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ABSTRACT	

Scarce supply of clean water and rising water pollution are key global challenges 

for water sustainability. Much of the wastewater generated by human agricultural 

and industrial activity is left untreated. Nanotechnological materials and systems 

have emerged as new tools for improving the efficiency of water treatment. Among 

those, self-propelled micromotors have shown several advantageous characteristics. 

Micromotors are autonomously propelled systems which either use chemical energy 

present in their environment or are propelled via external force fields. Diverse 

designs, materials composition and mechanisms of propulsion are reported for 

micromotors found in the literature. Among them, bubble-propelled micromotors, 

which move due to the generation and release of gas bubbles from their surface, are 

the main type of motors used for water remediation applications. In addition to the 

motion in fluids, the bubbles generated by the motors, also contribute with 

additional mixing of the fluid and enhance the mass transfer between active material 

and pollutant at the microscale. Micro-mixing has an important influence on the 

apparent kinetics of fast chemical reactions, in which the velocity of the reaction is 

often limited by diffusion. Additionally, the structure of micromotors can be 

modified to target a wide variety of pollutants, almost on demand. The micromotors 

that we synthesized during the research work for this thesis can remove organic and 

heavy metal pollutants, as well as exhibit bactericidal activity.  

We studied Iron/Platinum (Fe/Pt) micromotors for their reusability, effect of sizes, 

swimming behaviors and catalytic properties. These micromotors were fabricated 

by spontaneous roll-up of iron and platinum nanomembranes, deposited on the pre-

fabricated patterns of a photoresist substrate. The relaxation of internal strain 

present in the nanomembranes, upon etching of sacrificial layer, led to rolling-up of 

the membranes into tubular structures of micromotors. The iron layer present as the 

outer surface of these micromotors can degrade organic pollutants via Fenton-like 

reaction and the inner platinum layer acts as the engine decomposing hydrogen 
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peroxide to oxygen for bubble propulsion. We observed that Fe/Pt micromotors can 

swim continuously for hours, and can be stored for weeks before reuse, without 

sacrificing much of their activity. They can be easily extracted from the water after 

cleaning process because of their magnetic properties. The results of our 

experiments on the analysis of micromotors’ surface, nanoindentation study and 

iron release suggested that Fe/Pt micromotors act as a heterogeneous catalyst due to 

in situ generated iron oxide species on the surface, without leaching high 

concentration of iron in the media.  

We developed graphene oxide-based micromotors (GOx-micromotors) for heavy 

metal removal, consisting of nanosized multilayers of graphene oxide, nickel, and 

platinum. These micromotors can capture, transfer, and remove heavy metals (i.e. 

lead) from contaminated water. GOx-micromotors are synthesized by 

electrodepositions of electro-reducible graphene oxide, nickel and platinum layers 

in the polycarbonate porous templates. Tubular micromotors are obtained after 

dissolving porous polycarbonate template. The outer layer of graphene oxide 

captures lead on their surface, and the inner layer of platinum provides self-

propulsion in hydrogen peroxide, while the middle layer of nickel enables external 

magnetic control of the micromotors. We observed that the mobile GOx-

micromotors can remove lead 10 times more efficiently than non-motile GOx-

micromotors, cleaning water from 1000 ppb down to below 50 ppb in less than 60 

min. These micromotors can be recycled and reused after the recovery of the heavy 

metal from their surface by using acidic media for desorption of metal ions. We 

have demonstrated control of their motion and directionality in a proof of concept 

microfluidic system.  

Silver nanoparticles (AgNPs) decorated Janus micromotors were designed for 

disinfection and remove of Escherichia coli (E. coli) bacteria from contaminated 

water. The Janus micromotors were synthesized by coating one side of the 

magnesium microsphere with iron and gold layers. The gold layer was subsequently 

decorated with AgNPs. Magnesium present in the micromotors functions as both, 
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the template for the spherical shape and propulsion source by producing hydrogen 

bubbles while in contact with water. The inner layer of iron provides functionality 

for the magnetic remote guidance, and an outer AgNP coated gold layer facilitates 

adhesion of bacteria and gives bactericidal properties to the micromotors. We 

observed that the AgNPs-coated Au cap of the micromotors shows dual capabilities, 

capturing bacteria and killing them. After the disinfection process, the micromotors 

can be collected along with the attached bacteria, leaving water with no biological 

contaminants.  

In our efforts to develop multifunctional micromotors and scalable synthesis 

methods, we developed two types of micromotors. (i) Mesoporous silica-based 

micromotors with manganese dioxide (MnO2) layer on the inner surface and coated 

with γ-Fe2O3 nanoparticles (FeSiMnOx micromotors). These micromotors can 

remove both organic and heavy metal pollutants, and they are synthesized using 

only template-assisted chemical methods. The degradation of organic pollutants is 

accomplished due to Fenton-like and photocatalytic reactions catalyzed by Fe2O3 

nanoparticles and their propulsion is driven by MnO2 and partly Fe2O3 nanoparticles 

that catalyze the decomposition hydrogen peroxide. These micromotors are one of 

the fastest micromotors reported using a non-noble catalyst for H2O2 

decomposition.  (ii) Cobalt ferrite micromotors (CFO micromotors) synthesized by 

template-free chemical synthesis approach. They are made up of aggregated cobalt 

ferrite nanoparticles, which act as the catalyst for propulsion and for Fenton-like 

reactions. We qualitatively measured the generation of hydroxyl radicals by CFO 

micromotors and studied the effect of surfactants on the degradation efficiency of 

CFO micromotors.  

We hope that such approach of synthesizing micromotors via relatively facile 

methods will push the use of micromotors towards commercially practical solutions 

for water treatment. Future efforts should be made towards further development of 

scalable synthesis methods and use of efficient and inexpensive materials in the 

structure of micromotors. Overall, our results show that the multifunctional self-
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propelled micromotors have potential to become an effective tool for water 

remediation in future. 
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1.1. Water pollution 

 

1.1. Water pollution  

Water scarcity is becoming one of the major global issues, since many people live 

in areas with low water availability and a few cities are running out of clean 

drinking water1. The situation is worsening due to deforestation, global warming 

and climate changes, leading to a rise in temperature and affecting the rainfall in 

many regions2. Apart from that, anthropogenic wastewater discharge is polluting the 

water bodies and threatening aquatic life, as well as human health. It is predicted 

that by 2030, half of the world population will live in areas with high water stress3.  

 

 
Figure 1.  Global consumption of freshwater, and wastewater production by major use sectors4. 

The demand for water is also expected to rise in the coming years, due to population 

increase and further development of society. Furthermore, drinking water accounts 

for only a small percentage of the current global demand of the freshwater, and the 

requirement of clean water for industrial and agricultural activities is much higher 

(Figure 1)4. The use of various chemicals and pesticides in industrial processes and 

agriculture sector severely contaminates the water and renders it toxic for overall 

living systems. Recent data compiled by UN suggests more than 95% of the 

freshwater ends up being wastewater and agricultural drainage (Figure 1). The reuse 

of the wasted water is crucial to create a sustainable cycle of water supply. 
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1.2. Wastewater treatment and Nanotechnology 

Development and use of efficient wastewater technology can help to alleviate the 

issues related to clean water scarcity and pollution. 

 

1.2. Wastewater treatment and Nanotechnology 

The centralized treatment of wastewater started in the late 19th century, in the 

United Kingdom, and was slowly adopted all over the world. Water treatment plants 

became essential for areas with a dense population, to provide clean drinking water 

to the entire population. However, these treatment plants require significant 

infrastructure and continuous maintenance, and for these reasons not all the 

wastewater generated all over the globe is treated before release. In fact, even in 

high-income countries, about 30% wastewater is released untreated, while in the 

low-income countries this number is higher than 90% (Figure 2)4. 

 
Figure 2. Percentage of wastewater left untreated in countries with different income categories4. 

Untreated wastewater is comprised of municipal wastewater, which is relatively 

easy to treat, and industrial wastewater, which can be challenging depending on its 

origin and the type of contaminants it possesses. Industrial wastewater is often 

much more toxic compared to the municipal wastewater, due to the presence of the 

chemicals used in the industrial processes. 
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Municipal wastewater mostly contains organic contaminants of biological origin, 

which are treated in sewage treatment plants. In such plants, the water is treated by 

physical, biological and chemical methods. The physical methods, namely 

sedimentation and filtration, are used to remove large insoluble contaminants while 

biological methods are primarily focused on the removal of dissolved organic 

pollutants by bacteria. Biological treatments are generally based on activated sludge 

method, in which specially bred colonies of bacteria are fed on the pollutants, 

leading to the decomposition of chemicals, thus cleaning the water. Moreover, 

ultrafine pollutants present in wastewater are removed using chemical methods, 

which provoke precipitation and flocculation of the pollutants to facilitate their 

removal. Industrial wastewater is also treated using similar methods in the industrial 

wastewater treatment plants before it is released into the municipal wastewater 

sewage or water bodies. However, biological methods are often not enough to 

remove industrial pollutants, due to either low biodegradability or their toxicity to 

bacteria responsible for the cleaning processes5,6. Some of the pollutants, such as 

inorganic heavy metals require different techniques than organic pollutant removal. 

The advances in understanding the harmful effects of various organic and inorganic 

pollutants led regulatory authorities, especially in high-income countries, to make 

stringent guidelines for the quality of the wastewater that is released into water 

bodies. The need of environmental protection and overall societal health drove an 

increase in research and development of water treatment technologies.  

In the past decades, various technologies have been developed for the improvement 

of water treatment. Other than advancement in the biological methods, such as the 

development of membrane bioreactors (MBR)7, non-biological methods such as 

advanced oxidative processes8 and filtration technologies are being developed for 

the removal of refractory organic and inorganic pollutants. In the recent years, a 

major focus has been on the use of nanotechnology for the further enhancement of 

wastewater treatment technologies9,10. Special characteristics of nanomaterials, such 

as higher surface area and improved catalytic properties have been explored for the 

development of more effective systems11. The advanced oxidative processes (AOPs) 
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such as Fenton-like reactions and photocatalytic reactions can be made more 

efficient by using iron-based nanoparticles and nano-photocatalysts. Besides, some 

of the drawbacks of homogeneous catalysis can also be avoided using such 

heterogeneous catalysts designed using nanotechnology. These advanced oxidative 

processes produce highly oxidative radicals, that can decompose organic pollutants 

into less harmful products and even mineralize them into non-toxic compounds, 

such as carbon dioxide and water. While, Carbon-based nanomaterials such as 

carbon nanotubes, graphene, nanoscale metal oxides and nanofibers provide 

excellent properties, such as high surface area, for adsorption of various inorganic 

and organic pollutants. Insoluble fine organic pollutants, inorganic pollutants and 

biological contaminants, such as viruses and bacteria can also be removed from the 

wastewater by nanofiltration processes in which membranes with nano-pores can 

filter out the pollutants. Again, graphene, carbon nanotubes and other materials like 

nano-zeolite can be used for the development of such membranes. Instead of 

removing biological threats, a step further can be taken, and these can even be 

neutralized taking advantage of enhanced efficiency of nano-photocatalysts and 

bactericidal materials such as nano-silver. 

Most of the efforts on the use of nanotechnology for water treatment are made 

towards the development of new materials or engineering combinations of 

nanomaterials to improve the catalytic, adsorbent or other relevant properties. 

Moreover, synthesis of nanomaterials with different shapes and sizes has also been 

studied for the effect on the removal of pollutants. However, apart from the intrinsic 

functional properties of the material, other parameters such as mass transfer and 

fluid mixing also play a key role in the kinetics of pollutants removal. In this 

doctoral thesis, I will discuss the results obtained by studying the removal of 

various pollutants when the functional nanomaterial responsible for the pollution is 

motile. To study the effect of motion along with the development of efficient 

nanomaterials for removal of organic, heavy metals and bacterial pollutants, 

micromotors have been developed as the self-propelled active materials. The self-

propelled micro-nanomotors are newly developed nanotechnology-based devices 
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that can autonomously swim in a fluid media and provide several functions such as 

cleaning12, sensing13, concentrating14 etc.  

1.3. Micromotors and motion at microscale 

The conceptual foundation of nanotechnology was based on the famous speech of 

Richard Feynman. He speculated in 1959 in his lecture “There’s Plenty of Room at 

the Bottom” that in future we would be able to manipulate matter at atomic and 

molecular levels, and even be able to make tiny machinery. During the last decade, 

his thought experiment of “swallowing a surgeon”, using tiny machines that can be 

swallowed and perform surgeries for treating diseases, became an inspiration for the 

development of nano-micromotors. Alongside, the sci-fi epic movie of 1966 

“Fantastic Voyage” also explored this idea. In this movie, a crew and their ship 

were miniaturized and injected into the blood circulation of a patient, aiming at 

removing a blood clot and save the patient’s life. The movie itself also became an 

inspiration for scientists working on the development of micro-nanomotors.  

The pioneering work on artificially fabricated nano machines was done by Stoddart 

and Feringa’s groups15,16. The molecular machines fabricated by these groups are 

stimulated externally, using stimuli such as heat or light. The stimuli induce 

conformational changes in the molecular structure, that produce mechanical 

movement. Stoddart’s group designed a molecular ring able to move along a 

molecular axel and with motion controllable by heat (Figure 3A). The molecular 

rotors designed by Feringa’s group were stimulated by UV light (Figure 3B). Feringa 

proposed that the rotary motion of these kind of molecular motors can be used to 

develop nanocars, capable to move forward due to the molecular engines (Figure 

3C). Both scientists were awarded Nobel Prize of Chemistry in 2016, for their 

contribution in the development of the molecular machines. 
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1.3. Micromotors and motion at microscale 

 

Figure 3. Designs of molecular machines. (A) Controlled movement of a molecular ring on a molecular 

chain. (B) One sided rotation of a UV light powered molecular system. (C) Rotary motion of a molecular 

motor on a molecular axel, such systems can functional as the engine and wheels of a nanocar. 

(Adapted from17 Copyright © Johan Jarnestad/The Royal Swedish Academy of Sciences)   

Despite the advances in nanotechnology and simple molecular machines developed, 

techniques to manipulate molecules and atoms according to Feynman vision are still 

lacking. The design of molecular machines and their functionality to manipulate 

other molecules or to perform predefined tasks is still difficult nevertheless 

nanoscale systems consisting of few billion atoms or molecules became widely 

accessible to fabricate and manipulate, because of the rapid advancement in 

nanofabrication methods of photolithography, physical vapor deposition, chemical 

vapor deposition, surface modification and chemistry of nanoparticles synthesis. In 

the last decade, these fabrication techniques have been used to develop wide variety 

of nano- and micromotors.  

