: 

they were previously demonstrated to have extremely diverse biological effects in in vitro 

assembly studies [48–50]. In contrast, the difference in spectral indices of FLNC between 

aggregate samples of desminopathy and filaminopathy patients was significant and the 

individual FLNC ratios in filaminopathy patients showed no overlap compared to the data of 

desminopathy patients which indicates that the FLNC ratio may be a suitable diagnostic 

biomarker to distinguish between these two MFM subtypes. A recently reported proteomic 

study in a patient with MFM-causing FHL1 mutation compared to an MFM patient carrying 

a non-FHL1 mutation found the FLNC ratio to be below 2 in both patients [51]. This 

suggests that the FLNC ratio may be used to differentiate filaminopathy also from other 

MFM subtypes. However, a direct comparison of the data from the study of Feldkirchner et 

al. [51] with our results presented here is difficult due to the fact that different proteomic 

approaches were applied.

Three further proteins showed significantly different spectral indices in desminopathy and 

filaminopathy aggregates. Xin and myopalladin were more abundant in filaminopathy and 

FRAP-related protein 1 in desminopathy. These findings suggest differences in 

pathomechanisms of distinct MFM subtypes and indicate that specific proteomic profiles 

may be helpful in differential diagnosis of MFM.

PRM is a recently established method for high resolution and high mass accuracy (HR/AM) 

quantitative, targeted proteomics. We used this new technique for quantitation of selected 

proteins. To our knowledge, it is the first time that PRM was used to analyze human muscle 

samples. Our findings indicate that PRM qualifies as a new and powerful validation method 

for relative protein quantitation based on spectral index calculation: PRM also revealed that 

desmin and FLNC are highly over-represented in desminopathy aggregates and therefore 

confirmed our results from label-free analysis by spectral index calculation and 

immunolocalization studies. The PRM technique has clear advantages over other 

quantitation methods like single reaction monitoring (SRM) as PRM spectra are highly 

specific because all potential transitions of a peptide are available to confirm the identity of a 

peptide [26]. Moreover, no further knowledge is needed with regard to preselection of 

targeted transitions before analysis [26].

Maerkens et al. Page 11

J Proteomics. Author manuscript; available in PMC 2016 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We also report for the first time that mutant desmin is expressed and present in the abnormal 

aggregates, which supports the assumption that mutant misfolded desmin molecules are 

directly involved in aggregate formation. The detection of mutant desmin peptides not only 

illustrates the specificity and sensitivity of our approach, but also suggests for the first time 

that proteomic analysis enables a direct identification of the causative gene mutations in still 

unresolved subsets of MFM patients without extensive genetic searches.

Conclusions

The use of a highly sensitive proteomic approach helped to discover a number of new 

disease-relevant proteins accumulating in abnormal muscle fibers of desminopathy patients. 

This provides new insights into pathomechanisms of aggregate formation, one of the basic 

phenomena in the pathogenesis of desminopathy. The established significant differences 

between subtype-specific proteomic profiles may be helpful in differential diagnostics of 

patients with protein aggregation myopathies. The detection of mutant desmin peptides in 

the aggregates demonstrates for the first time that proteomic analysis enables a direct 

identification of the pathogenic mutation in a pathologically defined subset of MFM 

patients.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AUC area under the curve

BSA bovine serum albumin

CSDA cold shock domain protein A

DES desmin

FA formic acid

FDR false discovery rate

FLNC filamin C

FHL1 four and a half LIM domains protein 1

LMD laser microdissection

Hsp heat shock protein
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MFM myofibrillar myopathy

N-RAP Nebulin-related-anchoring protein

RBM reducing body myopathy

SI spectral index

RT room temperature

PET polyethylene terephthalate

PSM peptide spectrum match

PRM parallel reaction monitoring

SRM single reaction monitoring

Xin Xin actin-binding repeat-containing protein 1

Xirp2 Xin actin-binding repeat-containing protein 2
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Biological significance

Our proteomic analysis provides essential new insights in the composition of pathological 

protein aggregates in skeletal muscle fibers of desminopathy patients. The results 

contribute to a better understanding of pathomechanisms in myofibrillar myopathies and 

provide the basis for hypothesis-driven studies. The detection of specific proteomic 

profiles in different myofibrillar myopathy subtypes indicates that proteomic analysis 

may become a useful tool in differential diagnosis of protein aggregate myopathies.
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Fig. 1. 
Individual ratios between spectral indices of aggregate and control samples for desmin and 

filamin C in desminopathy and filaminopathy patients. A: Ratios for desmin between 

aggregate and control samples in five desminopathy and six filaminopathy patients. The 

ratios were calculated for each individual using spectral index calculation by summing up all 

spectral counts belonging to the respective protein. B: Ratios for filamin C between 

aggregate and control samples in five desminopathy and six filaminopathy patients.
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Fig. 2. 
Validation of proteomic data for the proteins N-RAP, tubulin beta, FRAP-related protein-1, 

and CSDA by immunolocalization studies performed on skeletal muscle sections of 

desminopathy patients. Abnormal muscle fibers were detected by immunostaining with 

primary antibodies against myotilin (B, E, H, K, N). Consistent with the results of proteomic 

analysis, abnormal fibers show increased immunoreactivity for myopalladin (A), N-RAP 