A B 

C 



 

21 | P a g e  
 

      Introduction 

 

Figure 4 Motion under the microscope. (A) A bacterium swimming using flagella. (B) A microparticle 

experiencing Brownian motion due to collisions of solvent molecules. 

However, swimming is a challenging task at the length scale at which micromotors 

operate. The first challenge is to overcome Brownian motion, a type of continuous 

random motion experienced by micro-and nanoscale particles in fluids. This motion 

behavior was initially observed by Robert Brown, a botanist, in the year 1827, while 

he was studying pollen in water under a microscope18. He initially thought that the 

particles were moving because they were alive, like bacteria (Figure 4A), but he 

observed similar motion with particles from dead plants, confirming that the 

movement was without influence of any living systems. Brownian motion is a 

manifestation of the collision of millions of solvent molecules with the particle 

(Figure 4B) due to their kinetic energy related to thermal fluctuations in the system. 

This mechanism was proposed by Einstein, and his theory also projected Brownian 

motion as the indirect proof of the physical existence of atoms and molecules, 

which were only theorized at that time. Physicist Jean Perrin experimentally 

confirmed Einstein’s theory of Brownian motion, hence proving physical reality of 

these molecules and making it an important milestone in science.  

To achieve significant directional motion, a particle must overcome the Brownian 

diffusion. Microorganisms, such as bacteria do it by using their cellular appendages, 

as flagella or cilia to swim. The physical principles describing the motion of 

microorganisms in fluids were described by E. M. Purcell in the year 197719, where 

he explained the challenges of directional motion at the nanoscale. He used 

Reynolds number (Re) to compare and describe challenges for the motion of 

A B 
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1.3. Micromotors and motion at microscale 

microorganisms with respect to motion of larger animals, like humans or whales 

swimming in water (Figure 5). 

 

 

Figure 5. Comparative Reynolds number for different living things swimming in the water. 

Reynolds number is a dimensionless number, defined as the ratio of inertial to 

viscous forces acting on an object in a fluid and is given by,  

ܴ݁ ൌ 	ρV
୪

ஜ
ൌ 	

୍୬ୣ୰୲୧ୟ୪	୭୰ୡୣୱ

୧ୱୡ୭୳ୱ	୭୰ୡୣୱ
                                                     (1) 

 

where ρ is the density of the fluid, V and l are the velocities and the characteristic 

length of the object, respectively, while μ is the viscosity of the fluid. Objects with 

very small size, such as bacteria swim at low Reynolds number where the viscous 

force dominates the inertial force. For example, a bacterium would stop moving 

forward within few microseconds after it stops using the appendages for swimming. 

It reaches the terminal velocity so quickly, that the distance it would travel in these 

microseconds time would be no more than the size of an atom. While for the bigger 

beings, such as humans or whales, inertial force can easily overcome the viscous 

force and a net momentum can be transferred to the fluid. Due to this momentum 

transfer at high Reynolds number (i.e. Re>>1), non-continuous reciprocal work can 

be enough to achieve continuous forward motion. However, at the size scale of 

microorganisms, continuous non-reciprocal work is required for the continuous 

motion, since these systems quickly reach terminal velocity.  
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Figure 6. Illustration of scallop theorem. (A) A scallop can achieve net propulsion by reciprocal motion 

of opening and closing at high Reynolds number. (B) The same reciprocal motion of the scallop does not 

lead to net propulsion at low Reynolds number. At low Reynolds number propulsion can be achieved by 

(C) flexible non-reciprocal motion or by (D) cork screw like motion.  

Purcell explained this in the “Scallop Theorem”, by using an example of the motion 

of a scallop, which is invariant in time reversal and leads to the net propulsion since 

it operates at high Reynolds number. However, such reciprocal motion can only 

produce back and forth motion (Figure 6 A, B) at low Reynolds number.  Bacteria 

generate continuous propulsion forces by corkscrew-like motion of their flagella or, 

by alternative ways such as flexible bending (Figure 6 C, D). The movement of 

biological cellular appendages is powered by cellular machineries developed over 

the course of many years of evolution.  

 

1.4. Mechanisms of propulsion for micromotors 

To swim at low Reynolds number, artificial micromotors must continuously 

produce thrust to outrun Brownian diffusion, as the case of biological swimmers. 

Different mechanisms based on chemical reactions that harvest free energy present 

on the environment, or external stimuli have been investigated to continuously 

power these nano-micromotors, including mimicking the motion of bacterial 

A B 

C D 
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1.4. Mechanisms of propulsion for micromotors 

flagella. Important mechanisms that govern the propulsion of artificial nano-

micromotors are briefly discussed here. 

1.4.1. Self-powered micromotors 

Self-powered micromotors convert chemical energy from their surrounding 

environment to kinetic energy, via chemical reactions20,21. The chemical 

decomposed in the reaction is commonly referred as “fuel” for the micromotors. 

The fuel is added in the aqueous media, where micromotors are to swim. The most 

common mechanisms are self-electrophoresis, self-diffusiophoresis and bubble 

propulsion.  

Self-electrophoretic micromotors 

 

Figure 7. Mechanism of Self-electrophoretic bimetallic rod micromotors swimming in hydrogen 

peroxide fuel12. 

Catalytic self-propelled micromotors were first reported by Paxton et al. in 200422. 

These micromotors were made up of a stripped metal nanorod, fabricated by 

template assisted electrodeposition method. One side of this rod was made up of 

platinum and the other side was made of gold. An electrokinetic mechanism of their 

motion was later described by the same group23.  This electrokinetics is induced due 

to catalytic reaction on the surface of nanorods when they were placed in solutions 

containing hydrogen peroxide (H2O2). The platinum side of the nanorods 

catalytically oxidizes H2O2 into protons, electrons and oxygen. The electrons 
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generated during this reaction travel to the other end (gold) of the rod, because of 

the conductive nature of both platinum and gold (Figure 7) and these electrons drive 

a reduction reaction. The redox reactions on opposite ends of the rod along with the 

flow of electrons create a self-generated electric field, which drives ion current from 

the platinum end to the gold end in the solution. The fluid flows generated along 

with the ion current propels the micromotors towards the direction of platinum end 

via electrophoretic motion.  

Self-diffusiophoretic micromotors 

 

Figure 8. Mechanism of a self-duffusiophoretic micromotors swimming in solutions containing 

fuel. (A) H2O2 12 and (B) urea24 as fuel. 

Similarly, to self-electrophoretic micromotors, self-diffusiophoretic micromotors 

need to have a chemical reaction on their surface to achieve self-propulsion. 

However, this mechanism does not require the micromotors to be conductive. As 

suggested by the mechanism’s name, this kind of micromotors is propelled by the 

diffusion of the solvent molecules and the chemical species produced during the 

reaction on the motors surface25. However, influence or ionic effects and even 

involvement of self-electrophoretic mechanism was suggested by some 

researchers26,27. The important condition for this kind micromotors is an asymmetry 

on the reaction that takes place on the surface of the motors. Typically, platinum 

half coated silica or polystyrene particles exhibit this mechanism of propulsion 

when placed in solutions containing H2O2 (Figure 8A). Such particles are called 

Janus particles, inspired by the name of a two-faced Greek god. These micromotors 

are mostly fabricated either by physical vapor deposition (PVD) of platinum on a 

A B 
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monolayer of spherical particles made up non-conductive materials such as silica.  

In H2O2 solutions, platinum decomposes H2O2 into oxygen, electrons and protons. 

The protons and electrons further react with H2O2 to produce water molecules, 

while the oxygen solute drives the self-diffusiophoresis reaction. The asymmetric 

chemical reaction on the surface of the particles causes a higher solute 

concentration on one of the sides, which quickly starts diffusing from the surface. 

This creates a flow field around the motors surface that propels the motors. Since all 

the product species generated during the reaction are neutral, this mechanism is 

considered neutral self-diffusiophoresis. Instead of inorganic metallic catalysts, 

enzymatic catalysts can also be used for propulsion. In the recent reports from 

Sanchez group, enzymatic reactions have been used to propel Janus micromotors 

using urea or glucose as fuel sources (Figure 8B)24. Same group recently reported 

that Janus structure is not necessary for propulsion of enzymatic micromotors, since 

other asymmetries originated from synthesis or functionalization methods, such as 

asymmetric distribution of enzymes can be enough for propulsion28. Nevertheless, 

in the case of enzymatic propulsion, the mechanism is not very clear, as propulsion 

can be due to a combination of multiple factors, such as enzyme conformational 

changes or diffusion of charged product species.  

Bubble propelled micromotors 

 

Figure 9. Scheme of the designs of micromotors propelled by oxygen bubbles generated during 

the decomposition of H2O2 fuel12. (A) The micromotors are fabricated by roll-up technology and (B) the 

biconical micromotors are synthesized by template assisted electrochemical methods.   
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Bubble propelled micromotors typically contain a cavity where gas molecules 

generated during a chemical reaction can accumulate and grow into bubbles. The 

first report of bubble propelled micromotors was published by Mei et al. in 200829. 

These micromotors were fabricated by rolling nanomembranes fabricated by 

lithography and PVD techniques into a tubular structure (Figure 9A). Such tubular 

micromotors typically contain a catalyst, such as platinum or silver, in the inner 

wall of the tubular structure.  When this kind of micromotors are placed in solutions 

of H2O2, the inner platinum layer rapidly decomposes H2O2 into water and oxygen 

gas. The quick release of the oxygen bubbles from one end of the micromotors leads 

to the propulsion the micromotors in the opposite direction of bubble release. 

Pumera’s team presented a clean room free approach for fabrication of roll-up 

micromotors by using a TEM grid as a template, instead of a mask aligner typically 

used for photolithography30. Joseph Wang’s team developed electrochemical-based 

template assisted deposition techniques to make tubular micromotors without the 

need of photolithography31 (Figure 9B). The tubular structure of these motors 

facilitates bubble growth and migration which, in turn, facilitate propulsion. 

However, this structure is not an absolute requirement for bubble mechanism to 

work. Spherical shaped micromotors can also propel by this mechanism, if the rate 

of bubble generation and detachment is significant to generate a sufficient net force 

for propulsion32,33.  

1.4.2. Externally powered micromotors  

Externally propelled micromotors typically do not use chemical energy present in 

their environment, and mainly rely on an external energy source such as magnetic 

fields, light, ultrasound or electrical stimulation. Often, the speed and the direction 

of externally powered micromotors can be controlled using the same external 

actuation.   
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Magnetically driven micromotors  

Magnetic field is non-invasive and can penetrate biological tissues. This is a key 

motivation for the development of magnetically powered micromotors, since they 

can be propelled without the need of any chemical fuel or catalyst. The micromotors 

designed to be propelled in magnetic field have at least one magnetic material 

present in the structure. Upon applied magnetic field, the magnetic material aligns 

itself with the geometry of the applied field. The magnetically propelled 

micromotors are usually driven and controlled by using oscillating or rotating 

magnetic fields34.  

 

Figure 10. Designs of magnetically actuated micromotors. (A) Chain of magnetic beads propelled by 

oscillating magnetic field35. (B) Helical artificial flagella like micromotors propelled under rotating 

magnetic field36. (C) Flexible micromotors propped by oscillatory magnetic field37. 

The designs of magnetic micromotors are inspired by biological swimmers. In one 

of the earliest reports of magnetic propellers, Dreyfus et al. designed a flexible 

chain of magnetic microparticles attached by DNA linkers (Figure 10A)35. This 

flexible flagellum-like structure is propelled by an oscillating magnetic field. 

Oscillatory magnetic field is normally used to drive micromotors with flexible or 

hinged structures with multiple segments. In the oscillating magnetic field, these 

structures exhibit non-reciprocal movement which can lead to swimming at low 
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Reynolds number37 (Figure 10C). The pioneering work on the development of helical 

micromotors driven by rotation magnetic field was done by Nelson’s group38, who 

designed micromotors inspired by the rotating helical flagella of the bacteria (Figure 

10B). The helical shape of the micromotors does not move in homogeneous 

magnetic field, but upon applied rotating magnetic field, the helix orients with field 

leading to corkscrew-like movement. This flagella-like rotational movement makes 

it possible to propel helical micromotors at low Reynolds number.  

Light driven micromotors  

 

Figure 11. Light harvesting micromotors designs. (A) Self-electrophoretic Ag/Pt micromotors 

swimming in iodine containing media39. (B) Self-electrophoretic mobility of Au-TiO2 microspheres in the 

presence of UV light40. (c) TiO2-silicone nanowire micromotors propelled by light mediated redox 

reaction41. 

Light-propelled micromotors use light as the source of the energy, unlike catalytic 

self-propelled micromotors that catalyze the chemical fuel present in their 

environment without any input. The photocatalyst present on the structure of light-

powered micromotors can generate electron-hole pairs to drive chemical reactions 

in their environment for self-propulsion42. The mechanism of the motion for the 

light-powered micromotors is similar to catalytic self-propelled micromotors. For 

example, Ag-Pt micromotors swimming in the presence of ultra violet (UV) light in 
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iodine containing media39 (Figure 11A), Au-TiO2 spherical micromotors40 powered 

by UV light (Figure 11B), multi-wavelength responsive Au/Black-TiO2 

micromotors43 and micro tree-like silicon nanowires41 (Figure 11C) powered by 

visible are reported to propel via self-electrophoresis. Apart from that, surface 

plasmon resonance induced self-electrophoretic propulsion was also reported for 

nanocap-like motors by Sanchez group44.  The nano tree-like structures developed 

by Dai et al. can even be programmed for positive or negative phototaxis, by 

surface modifications that control the zeta-potential.  

Acoustic driven micromotors  

 

Figure 12. Acoustically driven micromotors. (A) Nanowire with a concave side propelled by localized 

generated pressure gradient under acoustic field45. (B) Tubular micromotors filled with perfluorocarbon 

propelled by quick vaporization of perfluorocarbon by ultrasound waves46.  

Ultrasound waves are widely used for medical diagnostic purposes. The 

micromotors driven by acoustic fields are propelled by a localized pressure gradient 

acting asymmetrically on the micromotor. The micromotors are designed to 

generate these self-induced pressure gradients under the acoustic field. For example, 

in the first proof-of-concept of this propulsion mechanism, Mallouk’s team 

fabricated nanowires by template assisted electrodeposition method, with concave 

shape on the one side of the wire (Figure 12A)45. The pressure generated at the 

concave side under the influence of external ultrasound waves leads to directional 

propulsion of the nanowires. Besides being used as source of propulsion, acoustic 

field has also been used to propel micromotors by activating on-board fuel. Wang’s 

group designed tubular micromotors loaded with perfluorocarbon, which acts as the 

on-board fuel and quickly vaporizes upon exposure to ultrasound waves (Figure 

12B)46. The release of vaporized perfluorocarbon propels the micromotors 
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extremely quickly. Apart from above mentioned propulsion mechanisms, 

thermophoresis47, electric field driven propulsion48, as well as bio-hybrid motors 

propelled by sperm49 or bacteria50 were also developed.  Not all the mechanisms of 

motion and designs of micromotors reported in the literature are discussed here, 

since this thesis is focused on environmental applications of micromotors. However, 

readers can find further information on this topic in these reviews20,21,34,51. 

1.5. Bubble propelled micromotors  

Among above-mentioned mechanisms, bubble propulsion is a quite robust 

mechanism of propulsion. For example, the motion of self-diffusiophoretic 

micromotors and self-electrophoretic micromotors can severely be affected by the 

presence of salt or other ionic species in the in the media, while bubble propulsion 

is only affected if the catalyst or active material is inactivated by chemical species 

present in swimming media. It is important for the micromotors designed for 

environmental applications to have robust propulsion mechanism, due to the need 

for the micromotors to interact with pollutants and other chemicals present in the 

contaminated water. Bubble propelled micromotors are reported to swim in 

complex viscous media due to the high efficiency of bubble propulsion52,53, which is 

another useful swimming property. Apart from that, bubble propelled micromotors 

are one of fastest swimming micromotors. We exploited these attractive properties 

to design environmental micromotors for removal of various pollutants from water. 

The results presented in this thesis are mainly related to the development of bubble 

propelled micromotors, therefore I will focus on the discussion of main fabrication 

approaches and some basic theoretical principles behind the bubble propulsion in 

the following section. 

1.5.1. Fabrication of bubble propelled micromotors  

Rolled up tubular micromotors  
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Prinz et al. and Schmidt el al. discovered that nanomembranes with intrinsic strain 

gradient can spontaneously roll-up into tubular shape upon strain relaxation54,55. 

Such gradient between layers of membranes can be developed in variety of 

fabrication techniques. Nanomembranes of varied materials are deposited on the 

patterned substrate by using microfabrication techniques such as sputtering, electron 

beam (e-beam) deposition or the molecular beam epitaxy (MBE) can have internal 

mechanical stress accumulated. The origin of stress in the thin film is mainly due to 

constraining imposed by the substrate on which the film is deposited. In the 

deposition methods like MBE, strain gradient can be controlled very precisely by 

choosing materials according to their lattice constants. The internal force between 

the atoms is a function of the interatomic distance, so when the thin film grows 

epitaxially on the substrate with smaller interatomic distance than equilibrium 

distance of the material, the film accumulates compressive strain and, if the 

interatomic distance is larger than the equilibrium distance, the film accumulates 

tensile strain54,55. Staking up of these nanomembranes on each other lead to the 

strain gradient which drives the spontaneous spatial changes in nanomembranes. 

The control of the strain gradient between layers is an important parameter for 

controlling the roll-up process.   Depending on the gradient across the thickness of 

the membranes, they bend or wrinkle. For example, larger strain gradient leads to 

bending and smaller gradient leads to wrinkling of the membranes. Controlled 

bending of the membrane is used for their rolling up into tubes. The diameter of the 

tubes fabricated from the lattice mismatched epitaxial layers can be predicted 

analytically with a good agreement between the experimental radius and the 

calculated theoretical radius56. Roll-up nanotubes fabricated from strained 

heteroepitaxial nanomembranes with very small diameter were first reported for the 

fabrication of nanomotors.  

However, MBE method is not always a suitable technique, especially for the 

fabrication of metallic and dielectric or hybrid tubes. Thin films of metal and 

dielectric materials are mostly deposited by sputtering, e-beam or the thermal 

evaporation methods57. The growth of such thin film is non-epitaxial and 
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amorphous or polycrystalline, but there is always inherent strain present in the thin 

film deposited by these non-epitaxial methods58. That strain is produced due to the 

growth kinetic process itself and can originate from various mechanisms, such as 

stress at the grain boundary, thermal expansion coefficient between films, void 

regions and phase transformation.  The deposition parameters, such as deposition 

pressure, the temperature of the substrate and deposition geometry, can greatly 

influence the amount of strain generated due the wide range of mechanisms 

involved in the process59. The strain gradient in the non-epitaxial film is not as 

predictable as the epitaxial film although it can be controlled by the evaporation rate 

of the material and the oblique angle. Thickness of the film is also important 

because the diameter of the tubes varies depending on this thickness. It is important 

to keep the parameters precisely constant in order to obtain highly reproducible 

results with non-epitaxial thin film in each process.   

 

Figure 13. Spontaneous roll up process for fabrication of micromotors from nanomembranes60. 

Overall, the rolling process consists of several steps (Figure 13). First, the sacrificial 

layers are patterned as substrate using photolithography techniques.  The thin films 
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are then deposited with an oblique angle between the incident vapor flux and the 

patterned substrate to create shadowed window, where the materials are not 

deposited on the sacrificial layer. Such shadowed window permits the selective 

etching of the sacrificial layer from one side of the pattern. Etching process of the 

sacrificial layer release previously deposited strained multilayers, which then 

undergo stress relaxation process. During this process, lower layer expands and the 

upper layer shrinks. By tuning the etching time and the layer thickness, among other 

parameters, the diameter of micromotors can be effectively controlled29.  Ideally, 

the multilayer membranes deposited with strain gradient across their thickness can 

be rolled up with many revolutions. The pattern size can be easily tuned by 

designing different photomasks applicable for photolithography. In this way, 

microtubes from 25 μm up to 1 mm have been successfully reported in the 

literature, showing a large variability of lengths for various purposes.  

Electrochemically synthesized tubular micromotors  

Electrochemical deposition techniques are known since more than 200 years and 

widely used for electroplating of metals in many industrial processes.  Only in 

recent years electrochemical synthesis have been used for synthesis of 

nanomaterials and supramolecular systems. Template assisted electrochemical 

synthesis is commonly used approach for the synthesis of nanomaterials to precisely 

control the geometry of the nanostructures. The synthesis of electrodeposited 

catalytic micromotors has been first demonstrated by Wang’s group in 201031.  

In a typical synthesis process (Figure 14), porous polycarbonate membranes are 

used as the templates to obtain the tubular shape of the micromotors. The 

membranes are not conductive, and conductivity is a necessary property for 

successful electrochemical synthesis, therefore a layer of carbon paste or thin film 

of gold is sputtered on one side the membrane to make that side conductive. The 

membrane is then assembled in an electrochemical cell for the synthesis process. 

The conductive part of the membrane is connected as the working electrode and an 

inert material, usually platinum, is connected as the counter electrode. A reference 
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electrode can be used in the same electrochemical cell to monitor the progress of the 

synthesis process. 

 

Figure 14. Electrochemical synthesis of micromotors using porous membrane template. 

The structure is electrochemically grown from the electrochemical bath containing 

monomers of electro polymers or metal salts and other supporting chemicals. The 

electrodeposition of the materials starts from the conductive material previously 

deposited on the membrane. The synthesis protocol is designed to quickly deposit 

the precursor molecules on the conductive material and subsequently on the newly 

electrodeposited material. This fast deposition leads to complete deposition of the 

precursor molecules from the surrounding of the exposed conductive material 

before available molecules diffuses to the deposition location from the neighboring 

region. Because of this diffusion limited deposition process, the materials only grow 

on the walls of the polycarbonate template, leaving the core hollow. If the 

deposition is done slowly, the whole pore can be filled to synthesize rod like 

structures.  After electrodeposition, the carbon or sputtered gold layer is completely 

removed polishing with alumina slurry and the membrane is dissolved by 

immersing it in methylene chloride solution to release the microtubes. In addition to 

the deposition of the basic bilayer of a polymer such as PEDOT, EDOT or PPy and 

Platinum (Pt), the deposition protocol can be tailored to include different functional 
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materials like graphene as outer layer and Nickel (Ni) and Gold (Au) layers for their 

magnetic guidance and facile functionalization (i.e. with receptors), respectively. 

These micromotors present intrinsically conical shape due to the shape of the 

templates used for the electrodeposition.  

Spherical micromotors  

 

Figure 15. Fabrication of micromotors using monolayer of spheres as the template for 

asymmetric design of micromotors.   

Spherical micromotors are fabricated by using solid spheres on which a layer of a 

material is deposited by physical vapor deposition techniques to make Janus 

particles. The solid spheres and the deposited material can be catalytic or non-

catalytic depending on the target application of the Janus micromotors. The Janus 

microparticles with a catalyst coating are propelled by so-called diffusiophoresis 

mechanism or bubble propulsion mechanism depending on the size of the 

micromotors 25. For example, the lack of confinement for bubble growth leads to 

diffusiophoretic motion for platinum coated Janus micromotors smaller than 10 μm 

while bigger micromotors can move via bubble propulsion32. The non-catalytic 

micromotors used for environmental applications usually contain magnesium, 

which reacts with water to produce hydrogen gas (H2) for bubble propulsion 61. 
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1.5.2. Mechanism of bubble propulsion  

The mechanism for the motion of bubble propelled micromotors is associated with 

the production and release of bubbles by the micromotors. A few theoretical models 

are proposed to explain the thrust generated during the bubble propulsion and 

associated hydrodynamics. A model based on the bubble nucleation and ejection is 

described by Manjare et al.32,62. In this model, the bubble growth inside the tube and 

its ejection from one end of the micromotors are described as the main parameters 

responsible for the movement. Several other parameters are also described in this 

model, such as the concentration of the H2O2 fuel, oxygen flux, rate of the bubble 

generation, frequency of the bubble ejection, radius of the micromotor and average 

speed of the micromotors during the bubble growth. However, some parameters 

such as the migration of bubbles generated at any other point of the tube are not 

considered. Since bubbles have been observed to form at various points of inner 

walls of micromotors, those steps could also be involved in the propulsion 

mechanism. In another theoretical model proposed by Li et al., the bubbles and the 

tubes are separately considered for the explanation of the mechanism63. In this 

model, it is assumed that the micromotors and the bubble stop at the same time 

when they are separated by the distance of the micromotors diameter. Since after 

the separation both the micromotors and the bubbles may have different dynamics 

and possibly are not associated anymore, this model is controversial. Because of the 

importance of the geometry in the performance of these micromotors, a model 

which considers the non-uniform shape of the catalytic micromotors is described by 

Fomin et al. In this model authors have combined the time dependent 

hydrodynamics of the bubble growth and migration within the asymmetric shape of 

the micromotors64. The migration of the bubble in the micromotors creates the net 

force which pushes forward the micromotors. Authors have also compared their 

model with the other models proposed previously. They put forward the hypothesis 

that not the geometrical parameters, but the asymmetries are important for the jet 

effect and the motion of a perfectly symmetric micromotors as observed in the 

experimental results. It can be assumed that with the time, the volume of a growing 
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bubble increases in the asymmetric micromotors. It can be denoted by the following 

equation,  

V (t) = kScatt.             (1) 

Here, k is the rate of the oxygen production from a unit surface area and Scat is the 

catalytic area. The fluid pumping induced by the bubble migration, along with 

recoil propel the tube. Authors proposed a simplified preliminary model for the 

mechanism with an assumption that relaxation of the micromotors momentum 

occurs at a finite rate in the surrounding fluid. The description of the fluid dynamics 

produced by the bubble motion in a micromotors rigorously indicates that a time-

dependent hydrodynamic analysis is required. A momentum transfer to the fluid 

occurs because of the motion of the bubble in an asymmetric micromotors. The 

momentum transfer generates a motor force (Fmotor) on the micromotors,  

௧ܨ 	ൌ 	
ெ∗ௗ௧
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                   (2) 

where M is the mass of the tube and Vt is the velocity. On the other hand, 

swimming in the fluid creates the linear drag force that is acting on the 

micromotors.  
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and the balance of the forces (Fdrag + Fmotor = 0), the tube instantaneous speed can be 

described as  
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and the average speed as  
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Micromotors with well-controlled velocities can be fabricated by considering 

different forces acting on it. For example, by controlling the shape and diameter of 
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the micromotors, well-defined velocities can be achieved because of the strong 

dependence of the velocities on the micromotors diameter. However, a separate 

analysis of the hydrodynamics of the fluid around the micromotors is still required.
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1.6. State of the art of micromotors in environmental field 

Even though initial reports on micromotors were focused on understanding the 

underlying mechanisms, the vision to develop real world applications of these tiny 

artificial motors for was always there since Feynman proposed the idea of 

swallowing a surgeon. There have been many early proof of concept applications 

reported for biomedical application of micromotors65,66. However, there are several 

issues related to biocompatibility that need to be addressed before micromotors can 

be used for biomedical applications. Whereas, biocompatibility is not an issue for 

many environmental applications and certain chemicals used as the fuel for 

micromotors are already being used in chemical processes for environmental 

remediation (e.g. H2O2). In this section, I will discuss important research on the 

environmental applications of micromotors published prior, or in the early days, of 

the commencement of my thesis work. A comprehensive discussion on the literature 

can be found in this review12.    

 

Figure 16. Capture and transport of oil droplet by micromotors functionalized with alkanethiols 

chains67. (A) Tubular micromotor with inner platinum core and our gold surface functionalized with 

hydrophobic chains. (B) Optical images of (a) micromotors moving towards a droplet (b) capturing it (c) 

and transporting it.    

The first example of micromotors performing removal of oil pollutants was reported 

by Guix et al. in 201267. They synthesized PEDOT/Pt tubular micromotors by 
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electrodeposition method in PC template and then, one side of their long axis was 

coated with a gold film (Figure 16A). These micromotors, powered by catalytic 

decomposition of H2O2 by their inner platinum layer, were functionalized on their 

gold external surface with superhydrophobic n-alkanethiols chains with different 

lengths. The thiol group of the n-alkanethiols molecules assembles into self-

assembly monolayers (SAM). The presence of long carbon-chains renders a 

hydrophobic surface, which can attract oil droplets molecules via hydrophobic 

interactions. Authors noted that longer chains (C12) were more efficient for 

capturing oil droplets than smaller chains (C6). Also, it was observed that the speed 

of the micromotors with the oil droplet on their surface decreased up to 10 times 

from the original speed. These results established that it is possible to capture 

pollutants “on the fly” via superhydrophobic surface modifications of micromotors. 