(D), tubulin beta (G), FRAP-related protein-1 (J), and CSDA (M). C, F, I, L, O: merged 

images. Scale bar = 25 µm.
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Fig. 3. 
Validation of proteomic data for the proteins flotillin-1, sarcosynapsin, supervillin, versican 

core protein and FHL1 by immunolocalization studies performed on skeletal muscle section 

of desminopathy patients. Abnormal muscle fibers were detected by immunostaining with 

primary antibodies against myotilin (B, E, H, K, N). Corresponding to the results of 

proteomic analysis, abnormal fibers show an increased immunoreactivity for flotillin-1 (A), 

sarcosynapsin (D), supervillin (G), versican core protein (J) and FHL1 (M). C, F, I, L, O: 

merged images. Scale bar = 25 µm.
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Fig. 4. 
Validation of proteomic data for the proteins myomesin-1 and myomesin-2 by 

immunolocalization studies performed on serial skeletal muscle sections of a desminopathy 

patient. Areas of protein aggregation in abnormal fibers detected by immunostaining with 

antibodies recognizing filamin C (B, E) show a decreased immunoreactivity for myomesin-1 

(A) and myomesin-2 (B). C, F: merged images. Scale bar = 25 µm.

Maerkens et al. Page 20

J Proteomics. Author manuscript; available in PMC 2016 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Detection of desmin mutations p.N116S, p.L392P and p.D399Y on protein level by 

nanoLC–ESI-MS/MS-analysis of mutation-specific peptides. ESI-MS/MS-analysis was 

performed on a LTQ Orbitrap Velos mass spectrometer. MS spectra were scanned between 

300 and 2000 m/z with a resolution of 30,000 and a maximal acquisition time of 500 ms. 

Fragments were generated in the ion trap of the mass spectrometer by low-energy collision-

induced dissociation (CID) on isolated ions with collision energy of 35% and maximal 

acquisition time of 50 ms. The quality of the MS/MS-spectrum was monitored manually by 

theoretical fragmentation. The charge states of all abundant fragment ions of the b- and y-

series were determined from their isotopic pattern and compared to theoretical ions. (A) MS-

spectrum of the precursor ion (m/z 544.78; z + 2) and (B) MS/MS-spectrum of peptide 

VELQELSDR, specific for desmin mutation p.N116S. (C) MS-spectrum of the precursor ion 

(m/z 553.28; z + 2) and (D) MS/MS-spectrum of peptide EYQDLPNVK, specific for 
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desmin mutation p.L392P. (E) MS-spectrum of the precursor ion (m/z 665.35; z + 2) and (F) 

MS/MS-spectrum of the peptide MALYVEIATYR, specific for desmin mutation p.D399Y.
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Fig. 6. 
Quantitation of three desmin specific peptides (A–C) and one heavy labeled peptide (D) in 

two replicates of aggregate and control samples from a desminopathy patient with p.L392P 

mutation. The four targeted peptides were analyzed by PRM individually in one scan. 

Chosen fragment ions for quantitation are indicated in the peptide sequence respectively. 

Exemplified for all peptides MS/MS spectra of one aggregate sample are shown. Relative 

quantitation of the selected peptides was performed on the peak area of the three most 

intensive fragment ions shown in the peak profile. The ratio was calculated between the total 

signal area of those fragment ions for each peptide in the group of aggregate samples and in 
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the group of control samples. The total signal areas were computed by normalizing all peak 

areas of the most intensive fragment ions within one sample group. (A–C) Consistent with 

the results of the label-free analysis by spectral index calculation the fragment ions of all 

desmin specific peptides showed a significantly higher signal area in the group of aggregate 

samples than in the control group. (D) The labeled standard peptide was spiked in with a 

concentration of 100 fmol as a quality control for the analysis. The peak profile of the 

extracted three fragment ions as well as the total signal area showed no significant 

differences between the samples, proving a high reproducibility of the measurements.
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Table 1

Overview of desminopathy patients included in this study.

ID Gender Age at biopsy
[years]

Muscle DES
mutation

1 Female 19 Vastus lateralis p.N116S

2 Female 73 Vastus lateralis p.E245D

3 Female 34 Triceps brachii p.L392P

4 Female 38 Medial gastrocnemius p.D399Y

5 Female 59 Anterior tibialis p.P419S
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