In the follow-up work, the same group designed Janus micromotors using 

magnesium microparticles propelled by bubbles of hydrogen gas generated during 

the reaction of magnesium with water68. These spherical micromotors have Janus 

structure with a gold layer sputtered on one half and functionalized with 

dodecanethiol molecules.  

 

Figure 17. Fenton like oxidation reactions catalyzed by iron containing micromotors in H2O2 

fuel69. (A) Schematic (B) degradation of rhodamine dye by static iron tubes (C) enhanced degradation of 

rhodamine by self-propelled micromotors.  
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Removal of organic pollutants using micromotors was reported by Soler et al. in 

201369. These micromotors were fabricated by rolling up of the iron and platinum 

nanomembranes into tubular structures (Figure 17A). The iron layer present on the 

outer surface of the micromotors react with H2O2 added as the fuel to carry out 

Fenton-like oxidation reaction and generate HO• radicals. The authors demonstrated 

degradation of rhodamine 6G (R6G), as a model pollutant of xanthene dyes via 

Fenton-like reaction using the micromotors. The total degradation of R6G was 

achieved after 5 hours of swimming of micromotors while the static Fe/Pt tubes 

only achieved around 50% degradation (Figure 17B, C). In addition, it was observed 

that the efficiency of the R6G degradation was dependent on the thickness of the 

iron layer on the micromotors, pH, and concentration of H2O2.  

 

Figure 18. Photocatalytic micromotors for removal of warfare agents and dye pollutant. (A) 

TiO2/Mg micromotors propelled by hydrogen generated during the reaction of Mg with sea water70. (B) 

Magnetically actuated photocatalytic Bi2O3/BiOCl micromotors for removal of dye71.  

Photocatalytic reactions also generated highly oxidative radicals capable of 

degrading organic pollutants. In the presence of UV light, TiO2/Mg micromotors 

can developed by Li et al. are demonstrated to oxidize methyl-paraoxon (MP) and 

ethyl-paraoxon (EP), highly toxic organophosphate nerve agent, by the generation 

of reactive oxygen species on their surface70 (Figure 18A). Janus activated 

carbon/Pt microspheres reported by  Jurado-Sánchez et al. can also remove MP, 

apart from the removal of lead ions and other organic molecules, also by its 

absorption on the activated carbon. Mushtaq et al. designed Bi2O3/BiOCl-based 

hybrid micromotors activated by UV-visible irradiation and controlled by an 
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external magnetic field instead chemical self-propulsion for the efficient removal of 

rhodamine B (RB) (Figure 18B)71. These hybrid micromotors were synthesized using 

a sequential template-assisted electrodeposition in two different shapes, 

micropillars, and microhelices which consist of a ferromagnetic segment followed 

by a bismuth-based photocatalytic segment. They exhibited 90% efficiency for 

removal of RB, being a good example of biocompatible, low-cost and wirelessly 

powered micromotors for water cleaning treatments. 

 

Figure 19. Removal of organophosphates nerve agents by adsorption using micromotors72 (A) 

Zirconia functionalized micromotors. (B) Adsorption spectra of  removal of methyl paraoxon with and 

without micromotors.  

Singh et al. reported zirconia (ZrO) functionalized tubular micromotors to remove 

multiple extremely toxic organophosphate compounds (Figure 19A)72. In their 

design, they electrochemically synthesized tubular micromotors with platinum as 

the inner layer and ZrO was immobilized on the outer surface by electrochemical 

reduction of zirconium chloride. The results showed a significant role of ZrO for the 

effective removal of methyl paraoxon (MP), ethyl paraoxon (EP), and bis-4 

nitrophenyl phosphate (b-NPP) via acid−base Lewis interaction of negatively 

charged oxygen atoms present in OP with the electronically deficient zirconia. 

These micromotors  showed 91, 70, and 58% removal of MP, EP, and NPP, 

respectively, after 5 minutes in presence of H2O2. The removal was much faster by 

the self-propelled micromotors compared to static motors (Figure 19B). Sarin, 

another organophosphorus ester compound, is a potent toxic for the nervous system 

and a chemical warfare agent usually employed during chemical attacks. To remove 
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this potent toxic, multifunctional silver-exchanged zeolite micromotors have been 

designed to catalytically degrade diethyl chlorophosphate (DCP), a sarin simulant73. 

 

Figure 20. Lysozyme based bactericidal micromotors74. (A) Schematic of ultrasound propelled gold 

nanorod micromotors functionalized with lysozyme. (B) Comparison of bactericidal effects of ultrasound 

propelled micromotors (g) with various control experiments (a-f).  

Micromotors focused on the removal of pathogenic bacteria from contaminated 

water, integrate on their structures several bactericidal materials or molecules such 

as enzymes, polymer, and metals. Micromotors can be designed for the selective 

isolation and destruction of bacteria by the modification of their structure with 

aptamers, antibodies, protein receptors and target enzymes. Campuzano et al. 

developed the first work to capture and isolate bacteria using micromotors by 

electrosynthesized Au-polyaniline-Pt tubular micromotors subsequent modified 

with lectin75. Once the micromotors were placed in H2O2 solution, they selectively 

bind to the E. coli surface by antibody-antigen interactions and capture E. coli while 

swimming. Later, the same research group developed the first work to kill bacteria 

using nanomotors. They performed porous gold nanowires (p-AuNWs) propelled 

with an external ultrasound (US) source and functionalized on their surface with 

lysozyme, an antibacterial peptidoglycan-hydrolase (muramidase activity) enzyme 

that specifically damage the protective wall of bacteria74 (Figure 20A). The p-AuNWs 

were fabricated using template electrosynthesis of different metal layers: (i) Ag 

sacrificial layer, (ii) Au layer and (iii) Au-Ag layer. The surface was chemically 

modified with lysozyme enzyme. Two kinds of bacteria, M. lysodeikticus and E. 

coli, were rapidly destroyed by these named “nanofighters” efficiently in 
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comparison with various controls, including static lysozyme-AuNWs and free 

lysozyme (Figure 20B).  

 

Figure 21. Carbon dioxide sequestration by micromotors76. (A) Carbonic anhydrase modified 

micromotors with platinum core (B) Precipitation of calcium carbonate by free enzyme, static 

micromotors and self-propelled micromotors  

Micromotors are also demonstrated for enhanced carbon dioxide (CO2) 

sequestration. CO2 emissions and its further accumulation are directly related to the 

climate change and global warming. Uygun et al. Reported an approach to capture 

CO2 using micromotors modified with anhydrase (CA) on their surfaces for CO2 

sequestration in water and storage as solid carbonate salts76. These templates 

electrodeposited (COOH-polymer/Pt) tubular micromotors have been modified with 

CA using carbodiimide cross linker chemistry for the activation of carboxylic 

groups on the micromotors surface (Figure 21A). The CA- modified micromotors 

were able to convert CO2 to bicarbonate ions (HCO3-) while they swim in presence 

of H2O2. To avoid the CA equilibrium between CO2 and bicarbonate species, CaCl2 

was added to the solution for carrying out the precipitation of HCO3- in form of 

calcium salt (CaCO3) and activating the equilibrium of the conversion of CO2 to 

HCO3-. The motile CA functionalized micromotors were 5 times more efficient in 

removing CO2 compared to static micromotors with the same functionalization 

(Figure 21B).  
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1.7. Enhanced mixing by micromotors 

 

Figure 22. Enhanced fluid mixing demonstrated by bubble propelled micromotors by tracking the 

tracer particles69. 

The accelerated removal of pollutants by micromotors is claimed to be due to 

activity induced improved mixing and mass transfer in the fluid while they are 

swimming. Mixing has a significant effect on the apparent kinetics of a chemical 

reaction, especially in the case of fast reactions. The intrinsic kinetics of a fast 

reaction are difficult to achieve, since many physicochemical steps that are involved 

in the reaction are limited by slow mass transfer of the reactants and products. 

Efficient mass transfer at the macro and mesoscale are relatively easy to achieve by 

using turbulence mixing or dispersion. However, it is quite challenging to achieve 

micro-mixing at low Reynold numbers because, at that scale, the flows are 

inherently laminar. These laminar flows and diffusion-related slow mixing can 

easily be observed in microfluidic systems. The transport phenomena involved in 

chemical or biological processes often occur at low Reynolds numbers. For 

example, in a heterogeneous catalysis or enzymatic catalysis process, the transport 
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of chemical species involved reaction (adsorption of the substrate and release of the 

product) has a significant effect on the overall reaction rate. The micromotors can 

enhance mass transfer and improve micro-mixing in the system where they are 

swimming. Soler et al. and Orozco et al. studied the transport of tracer particles by 

micromotors to explain the mixing effect imparted by the swimming micromotors in 

fluids (Figure 22)69,77. The results reported by Orozco et al. clearly demonstrated that 

the transport of tracer particles was significantly enhanced by bubble propelled 

PEDOT-Pt tubular micromotors compared to diffusiophoretic SiO2-Pt micromotors 

and electrophoretic Au-Pt micromotors.  Apart from mixing effect induced by the 

motion of micromotors, in the case of bubble-propelled mechanism, bubbles can 

create additional mixing along with the three-dimensional swimming of the 

micromotors78. This could explain the accelerated rate of many pollutant removal 

processes by swimming micromotors described in the applications section. The 

work presented in this thesis deals with designing various bubble propelled 

micromotors for removal of different pollutants, as well as the exploration of the 

mixing effects of the bubbles generated. Besides, bubble propulsion is also one the 

fastest swimming mechanism, making them an ideal choice for chemical reactions 

used in environmental applications, where their active swimming and role in the 

mixing can be useful. 
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CHAPTER	2.	
ORGANIC	REMOVAL	USING	MICROMOTORS	

  

The results described in this chapter are published in the following 
article. 
 
Parmar, J.; Vilela, D.; Pellicer, E.; Esqué-de los Ojos, D.; Sort, J.; Sánchez, 
S. Reusable and Long-Lasting Active Microcleaners for Heterogeneous 
Water Remediation. Adv. Funct. Mater. 2016, 26 (23), 4152–4161. 
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2.1. Introduction 

Catalytic, self-propelled micro-motors use chemical fuel such as H2O2, hydrazine79 

or acetylene80 for propulsion. Amongst them, H2O2 is being most widely used as a 

fuel in combination with the platinum catalyst for propulsion81. Iron-containing 

micromotors swimming in H2O2 can degrade organic pollutants via Fenton-like 

reaction69. The degradation rate of organics is much higher when motile 

micromotors are deployed compared to degradation using non-motile iron-

containing tubes. H2O2 is the main reagent in Fenton reaction, which is already in 

use for many commercial water treatment procedures82 and it is also considered as a 

green reagent for sustainable chemistry because it is usually degraded into water 

and oxygen gas without producing any toxic chemicals83,84. The classical Fenton 

reaction generates hydroxyl radicals when Fe2+ reacts with H2O2, as follows82,85–88. 

Fe2+ + H2O2  Fe3+ + OH + OH-                                                (6) 

Fe3+ + H2O2  Fe2+ + HO2
 + H+                                                 (7) 

During the reaction chain, Fe2+ oxidizes to Fe3+ and Fe2+ regenerates back from 

Fe3+(equations 6 and 7). One of the main disadvantages of the classical Fenton 

reaction is that at the end of the treatment iron ions need to be removed from the 

solution by usually precipitation. The precipitation reactions require a high amount 

of chemicals and produce a large amount of sludge. Furthermore, sludge removal is 

an expensive process and requires a lot of energy. In addition, non-reusability of 

iron salt as a catalyst and energy requirement for mixing results in extra cost for the 

treatment. To overcome the disadvantages of classical homogeneous Fenton 

reaction, significant efforts have been made to develop heterogeneous Fenton 

catalysts89. 

Towards the development of practical use of micromotors and to overcome the 

limitation of Fenton reaction, we studied the reusability, continuous swimming 

behavior and effect of long term storage on the reuse efficiency of Fe/Pt 
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micromotors, as well as iron release into the solution. The effect of different 

micromotors sizes on the organic dye degradation rate, surface chemical 

composition after the cleaning cycles and mechanical properties of micromotors 

were also studied to understand the system thoroughly. The micromotors used for 

this study were fabricated by nanomembranes roll-up method.  

2.2. Results and discussion  

    

Figure 23. Fabrication of micromotors. A) 200 μm, 300 μm, and 500 μm square photoresist patterns 

with e-beam evaporated Fe/Pt nanomembranes on it. B) Fe/Pt nanomembranes rolled up into 200‐μm, 

300‐μm, and 500‐μm long micromotors with an approximate diameter of 40 to 60 μm. 

Pre-strained nanomembranes of iron and platinum were sequentially evaporated by 

e-beam on photoresist squared patterns of different sizes. The nanomembranes were 

selectively lifted off from the glass substrate by chemical etching and rolled up into 

micro tubular micromotors. The effect of size of the Fe/Pt micromotors on the 

degradation rate was studied using three different sizes of micromotors. For all 

sizes, equal area of previously designed photoresist patterns was deposited to keep 

the amount of catalytic material same in each experiment even though total number 

of tubes were different. Three sizes of micromotors (200 µm, 300 µm and 500 µm 

long) were fabricated by rolling up Fe/Pt nanomembranes (Figure 23 A and B) and 

A 
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used for the degradation of dye. Experimental parameters for the dye degradation 

are presented in the experimental section.   

The platinum layer present inside the Fe/Pt micromotors act as the engine to 

decompose H2O2 into O2 and H2O. The oxygen bubble trail produces thrust on the 

micromotors to propel it which additionally provide micro mixing and enhanced 

mass transfer63,64. The iron layer present outside the micromotors reacts with the 

H2O2 to produce hydroxyl radicals via Fenton-like reaction that degrades the organic 

compound. The pH was adjusted to 2.5 using sulfuric acid (the reported optimum 

pH is between 2-3 for the Fenton reaction catalyzed by zero valent metallic iron90,91) 

and the initial concentration of malachite green was kept to 50 µg/ml in all the 

experiments. During the dye degradation experiments, dye concentration was 

periodically measured by the UV-visible spectrometer and the micromotors were 

left swimming in the contaminated dye solution until steady state of degradation 

was observed after 60 minutes. Figure 24A shows the dye degradation curves for 200 

µm, 300 µm, and 500 µm micromotors and control experiments without 

micromotors. The micromotors degraded more than 80 % of malachite green in 60 

minutes; furthermore, complete degradation can be achieved over longer time (not 

shown). One-way analysis of variance (ANOVA) was calculated for all measured 

data points for groups of different sizes of micromotors to verify the statistically 

significant difference between them. There was no significant difference found in 

the amount of dye degraded by the groups of three different sizes of micromotors at 

the P = 0.9850 (n=5) level. Keep in mind that amount of catalytic material was 

same in each experimental group of micromotors with different sizes while total 

number of tubes were different due to the difference in the sizes. 

Clearly, Fe/Pt micromotors show higher degradation rate compared to the control 

experiments without the micromotors as Figure 24A shows. According to previous 

literature, Fe/Pt micromotors were shown to outperform various other control 

experiments with non-iron containing motors such as Ti/Pt micromotors and 
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immobilized Fe/Pt micromotors in the dye degradation rate proving that the self-

propulsion improves the performance this catalytic degradation process69. 

 

Figure 24. Degradation of malachite green (MG) dye. (A) Degradation of dye over time using different 

sizes of micromotors. (B) Dye degradation over time normalized for single micromotors (C) Degradation 

of malachite green at different concentrations of H2O2 by 500 μm micromotors in 60 minutes (insert 

shows the light absorbance spectrum of malachite green at different concentrations). (D) Degradation of 

malachite green in 60 minutes, with and without the addition of H2SO4 by 500 μm micromotors. 

Figure 24B show normalized dye degradation by a single micromotor. This data is 

derived using total degradation by each size group and the number of micromotors 

present in that group, considering that all micromotors present in the solution 

contribute equally to the total degradation. The figure reveals that a larger 

micromotor of 500 µm is more effective than a 300 µm or a 200 µm micromotor. 

Provided that the amount of total rolled up catalytic material present in the solution 

is equal, i.e. 0.64 cm2 in all cases, differences in the size of micromotors do not give 

added advantage and have limited effect on the degradation of dye in the studied 

A B 
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size range. The total amount of catalytic material plays a more important role than 

the size of the micromotors.  

Since reusability of the catalyst in a crucial factor for cost effectiveness of the 

Fenton-based advanced oxidative processes, all three sizes of micromotors were 

studied for their reusability and to verify if the performance remains comparable in 

later usage cycles. In each cleaning cycle, micromotors were left swimming in the 

malachite dye contaminated water then collected using a permanent magnet and 

rinsed with ultrapure water before their reuse in subsequent cleaning cycles. The 

first five cleaning cycles were performed consecutively at 1 to 5 hours (each cycle 

is 60 min long), then next cycles were performed after 18 hours and 24 hours of 

storage of micromotors in sodium dodecyl sulfate (SDS) containing aqueous 

solution without H2O2. These experiments were designed to study the changes in the 

structure and degradation performance of micromotors after continuous reuse and 

short-term storage. Next sets of degradation cycles were performed after one week 

of storage interval between each cycle in order to capture effects of long term 

storage and reuse.  

In the short-term reusability experiments, dye degradation by each size group of 

micromotors was between 68%-86% (Figure 25A). These results include continuous 

reusability from 1 to 5 hours without any time gaps (except short rising period 

between each cycle) and at 18 hours and 24 hours after short-term storage. After 

long-term storage (one week to five weeks), the degradation was slightly reduced to 

56%-67%, as presented in Figure 25C. Percentages of degradation are in the similar 

range for group of varied sizes of micromotors in the different dye degradation 

cycles in short-term and long-term uses, which shows that the size of micromotors 

remains insignificant during reusability when the total amount of the catalytic 

material present is the same. Previously, iron layers were used for magnetic steering 

and guiding purpose92. Here, we exploited the ferromagnetic nature of the Fe layer 

as an added functionality to recover micromotors, along with Fenton reaction 

capability. Micromotors can be magnetically recovered and reused several times 
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without significant changes in the percentage of dye degradation efficiency, even 

after weeks of storage.  

 

Figure 25. Reusability of micromotors. (A) Schematic diagram of reusability cycle of micromotors. 

Ferromagnetic micromotors were collected in a corner of the beaker and treated water was changed with 

Millipore water to wash the surface and the beaker itself. After cleaning the surfaces of the micromotors, 

new dye contaminated water was added for the next degradation cycle. (B) Reusability performance of 

different sizes of micromotors in 5 consecutive degradations during periods from 1 to 5 hours and at 18 

hours and 24 hours after short-term storage. One degradation cycle is 60 minutes of swimming of 

micromotors in polluted water.  (C) Reusability performance of micromotors in each cycle after 1 to 5 

weeks of storage  

After each reusability cycle, the swimming of the micromotors was observed under 

an optical microscope to assess the motility and bubble production activity. We 

noticed that the micromotors were still active after 5 weeks (including both short-

term and long-term intermediate storage). The structural integrity was also observed 

A 
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to be very good during initial cycles but in the later cycles, some longer 

micromotors were broken into two pieces or broken layers were visible while some 

shorter micromotors were broken in even smaller pieces without tubular geometry. 

Damage in the structure could be due to (i) multiples exposure of micromotors to 

the external magnetic field of a strong neodymium-iron-boron magnet during 

recovery process after every cycle and (ii) internal pressure of bubbles generated 

while swimming. Damage in the structural integrity could be one of the reasons for 

the observed decrease of dye degradation percentage in the later cycles after long-

term storage (Figure 25C).    

Apart from observing micromotors in each cleaning cycles, a separate experiment 

was carried out to observe them under them under the optical microscope while 

keeping them continuously swimming.  All three sizes of micromotors were left 

swimming in H2O2 (15% v/v) solution for 24 hours and swimming was observed 

periodically under the microscope. Figure 26 shows that all 200 µm, 300 µm and 

500 µm micromotors were swimming even after 24 hours of continuous motion. 

Although some micromotors were broken into smaller pieces after few hours of 

swimming, they were still active. Changes in the diameter were also observed after 

a few hours of swimming as in Figure 26. Namely, a decrease in the diameter is 

visible for longer micromotors in 24 hours images. An opposite effect was observed 

for 200 µm micromotors; some of them were opened up and broken into pieces. 

This difference is due to the presence of fewer numbers of windings in the 

micromotors fabricated from the smaller photoresist patterns. Since the same 

thickness of Fe/Pt nanomembranes rolled up from different sizes of photoresist 

patterns, similar diameters between 40 to 60 µm (and thus, different number of 

windings in the rolled up tubular micromotor structure) were achieved.   

It is widely accepted that zero valent iron-mediated Fenton reaction is mainly a 

manifestation of ferrous ions generated from the iron surface in acidic pH. Fe2+ ions 

leached from the surface in the solution play a key role in the reaction kinetics, 

which oxidizes into Fe3+ ions during the Fenton reaction (equation 6). Regeneration 
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rate of Fe2+ ions from Fe3+ (equation 7) is a rate-limiting factor for classical Fenton 

reaction and the presence of metallic surface are believed to help the reduction of 

Fe3+ ion to Fe2+, thus maintaining the Fenton reaction rate91. 

 
Figure 26. Micromotors of three different sizes (200 µm, 300 µm and 500 µm long) swimming 

continuously at time intervals of 1 hour, 5 hours and 24 hours. 

The iron released from the surface of micromotors in the solution was measured by 

inductively coupled plasma spectrometry (ICP-OES). Measurements were 

performed after 60 minutes of degradation cycle for up to 8 cycles. The measured 

iron concentrations for all three sizes of micromotors 200 µm, 300 µm and 500 µm 

after the first cleaning cycle are ca. 2.10, 2.15 and 2.20 µg/ml respectively. The 

similar concentration of iron in the solution for all sizes (Figure 27A) further proves 

a similar initial dye degradation rate for different sizes of motors (Figure 24A). In 
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the subsequent cycles, the concentration dropped sharply, and remained in a lower 

range, as shown in Figure 27A.  

The initial ferrous ion concentration in the reaction mixture greatly affects the 

kinetics of the Fenton reaction. As reported by Hameed et al., an iron concentration 

above 2 µg/ml is sufficient to carry out classical homogeneous Fenton degradation 

of malachite green.93 However, if the Fe2+ concentration in the solution is below 1 

µg/ml, the malachite green degradation rate should not be higher than the rate 

observed in the control experiment without Fe2+.  The dye degradation in first cycle 

can be attributed to the released iron from the surface of micromotors but from the 

second cycle onwards, the iron concentration was below 1 µg/ml. Despite having 

the iron concentration lower than 1 µg/ml, percentage of degradation only changes 

marginally. This result suggests a shift of the reaction pathway towards the 

heterogeneous Fenton reaction. There should be the formation of in-situ 

heterogeneous Fenton catalyst on the surface of the micromotors to achieve a dye 

degradation efficacy as in the first cycle. Also, the motion of micromotors can keep 

regenerating the active surfaces and increases the mass transfer to help maintaining 

the percentage of dye degradation. 

To study surface changes occurred after Fenton reactions, micromotors were 

analyzed by X-ray photoelectron spectroscopy (XPS) using a PHI 5500 

multitechnique system spectrometer, equipped with a monochromatic X-ray source. 

The micromotors before Fenton reaction, after Fenton reaction of 5 hours and after 

5 weeks of storage were subjected to XPS analysis. The micromotors were washed 

with water and then dried in an ethanol-CO2 critical point dryer before 

measurements (to dry without damaging the structure). Critical point drying is 

necessary to avoid the mechanical stresses generated due to the surface tension 

changes when the solvent on and around the micromotors is drying. 
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Figure 27. Iron release in the solution and the surface characterization of micromotors. (A) Iron 

concentration released in the solution after first cleaning cycle was above 2 µg/ml, which decreased 

rapidly in the consecutive cycles and remained extremely low. (B, C, D) Fe 2p, Pt 4f and O 1s high 

resolution XPS spectra on the surface of micromotors before Fenton reaction after 5 hours of 

consecutive cleaning cycles and in the cycle after term storage of 5 weeks. 

Fe is mostly present in an oxidized form at the outermost surface already before the 

Fenton reaction, as evidenced by the existence of a Fe2p doublet located at 709.8 

and 723.9 eV, which can be assigned to Fe2+ 94,95 (Figure 27C). It is plausible to 

assume that the in situ generation of FexOy heterogeneous catalyst89 at the surface of 

the micromotors reacts with H2O2 to yield reactive oxidative species in the Fenton-

like reaction after first use. In fact, the Fe 2p doublet is slightly shifted toward 

higher binding energies after 5 weeks of storage, indicating the presence of Fe3+. 

According to the literature, peak positions shift toward higher binding energies as 

the oxidation state of Fe increases96. Although the difference in binding energy 

between Fe2+ and Fe3+ oxidation states is very small (therefore, it is difficult to 

determine the relative amount of Fe2+ and Fe3+ in the micromotors), it is clear that 
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the surface becomes more oxidized. Notice also that the shoulder observed ca. 706 

eV both before and after 5 hours of Fenton reaction and attributed to metallic Fe 

(2p3/2)97 weakens after 5 weeks. Hence, a complex mixture of iron oxides (FeOOH, 

Fe3O4 or Fe2O3) is probably present at the surface of the micromotors after 5 weeks. 

Also, a slight shift in Pt 4f doublet is observed after 5 weeks of Fenton (Figure 27B). 

This might indicate oxidation of metallic Pt, but to a much less extent than Fe 

owing to the noble nature of Pt. Regarding the O 1s core-level spectra, a complex, 

broad signal with several maxima is observed (Figure 27D). After 5 hours of Fenton 

reaction the contribution from lattice O2- (529 eV) relatively increases, indicating 

again that the surface is more oxidized. Likewise, the peak at 530.7 eV has been 

attributed to non-stoichiometric oxides in the surface region (oxygen deficiencies)98. 

After 5 weeks, the O1s signal is dominated by the contributions from hydroxyl 

groups. Moreover, the Fe/Pt ratio markedly diminishes after Fenton reaction: 1.51 

before Fenton; 1.37 after Fenton for 1 h; 0.90 after Fenton for 5 weeks, indicating 

that Fe undergoes leaching, in agreement with ICP analyses.  

To assess the mechanical robustness and integrity of the micromotors, 

nanoindentation experiments were performed on the rolled tubular micromotors 

obtained from the 500 × 500 µm Fe/Pt flat films. Experiments were carried out (i) 

before Fenton reaction (ii) after 5 hours of Fenton reaction and (iii) after 5 weeks of 

storage.  

Figure 28 (A, left) shows the applied load (P) – penetration depth (h) indentation 

curve of a micromotor before the Fenton reaction (i.e., an unused micromotor). The 

test reveals a smooth loading behavior up to a load of about 0.1 mN, where a 

pronounced pop-in (i.e., sudden displacement burst) is observed. This displacement 

was associated to a cracking event of the material and was further verified through 

optical microscopy. Figure 28 (A, center) shows the image of the tubular micromotor 

before indentation, while Figure 28 (B, right) shows the same micromotor after 

indentation. Arrows in Figure 28 (B, right) indicates a layer of micromotor that has 

been chipped away during indentation and, most likely, corresponds to the cracking 

event shown in Figure 28 (A, left). A similar behavior, accompanied with a certain 
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barreling of the micromotors, was observed in all other investigated micromotors 

before Fenton reaction. 

 
Figure 28. Representative load (P) – displacement (h) curves and optical microscopy images of 

micromotors before indentation (center) and after indentation (right) corresponding to the 

micromotors. (A) before Fenton, (B) after 5 hours of Fenton and (C) after 5 weeks of storage. Arrows 

indicates chipped off layers and cracks of the micromotors that occurred during indentation and, most 

likely, associated to the cracking event shown in the respective load-displacement curve.   

A representative nanoindentation curve of the micromotors after 5 hours of Fenton 

reaction is shown in Figure 28(B, left). The maximum penetration depth attained after 

Fenton reaction is smaller than before Fenton. Namely, h decreases from  35 µm 

(before Fenton) to  23 µm (after 5 hours), respectively. This means that the Fenton 

reaction induces an increase of the strength of the micromotors. Cracking events 

and exfoliation of the micromotors usually take place during indentation tests 

performed after Fenton reaction, although at loads typically close to 0.2 mN (see 
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Figure 28(B, center) and (B, right)). In summary, before Fenton reaction the 

micromotors appear to be more ductile, with higher attained penetration depths than 

for micromotors after Fenton reaction for a given value of maximum applied load 

(compare Figure 28(A) and 5(B)). Both, before and after 5 hours of Fenton reaction, 

indentation tends to cause a certain barreling of the tubes (particularly before 

Fenton reaction) inducing, finally, cracking and exfoliation of the outer shells of the 

tubes. As aforementioned, after 5 hours of Fenton reaction micromotors appear to 

be mechanically stiffer mainly because: (i) tightening up, reducing the diameter of 

the micromotor and increasing the number of layers (i.e., their thickness) and (ii) 

the formation of iron oxides at the outer surface of the micromotors as seen in the 

XPS analysis in Figure 4(C). 

Figure 28 (C) shows the results of nanoindentation on a micromotor after 5 weeks in 

storage. In this case, the penetration depth attained for an applied load of 0.2 mN is 

around 10 µm and no cracking events were observed for this maximum applied 

load. In order to assess whether exfoliation of the micromotors takes place at higher 

loads, nanoindentation experiments were performed with PMax = 1 mN. As it can be 

observed in Figure 28(C, left), in this case a clear cracking event occurs at P  0.6 

mN. This critical load for cracking is therefore higher than the one observed in 

Figure 28(A) and 5(B), suggesting an increase of mechanical resistance of the 

micromotors with usage. Typical optical microscopy images of these tubes before 

and after indentation with PMax = 1 mN are shown in Figure 28(C, center) and (C, 

right). 

Table 1. shows the energy analyses performed during indentation of the micromotors 

for the three investigated conditions. Remarkably, the elastic recovery (i.e., the ratio 

between the elastic energy, Uel, and the total energy, Utot) after 5 weeks of storage is 

clearly larger than before Fenton or after 5 hours of usage. Hence, from a 

mechanical point of view, the tubes after Fenton are better than before Fenton, as 

fracture is clearly delayed and the elastic recovery is enhanced by more than a 

factor of 2 with respect to the as-prepared micromotors before Fenton. 
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Table 1. Summary of the elastic (Uel), plastic (Upl) and total (Utot) indentation energies for the 

micromotors. The ratio Uel/Utot corresponds to the elastic recovery of the indented micromotors. 

Tube Elastic energy 

Uel (nJ) 

Plastic energy 

Upl (nJ) 

Total energy 

Utot (nJ) 

Uel/Utot 

Before Fenton 0.97 2.71 3.68 0.26 

After Fenton 5 hrs 0.46 1.83 2.29 0.20 

After Fenton 5 weeks 2.13 1.67 3.80 0.56 

 

Finally, nanoindentation finite element simulations were performed using the 

commercial software ABAQUS in order to shed further light on the mechanical 

performance of the micromotors.  

 
Figure 29. Scanning electron microscopy images and Finite Element Modelling of (A) a micromotor 

before Fenton and (C) a micromotor after Fenton reaction, together with the simulated von-Mises stress 

distribution of indented micromotors with similar wall-to-thickness aspect ratios (B and D, respectively). 

 The chosen geometry for the simulations was a cylinder with a wall-to-diameter 

aspect ratio similar to the investigated micromotors before and after 5 hours of 
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Fenton reaction. The mesh used during the simulations consisted of fully-integrated 

brick-shape elements, Berkovich indenter was considered as a perfectly rigid body 

and the cylinders perfectly elastic, with a Young’s modulus equal to 200 GPa. 

Boundary conditions were such as to prevent the vertical displacement of the 

cylinder during indentation. The von Mises yield criterion was used to study the 

differences in the mechanical performance of the micromotors before and after 5 

hours of Fenton reaction. The diameter of the micro clearers was decreased after the 

reaction (Figure 29A and C) due to the tightening of the layers, likely because of the 

pressure pulses generated during bubble development and release could promote the 

release of residual strains from the layers. The simulations reveal that the tube after 

Fenton reaction (Figure 29D) accumulates higher stress directly beneath the indenter 

tip for a given applied load than the tube before Fenton reaction (Figure 29B), 

indicating that it is mechanically harder. Concomitantly, for a certain applied load, 

the overall deformation of the tube before Fenton reaction is higher than in the 

simulated tube after Fenton. The results of this simple simulation (which does not 

take into account the multiwall structure of the micro-tubes) agree qualitatively well 

with the experimental observations.  

In order to demonstrate the remediation capabilities of micromotors to other 

organic pollutants, we performed a degradation experiment for a phenolic 

compound (4‐nitrophenol) using 500 μm micromotors. 4‐nitrophenol is one of the 

most common organic pollutant molecules present in industrial wastewater. 

Degradation of 4‐nitrophenol is challenging using bacteria, yet hydroxyl radicals are 

capable of completely mineralizing it into carbon dioxide. Figure 30 shows that using 

H2O2 as oxidant alone cannot degrade 4‐nitrophenol, while micromotors can 

degrade around 30% in 60 minutes. 
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Figure 30. Degradation of 4‐nitrophenol by H2O2 control in 60 min (red), 500μm micromotors in 10 

min. (blue) and 60 min. (cyan). Black line indicates control with H2O 

The difference in the percentage of degradation for malachite green and 4‐

nitrophenol is due to the different reaction kinetics of hydroxyl radicals for different 

organic molecules. Micromotors degraded ≈18 μg of 4‐nitrophenol in 10 minutes 

and ≈41 μg in 60 minutes from 3 mL of contaminated water containing 150 μg of 

initial amount (50μg mL–1). A longer duration is required to achieve complete 

degradation, but the addition of larger amounts of micromotors could achieve faster 

oxidation and even total degradation. 

2.3. Conclusions  

We demonstrated reusable, self‐propelled Fe/Pt micromotors that can carry out a 

Fenton‐like reaction with high activity and without the need for external mixing. 

We found that the variation in the length of micromotors does not affect the 

performance if the amount of catalytic material used is kept constant. The 

reusability results showed that the micromotors can be recovered using magnets and 

reused for multiple times within a short duration of less than a week without any 

decrease in their organic‐degradation performance. Even longer-term storage for 
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several weeks is possible without sacrificing much of the activity. The micromotors 

can also be used for continuous swimming applications for at least 24 hours. 

Although the iron released into the treated water from the second cycle onwards 

was much less compared to that from the first cycle, the activity of the micromotors 

remained constant. We observed that the surface of the micromotors oxidized to 

produce in situ iron oxides that act as a heterogeneous catalyst. The formation of 

iron oxides along with the tightening of the rolled‐up layers increased the 

mechanical strength of the micromotors after the Fenton reaction. Degradation 

experiments of 4‐nitrophenol and malachite green proved the possibility of using 

micromotors for wide range of organic pollutants. The experiments presented here 

evidence the long‐term reusability of very active micromotors, which will be 

beneficial towards lowering the cost of the water treatment using this advanced 

technology.  

2.4. Experimental section 

2.4.1. Fabrication of the micromotors 

Micromotors were fabricated by rolling up the nanomembranes of iron and platinum 

metal deposited on square patterns of photoresist. Positive photoresist patterns (200 

m, 300 m and 500 m) were developed using standard photolithography 

techniques. Positive photoresist (ARP 3510) was spin coated (3500 rpm for 35 s) on 

previously cleaned glass wafers (18x18 mm) to make a layer with uniform thickness 

(2.4 m) and exposed to the UV light under a chromium mask with the respective 

sizes of patterns confined in 1 cm2 area by a mask aligner. Photolithographic 

patterns on glass substrates were developed (using 1:1 water/AR 300) and dried by 

blowing nitrogen before depositing the metal nanomembranes. A custom-built e-

beam evaporator was used for the deposition. Two layers of iron (100 nm) were 

evaporated at different deposition rates (at 0.30 nms-1 and 0.06 nms-1 respectively); 

third layer of platinum (5 nm) was evaporated (at 0.02 nms-1). All three layers were 

deposited at the glancing angle (65o), which leads to a non-deposited window at 
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each pattern. The photoresist walls, adjacent to the non-deposited windows, remain 

exposed which was required for the controlled directional rolling of 

nanomembranes. A mixture of dimethyl sulfoxide (DMSO) and acetone (1:1) was 

used to etch photoresist selectively from the exposed wall. The nanomembranes 

were rolled up from the side of the exposed wall to the unexposed wall in the shape 

of tubular micromotors.   

2.4.2. Size effect and reusability experiments   

Three different sizes of micromotors (200 µm, 300 µm and 500 µm long with the 

diameter between 40-60 µm) were fabricated from the nanomembranes deposited 

on photoresist patterns that were confined in 1 cm2 area on the glass substrate. The 

number of micromotors rolled up from a constant amount of catalytic material 

present in 0.64 cm2 area including all square patterns were different for different 

sizes of patterns (~1600, ~729, ~ 256 respectively for sizes in increasing order). 

After rolling up, micromotors were first transferred into SDS water (0.5 % w/v) and 

then used for degradation experiments, carried out in a beaker containing total 3 ml 

of polluted water consisted of malachite green (50 µg/ml), H2O2 (15% v/v) and SDS 

(0.5 % w/v) at the adjusted acidic pH (2.5). Dye concentration was measured by a 

spectrophotometer (Specord 250, Analytical Jena) at 0, 10, 30 and 60 minutes 

during the experiments to study the effect of sizes.  

In a different batch, micromotors of all sizes were fabricated using the same 

parameters that were used for size effect experiments to study the reusability. All 

three sizes of micromotors were reused after short and long-term storage. Short-

term experiments were carried out at varying time intervals; first five cycles were 

carried out at 1 to 5 hours continuously changing polluted water after the end of the 

60 minutes of a degradation cycle. After the end of each cycle, micromotors were 

confined in a corner of the beaker using a strong neodymium-iron-boron hard 

magnet and the treated water was replaced with pure water (Millipore water) to 

clean the surfaces of micromotors, cleaning step is repeated twice and then polluted 
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water solution is added for the next cycle. Polluted water composition was kept 

same as in the size effect experiments. After 5 hours, micromotors were cleaned and 

stored in SDS water (0.5% w/v) before using in next cycles at 18 hours and 24 

hours form the first cycle.  In a similar fashion, long term storage experiments were 

carried out using the same micromotors after 1 week of intermediate storage 

between two cycles up to 5 weeks from the first cycle.  Dye concentration after each 

cycle was measured by the UV-Vis spectrophotometer. After each cycle, treated 

water was collected and further analyzed by ion coupled plasma (ICP-OES) method 

to measure the iron concentration that was leached from the surface of micromotors.   

2.4.3. Continuous swimming experiment and video recording 

An upright microscope (Leica DFC3000G camera) was used to record rolling up 

videos for different sizes of micromotors while an inverted microscope (Leica 

DMI300B) was used to study the swimming behavior of micromotors after each 

cleaning cycle. A custom designed 3D printed microscope stage was fabricated to 

record the swimming of micromotors directly in the beaker where the degradation 

experiment was going on.  

During the continuous swimming experiment, micromotors were observed under 

the inverted microscope at 1, 5 and 24 hours.  

2.4.4. Surface characterization   

X-ray photoelectron spectroscopy (XPS) analyses were carried out on a PHI 5500 

Multitechnique System (from Physical Electronics) spectrometer, equipped with a 

monochromatic X-ray source (KαAl line with energy of 1486.6 eV and 350 W), 

placed perpendicular to the analyser axis and calibrated using 3d5/2 line of Ag with a 

full width at half maximum (FWHM) of 0.8 eV. The analysed area was a 0.8 mm 

diameter disk surface for each sample. Charging effects were corrected by 

referencing the binding energies to that of the adventitious Cls line at 284.5 eV. 
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2.4.5. Mechanical properties 

Micromotors were dried using an ethanol-CO2 critical point dryer before doing the 

nano-indentation experiments. Typical load-displacement measurements were 

conducted on the micromotors before Fenton reaction, after 5 hrs of Fenton reaction 

and after 5 weeks.  For the sake of simplicity, the micromotors obtained from the 

500 x 500 µm Fe/Pt layers were selected for the mechanical tests. Experiments were 

performed in load-control mode, using a UMIS instrument from Fischer-Cripps 

Laboratories equipped with a Berkovich pyramidal-shaped diamond tip. Maximum 

applied load values ranged between 0.2 mN and 1 mN. To ensure statistically 

meaningful results, at least 10 indentations were performed for each type of 

micromotors and the representative average behaviour is reported. The elastic (Uel) 

and plastic (Upl) energies during indentation were assessed from the areas enclosed 

between the unloading segment and displacement axis (Uel), and between the 

loading and unloading segments (Upl). The total indentation energy is Utot = Uel + 

Upl and corresponds to the area enclosed between the loading segment and the 

displacement axis. The ratio Uel/Utot denotes to the elastic recovery of the tubes after 

having been indented. 
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CHAPTER	3.	
HEAVY	METAL	REMOVAL	USING	MICROMOTORS	

  

The results described in this chapter are published in the following 
article. 
 
Vilela, D.; Parmar, J.; Zeng, Y.; Zhao, Y.; Sánchez, S. Graphene-Based 
Microbots for Toxic Heavy Metal Removal and Recovery from Water. 
Nano Lett. 2016, 16 (4), 2860–2866. 
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3.1. Introduction 

Pollution in water from heavy metals such as arsenic, mercury, cadmium, chromium 

and lead, originates from various human industrial activities such as electroplating, 

mining, fabrication of batteries and microelectronics. It is a potential hazard to 

living systems; hence, it is essential to develop efficient and inexpensive materials 

and technologies to remove and recycle them from polluted water. Various methods 

are in use to remove and recover heavy metals such as chemical precipitation, 

adsorption, ion exchange and membrane filtration amongst which adsorption is 

considered an economical and effective strategy99. 

Recent developments in nanotechnology have further increased the effectiveness of 

adsorbent materials providing innovative systems for improving environmental 

remediation10,100. Lately, numerous reports described the utilization of graphene and 

its composites as good adsorbents for the removal of dyes and heavy metal ions 

from aqueous solutions101–103. And, the synergy between active motion of 

micromotors and surface functionalization with active materials is exploited for 

various organic removal and environmental sensing applications, such as the 

detection of heavy metals104,105, pH106 or other analytes107–109. However, the capture 

of heavy metals, their release in defined locations and the re-use of micro-motors 

for further cleaning was not reported. We presented the removal and recovery of 

heavy metals (lead) from contaminated water by using graphene oxide (GOx) based 

tubular micromotors, propelled by a catalytic reaction. The high adsorption of Pb 

(II) ions on the graphene oxide (GOx) nanosheets of the micromotors surface is a 

spontaneous process due to the strong surface complexation between the Pb (II) 

ions and the abundant oxygen moieties on the GOx. Moreover, due to the magnetic 

properties of these micromotors, they can be easily removed from the water using a 

magnet after successful lead decontamination. The adsorbed Pb(II) ions on the 

micromotors can be recovered via acid pH adjustment allowing them to be recycled 

and reused for further decontamination processes.  
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3.2. Results and discussions  

 

Figure 31. Scheme of GOx-micromotors based approach for lead decontamination and recovery. 

(A) Decontamination of polluted water using GOx-micromotors fabricated by electrodeposition of 

nanolayers of graphene oxide (GOx), Pt/Ni layer, Ni magnetic layer and Pt catalytic inner layer. (B) 

Recovery of lead ions from the GOx-micromotors in presence of acidic media. 

As shown in Figure 31A, the micromotors structure consists of an outer graphene 

layer and a platinum inner layer. The platinum layer decomposes H2O2 into water 

and oxygen microbubbles; and the ejection of microbubbles from one side of 

micromotors provides enough force for its self-propulsion. Between the Pt and 

GOx, layers of Pt/Ni and Ni were deposited to control and guide micro-bots motion 

by externally applied magnetic field. The detailed fabrication of conical, self-

propelled tubular motors by sequential electrochemical deposition of nanolayers on 

A B 
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the inner wall of a polycarbonate membrane is described in the experimental 

section. 

Taking advantage of the self-propulsion and magnetic properties of the 

micromotors, in combination with the GOx adsorption properties to attach Pb (II) 

ions, two approaches for the removal of lead were used (Figure 31A). In addition, the 

recovery of lead after its removal from wastewater was also carried out, as it is 

displayed in Figure 31B.  

 

Figure 32. Characterization of GOx-micromotors: (A) SEM images illustrating. (1) GOx-micromotors 

attached to the gold layer, (2) structure of a single GOx-micromotor and (3) close look of the surface of a 

GOx-micromotor. (B) The EDX spectrum of GOx-micromotors (inset: EDX mapping of the GOx-

micromotor for Pt). (C) Raman Spectrum from the surface of GOx-micromotors, showing characteristic D 

and G band of graphene oxide. (Inset is an illustration of the GOx-micromotors analyzed by Raman 

spectroscopy). (D) Raman spectroscopy displays the Raman scan map of the GOx-micromotors, 

confirming the presence of graphene on the full surface of micromotors (see inset: Image of the 

GOx/Ni/Pt tube and scanning path (Red line) of the analysis).  
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GOx-micromotors were characterized by scanning electron microscopy (SEM), 

energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy and high-

resolution X-ray photoelectron spectroscopy (XPS), as it is observed in Figure 32. 

Figure 32A-1 illustrates the tubular morphology and size polydispersity of the 

micromotors after their fabrication. Most of the micromotors show bi-conical 

morphology and a low polydispersity indicating that fabrication was homogenous. 

Figure 32A-2 displays the hollow inside layer of a representative micromotor. Their 

average outer diameter is 4.6±0.1m (n=10) and their inner diameter of 2.5±0.1m 

(n=10). The surface of micromotors is inhomogeneous, as it is shown in Figure 32A-

3 which can be due to the high number of defects produced by the non-

homogeneous electrochemical deposition of graphene nanosheets on the 

polycarbonate membrane during the fabrication of these micromotors. Figure 32B 

illustrates the EDX analysis and reveals the components of the micro-bots including 

carbon, nickel and platinum where platinum is the major component. Raman 

spectroscopy analysis and mapping for GOx-micromotors are shown in Figure 32C 

and D, respectively. Figure 32C shows Raman spectrum of the micromotor surface 

where the characteristic peaks of D and G band are observed at 1350 and 1570 cm-1, 

respectively. Usually, the D-mode is caused by disordered structure of graphene, 

while band G arises from the stretching of the C-C bond in graphitic materials and 

is common to all sp2 carbon systems.  The band intensity ratio of ID/IG suggests the 

abundant presence of oxidized carbon in GOx-micromotors.  To further confirm the 

complete coverage of GO layer on micromotors, the GOx-micromotors were 

characterized by confocal Raman technique. As shown in the bright field image 

(Figure 32D inset), a trimer of GOx-micromotors formed by physical attachment was 

chosen for the Raman mapping. By mapping integrated intensity values of D and G 

bands in Raman spectrum of GOx-micromotors, a 2-D Raman line mapping image 

was acquired and is presented in Figure 32D. Homogeneous distribution of high 

intensity signal in red and yellow colors resembles the width of a trimer with similar 

dimension. The confocal Raman line mapping image confirmed the successful and 

uniform coverage of GO on the surface of micromotors.  
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Figure 33. XPS spectra survey of GOx-micromotors. (A) showing O1s and C1s peaks. (B and C) High 

resolution C1s and O1s XPS spectra of GOx micromotors displaying various functional groups identified 

on the surface.   

XPS spectra survey further reveals the presence of carbon (C1s peak) and oxygen 

(O1s peak) elements on the surface of GOx-micromotors, where the O1s signal is 

higher compared to the C1s signal (Figure 33A) characteristic for GOx. The peaks of 

high-resolution C1s spectra (Figure 33B) and O1s spectra (Figure 33C) correspond to 

the binding energy of various functional groups such as C-C/C-H/C=C, C-OH, C=O 

and O-C=O, revealing the nature of the covalent bonds of oxygen atoms and carbon 

atoms (Table 2).  

The ratio of percentage atomic concentration of C-C/C-H/C=C functional groups to 

all carbon-oxygen functional groups is 0.94, which denotes the degree of oxidation 

of GOx. Abundant carbonyl and carboxyl groups are present on the GOx-

micromotors which are considered very important for the adsorption of heavy 

metals on the surface of graphene oxide110. 

A B 
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Table 2. Various functional groups identified on the surface of GOx-micromotors. 

Spectra Group Position %At 

C 1s C-C/C-H/C=C 284.68 48.638

C 1s C-O 286.19 29.875

C 1s C=O 288.09 17.099

C 1s O-C=O 290.49 4.387 

O 1s Metal oxide 529.61 17.231

O 1s O-H 531.61 37.207

O 1s C=O 533.2 27.858

O 1s O-C=O 534.55 17.703

 

To prove the capability of the self-propelled GOx-micromotors for the purification 

of lead contaminated water by adsorption, a concentration of 1.5% v/v of H2O2 and 

0.1 % w/v of sodium dodecyl sulfate (SDS) were used systematically in the all 

experiments as the optimal conditions for the swimming of the GOx-micromotors.  

Velocities of the micromotors in these conditions averaged at approximately 500 

m s-1. A swarm of approximately 2 x 105 GOx-micromotors was deployed in the 

lead contaminated water (1 ppm) for adsorptive removal. Figure 34A shows 

snapshots from characteristic micromotors swimming in lead-contaminated water at 

different time periods. Bubble tails released from micromotors indicate the 

trajectories and displacement of micromotors at initial time, 15, 30 and 60 min 

respectively.   
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Figure 34. Kinetics of Pb(II) decontamination and speed for the GOx-micromotors. (A) Optical 

snapshots from videos of GOx-micromotors moving at different times during the decontamination 

process (B) Pb(II) ions concentration at different time intervals during decontamination by GOx-

micromotors (inset: illustration of a GOx-micromotor with adsorbed lead (green dots) on the surface after 

the decontamination process). (C) Speed of GOx-micromotors at different times (0, 15, 30 and 60 min, 

Inset: trajectories of the GOx-micromotors for 5 seconds). Experimental conditions: 1 ppm as initial Pb(II) 

concentration, 1.5% v/v of H2O2 and 0.1% w/v SDS. 

Figure 34B shows the decrease in lead concentration over 60 minutes in the presence 

of motile GOx-micromotors. The lead concentration was measured using 

inductively coupled plasma optical emission spectrometry (ICP-OES) which is able 

to detect traces of metals. In the first 10 minutes, the GOx-micromotors were able to 

decrease the lead concentration from 1 ppm to lower than 0.4 ppm and in 1 hour the 

GOx-micromotors were able to remove more than the 80% of lead from the 

contaminated water. The GOx-micromotors were allowed to swim for 24 hours 

observing that after this time the concentration of lead was slightly higher 

(0.29±0.02 ppm) than it was in one hour (0.17±0.01 ppm). This could be attributed 

to the fact that with time, the process of adsorption reaches to a desorption-

adsorption equilibrium where desorption phenomenon could also occur.  Therefore, 

1 hour was selected as the optimal time for the lead remediation from polluted 

water. Figure 34C (inset) displays the tracking of the average speed of the 

B 
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micromotors for 5 seconds at different times (0, 15, 30 and 60 minutes).  When the 

micromotors were initially added to the lead contaminated solution and 1.5% H2O2 

v/v, high velocities and frequent reorientation of trajectories were observed. After 

15 minutes, the speed of the micromotors slightly decreased and their trajectories 

were usually circular or straight. After 30 and 60 minutes, micromotors swam at 

slower speed compared to their initial values and with less frequent reorientation in 

the direction of swimming.  This swimming behavior was due to the fact that the 

H2O2 was being consumed continuously from the solution during the catalytic 

reaction on the inner platinum surface. To demonstrate that the presence of lead 

does not affect the motor speeds, new fresh H2O2 was added to the slow or non-

swimming micromotors that had previously undergone 24 hours of catalytic 

reaction, which reestablished swimming of micromotors with similar velocities and 

movements as were observed at the beginning of the experiments.  

 

Figure 35. Pb (II) ions decontamination by GOx-micromotors and characterization of micromotors 

after decontamination. (A) Decontamination of Pb(II) ions in different systems: In the presence of (a) 

H2O2 and of SDS (b) SDS and non-motile GOx- micromotors (c) SDS and GOx-micromotors stirred by 

external magnets (d) H2O2, SDS and docked GOx-micromotors (immobilized by stationary magnetic 

field) and (e) in the presence of H2O2 and SDS motile GOx-micromotors (B) Decontamination of Pb(II) 

ions for different concentrations of GOx-micromotors in the presence of H2O2 and of SDS. (Inset: ICP-

OES signal of lead concentration after decontamination process for increasing amount of motors) (C) 

A B 
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EDX mapping: the SEM image of the analyzed GOx-micromotors after the decontamination process 

showing, carbon distribution, platinum distribution and Pb(II) distribution. 

Several control experiments were carried out to demonstrate that the 

decontamination process was due to the adsorption on the GOx-micromotors (Figure 

35A). The decontamination of lead was measured after placing contaminated lead 

solutions into different experimental conditions. Figure 35A-a shows that without the 

use of micromotors, the lead concentration does not decrease when in contact with 

the fuel H2O2 and SDS after 24 hours. Figure 35A-b shows minor decontamination of 

lead when a fixed amount of GOx-micromotors were left in contact with the lead 

contaminated solution for 1 hour. This was performed without adding H2O2 in the 

solution, so that GOx-micromotors could not swim, leading to a low 

decontamination of lead. The GOx-micromotors were then stirred by rotation of an 

external magnetic field generated by the magnetic stirrer, as it is represented in the 

inset in Figure 35A-c. Here, micromotors were able to remove 66.6±2.4 % lead from 

water. When the GOx-micromotors are rotated at high speed in the solution, the 

diffusion of lead ions on the micromotors surface is enhanced due to induced micro-

convection. This increases the chances of contact between contaminant and 

micromotors. Figure 35A-d displays the decontamination when the bubbled GOx-

micromotors left in polluted solution, but their swimming was inhibited by the 

presence of a strong magnet, which immobilizes them in a fixed location. However, 

when these GOx-micromotors left free to swim (Figure 35A-e), the decontamination 

process is ten times more effective as it varies from 7.7±4.5% (non-motile) to 

83.2±1.0% (motile). These results reveal the high significance of the synergy 

between the presence of graphene oxide and self-propulsion of the GOx-

micromotors.  

Because the lead decontamination is an adsorption process based on the adhesion of 

lead onto a GOx surface, when the number of GOx-micromotors in the 

contaminated water was increased, the concentration of lead in the solution 

decreased as displayed in Figure 35B. We doubled the number of micromotors and up 

to four times the standardized amount of micromotors (2 x 105 micromotors), 
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resulting in an increase of lead capture from 83.2% to more than 95 % (remaining 

lead concentration was <50 ppb). The plateau at 6 x 105 micromotors, indicates the 

lead detection limit of the analytical system used for the analysis.  

EDX mapping was used to verify the decontamination by GOx-micromotors, which 

showed the presence of Pb on their surfaces (Figure 35C). Lead was not found in 

EDX mapping performed previous to the decontaminating experiment (Figure 32B), 

which gives direct evidence of adsorption of lead on the surface of the micromotors. 

The effective adsorption of lead on graphene surface of the GOx-micromotors is 

based on the strong interactions produced between graphene oxide and Pb (II) ions 

due to the formation of electron donor–acceptor complexes. The presence of oxygen 

moieties and delocalized-electron systems in graphene oxide act as Lewis base 

and attach to the Pb(II) ions which act as Lewis acid. In addition, this process is 

strongly dependent on the pH and temperature and independent of ionic strength111. 

We also observed that the structure of the GOx-micromotors was not damaged by 

the decontamination process maintaining its composition. (Figure 35C, SEM image).  

We further demonstrate the recovery of lead after its removal from polluted water. 

Figure 36A shows the efficiency of lead recovery after treating GOx-micromotors in 

different chemical conditions to induce the desorption of Pb(II) from their surfaces. 

Different aliquots of previously used GOx-micromotors for lead removal were 

extracted using a magnet, dissolved in 3 mL of different media (Figure 36A) and 

stirred for 1 hour. After the removal of GOx-micromotors from the solution by 

magnetic control, the remaining solution was analyzed for lead by ICP-OES 

analysis. When the GOx-micromotors were in presence of water, cold water (temp 4 
0C) and basic pH (11), the Pb(II) ion concentration was not detectable at the 

detection limit of the instrument (50 ppb). However, when the GOx-micromotors 

were kept in acidic media i.e HCl (pH=1) and HNO3 (pH=0.3), desorption event 

reached recoveries up to 91.2±4.6% and 101.0±3.5%, respectively. The structure of 

the GOx-micromotors was not significantly affected as it is observed in the inset of 
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Figure 36A which shows a SEM image of GOx-micromotor after the 

decontamination and recovery processes. 

 

Figure 36. Lead recovery, reusability of GOx-micromotors and magnetic control of GOx-

micromotors. (A) Recovery of Pb(II) ions from GOx-micromotors after different desorption treatments, 

which were previously employed in decontamination process. (Inset shows SEM image illustrating GOx-

micromotors tube after the decontamination and desorption (with 0.5M HNO3) process. (B) Reusability of 

GOx-micromotors, representing lead decontamination in the first and second cycle. (C) Optical snapshot 

from a video of GOx-micromotors controlled by magnetic guidance after the lead recovery process. (D) 

GOx-micromotors controlled by magnetic guidance swimming in a PDMS microchannel as a prototype 

system.  

After cleaning and washing GOx-micromotors, the reusability of GOx-micromotors 

was studied. The GOx-micromotors were added into the lead contaminated water as 

in the first decontamination assays. Figure 36B represents that the GOx micromotors 

D 
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retained their lead removal efficiently in the second cycle after removing and 

recovering lead in the first cycle. Activation of graphene oxide by treatment with 

the oxidant acids such as nitric acids oxidize the graphene surface and increase the 

number of oxygen moieties, which mainly interact with Pb(II) ions.  

As a proof-of-concept, we tested the capabilities of GOx-micromotors to perform 

various tasks inside a PDMS microchannel by external magnetic guidance. Since 

GOx-micromotors contain Ni layer, they are ferromagnetic in nature which allows 

control of their trajectories by external magnetic field. Figure 36C show the trajectory 

control of GOx-micromotors by using the external magnetic field after the process 

of Pb(II) decontamination on the surface. Figure 36D illustrate a GOx-micromotor 

guided in the microfluidic channel from the lead contaminated water containing 

reservoir after decontamination to the other location where lead can be recovered 

and concentrated for recycling. The ability to magnetically control the micromotors 

makes it possible to develop and program an automated system to guide swarm of 

micromotors to accomplish the assigned tasks.  

3.3. Conclusions  

In conclusion, we have demonstrated graphene oxide based micromotors for the 

efficient removal of toxic heavy metal (Pb) from contaminated water through an 

adsorption process, the recovery of Pb(II) ions and the subsequent reusability of 

GOx-micromotors. GOx-micromotors can be deployed in contaminated water to 

swim randomly and easily be collected using magnets once the water purification 

process has been completed. As a proof of the concept, magnetic control of GOx-

micromotors swimming inside a microfluidic system was demonstrated. GOx-

micromotors can be useful as new devices for future decontamination of heavy 

metals from industrial waste water due to their efficiency for decontamination, their 

easy removal from the solution and the possibility of lead recovery and their 

reusability. The use of active systems and graphene nanomaterials can pave the way 

for new functionalities of self-propelled micro-nanomotors, from drug delivery, 

sensing, energy to new environmental applications.    
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3.3. Experimental methods 

3.3.1. Materials and reagents 

Graphene oxide, sodium dodecyl sulfate (SDS), lead nitrate, nitrate acid, 

hydrochloric acid and sodium hydroxide were purchased from Sigma-Aldrich 

(Germany). H2O2 30%, potassium nitrate, methylene chloride and ethanol were 

purchased from Merck (Germany). Ultrapure water (Millipore Corporation, USA) 

was used for the preparation of all aqueous solutions.  

3.3.2. Fabrication of graphene oxide-based multilayer micromotors 

The graphene oxide-based multilayer micromotors were fabricated using a common 

template directed electrodeposition protocol. A cyclopore polycarbonate membrane, 

containing 5 µm maximum diameter conical-shaped micropores (Catalog no. 7060-

2513; Whatman, Maidstone, UK), was employed as a template. 80 nm gold film 

was first sputtered (sputter system MED020 Bal-Tec) on one side of the porous 

membrane to serve as a working electrode using an evaporation and sputtering was 

performed at room temperature under vacuum of 5x10-2Torr, power 60 mA and Ar 

was flowed during 85s. A Pt wire and an Ag/AgCl with 3 M KCl were used as 

counter and reference electrodes, respectively. The membrane was then assembled 

in a plating cell with an aluminum foil serving as contact for the working electrode. 

A solution which contains 0.1mg/mL graphene oxide (GOx) in 0.5M of Na2SO4 and 

0.1 M of H2SO4 was prepared from Sigma-Aldrich reagents1.  The GOx of the 

solution was reduced by using cyclic voltammetry from -1.5V to 0.3V for five 

cycles. Then, the metallic layers were deposited from a Pt and Ni commercial 

solutions (Platinum TP; Technic Deutschland GmbH and nickel-100 semiplate; NB 

Technologies GmbH). Nickel solution was prepared by adding 0.0488 g l-1 SDS to 

the commercial Ni solution and sonicating using an ultrasound bath for 15 min. The 

first metallic layer, which uses a 1:1:1 Pt:Ni:water solution, was deposited 

galvanostatically at -2 mA for 300 s to provide a smooth surface and to improve the 

deposition of the next metallic layers. After washing three times with water, the Ni 



 

83 | P a g e  
 

      Heavy metal removal using micromotors 

layer was deposited amperometrically at -1.0 V for 2.4 C to achieve the 

ferromagnetic properties that allows the micromotor guidance by properly orienting 

the magnetic field created by a simple neodymium magnet. Finally, after other three 

washings, the catalytic inner Pt layer was deposited galvanostatically at -2 mA for 

300 s. To release the GOx-micromotors from the template, the sputtered gold layer 

was completely removed by mechanical hand polishing with 5 µm alumina slurry 

(Electron Microscopy Sciences, Hatfield, PA). The membrane was then dissolved in 

methylene chloride for 10 min to completely release the microtubes. Finally, the 

micromotors were washed two times more with methylene chloride, followed by 

ethanol and ultrapure water, two times of each, and collected by centrifugation at 

9000 rpm (Eppendorf 3409) for 3 min after each wash. 

 

3.3.3. Equipment used for the experiments.  

Template electrochemical deposition of microtubes was carried out with using a 

potentiostat (AUT50101, Metrohm Autolab B.V.). The software used for the 

electrochemical depositions was NOVA 1.10. An inverted optical microscope 

(Leica DMI3000B), coupled with a 10X, 20X, 40X and 63X objectives, along with 

a Leica digital camera DFC3000G with LAS V4.5 soft-ware, were used for 

capturing movies. Scanning electron microscope (E-beam-SEM Ultra 55 Zeiss) was 

used for the micromotors characterization. Energy dispersive X-ray analysis (EDX) 

was carried out using EDAX connected to Cryo-SEM Ultra 55 Zeiss EDAX. Raman 

analysis and mapping were carried out on a Thermo Scientific DXRTM Raman 

Microscope with Atlus system. A 532nm laser line with an output power of 5 W 

was used as the excitation source. The spectra were collected in ranges of 100 to 

4000 cm-1 with exposure time of 1 second and 10 magnification. All Raman 

experiments were conducted at room temperature and ambient pressures. X-ray 

photoelectron spectroscopy (XPS) from SPECS system (Germany) was used to 

identify functional groups on the GOx-micromotors surface. The instrument was 

equipped with XR50 duel anode source (Al operated at 150W) and a Phoibos MCD-

9 detector. All measurements were done under the vacuum (pressure 5x10−9 mBar) 
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and the hemispherical analyzer was set at the pass energy 25 eV while the high-

resolution spectra step size was set at 0.1 eV. Casa XPS program (Casa Software 

Ltd., UK) was used for the data analysis. Inductively coupled plasma optical 

emission spectrometry (ICP-OES), was employed as analytical technique for the 

detection of Pb(II) ions. Origin Pro 9.0 and Microsoft Excel 2010 were employed 

for the analysis of the experimental data.   

Experimental procedure 

The GOx-micromotors were characterized using different characterization 

techniques, such as, Raman, SEM and EDX. After characterization, the GOx-

micromotors fabricated were transferred together in a falcon tube and they were 

observed by using an inverted microscope for estimating the concentration of GOx-

micromotors in water. Once the GOx-micromotors have been characterized and 

counted, they were used for decontamination experiments, which are carried out in 

a glass beaker containing total 3 ml of heavy metal polluted water consisted of 

1ppm of lead (1µg/ml or 1000 ppb), H2O2 (1.5% v/v) and SDS (0.1 % w/v) at the 

pH (5.7).  The assay was carried out by triplicate (n=3) for each time (5, 10, 30, 60 

min and 24 hours) that the motors are swimming in the contaminated solution. 

Control experiments were also carried out by triplicate. Swimming of micromotors 

was recorded at different time interval by inverted microscope and tracking was 

done by a custom-made python script which used open CV libraries. Lead 

concentration was measured by ICP-OES and the GOx-micromotors were kept in 

the glass beakers using a magnet due to their magnetic properties. Then, the GOx-

micromotors were washed once with water and characterized by SEM and EDX 

analysis. After that, they were exposed for 1 hour to different treatments, such as 

water presence, water presence under low temperature, basic pH, acid pH by using 

HCl (pH=1) and HNO3 (pH=0.3) for the lead recovery and washed once with water. 

The supernatant from these different treatments were measured by ICP-OES to 

probe the lead content and thus, the lead recovery from the GOx-micromotors. On 

the other hand, the GOx micromotors were characterized by SEM and EDX and 

washed several times with water for their reusability. Reusability experiments were 

carried out following the same conditions of the first lead decontamination and also 
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by tripiclate for 1 hour. After that, the GOx-micromotors were kept in the glass 

beakers using a magnet and the solutions were measured by ICP-OES. 
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CHAPTER	4.	
BACTERIAL	DISINFECTION	AND	REMOVAL	USING	

MICROMOTORS	
  

The results described in this chapter are published in the following 
article. 
 
Vilela, D.; Stanton, M. M.; Parmar, J.; Sánchez, S. Microbots Decorated 
with Silver Nanoparticles Kill Bacteria in Aqueous Media. ACS Appl. 
Mater. Interfaces 2017, 9 (27), 22093–22100. 
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4.1. Introduction 

Waterborne diseases can have a devastating effect on public health10. Current 

disinfection methods use chemical (free chlorine, chloramines and ozone)112 and 

physical disinfectants (UV light,113,114 electronic radiation115 and heat116). However, 

the resistance of some pathogens to conventional disinfectants requires the 

combination of these disinfection methods or higher disinfectant dosages107 which 

can react with constituents in natural water forming harmful disinfection 

byproducts117. Therefore, there is an urgent need to develop more effective, 

innovative, low-cost, robust water cleaning methods, which do not adversely affect 

the environment or damage human health. 

Recently, new bactericidal micromotors36,118,119 are recently being developed as new 

efficient tools for cleaning waterborne bacteria because of the increasing threat of 

antibiotic resistant bacteria and the harmful chemical byproducts generated by 

conventional water disinfection methods117. However, these bactericidal 

micromotors can produce additional contamination because of the present of their 

residual structures after bactericidal assay, as they cannot be removed after use. 

Alternative methods of bacterial disinfection have used silver in the form of 

metallic silver and silver ions for the treatment of injuries, wounds, and bacterial 

infections120. Currently, because of the rapid growth of nanotechnology, silver 

nanoparticles (AgNPs) are widely used in medical121 and consumer122 products 

owing to their potential bactericidal effects123–127. AgNPs have an exceptionally 

large surface area, which improves the contact with microorganisms and results in 

efficient antimicrobial properties compared to those of other Ag salts126. 

Furthermore, AgNPs can release Ag+ ions at a desired rate and location depending 

on their design (size, surface coatings, etc). Thus, AgNPs can be used as the vehicle 

to efficiently deliver Ag+ ions into the bacterial cytoplasm. The localized acidic pH 

of a bacterial membrane128,129 increases the rate release of Ag+ ions from AgNPs 

adhered to the bacteria123. Ag is able to bind to thiol groups present in proteins, 
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disrupting their functionality by compromising the permeability of the bacterial 

membrane, thereby leading to cell lysis and death123,130.  

In this chapter, an efficient method for the disinfection and removal of bacteria from 

contaminated water using AgNPs-coated Janus micromotors self-propelled by the 

reaction of magnesium (Mg) in water, producing hydrogen (H2) bubbles is 

discussed. The high antibacterial capacity of the developed AgNPs-coated Janus 

micromotors is the result of two synergistic effects: (i) the enhanced contact killing 

by the combination of the Janus micromotors self-propulsion and  immobilized 

AgNPs on their surface131 and (ii) attachment of the bacteria to gold surface.132,133 

Therefore, AgNPs-coated Janus micromotors are able to clean waterborne bacteria 

within 15 min of swimming in contaminated water. In addition, bacteria trapped and 

adhered to the micromotors can be removed from the water source using a magnetic 

field to collect the particles. After swimming of the micromotors and bacterial 

harvest, the magnetic field can be used to remove the micromotors and captured 

dead bacteria.  Unlike previous reports of microswimmers using toxic fuel sources, 

such as H2O2, the Mg-based Janus micromotor is biocompatible, environmentally 

friendly, and does not produce chemical waste during and after operation.  

4.2. Results and discussion 

AgNPs-coated micromotors are based on four materials: (1) Magnesium (Mg) 

microparticles (15±5 µm diameter) as a template structure and for self-propulsion, 

(2) iron (Fe) Janus cap which provides magnetic control, (3) gold (Au) layer on top 

of Fe layer providing an easily modifiable surface and cell adhesion and (4) AgNPs 

attached on the Au surface providing antibacterial properties to the micromotors.  

The detailed fabrication of the water-propelled, AgNPs-coated Janus micromotors is 

described in Figure 37. As shown, the micromotors’ fabrication is carried out by the 

consequent deposition of Fe and Au on a monolayer of previously cleaned 

commercial Mg microparticles using an e-beam metal evaporator (Figure 37A). After 

the deposition, Janus microparticles were dispersed in an ethanol solution for the 

chemical modification of the Au surface using a solution of cysteamine 
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hydrochloride. Then, AgNPs immobilization is mediated by overnight incubation of 

the cysteamine modified Janus microparticles in previously synthesized AgNPs 

solution. A layer of AgNPs is formed on the Au surface of the Janus microparticles 

due to the interactions between AgNPs and amines (Figure 37B)131,134.   

 

Figure 37. Fabrication of the AgNPs-coated Janus micromotors. (A) A monolayer of Mg 

microparticles was deposited on a glass slide. An e-beam metal evaporator was used for the deposition 

of 14 nm layer of Fe and 35 nm layer of Au. To obtain free Janus micromotors, short ultrasound pulses in 

ethanol were applied. (B) Fabrication of the AgNPs-coated Janus micromotors by the modification of the 

Au surface first with cysteamine hydrochloride and then with previously synthesized AgNPs. (C) 

Schematic representation of the different possible mechanisms of bactericidal action caused by the 

water-propelled AgNPs-coated Janus micromotors. 

The Janus micromotors are composed of various materials for a multi-functional, 

environmental remediation system. The Mg microparticle reacts with water 

producing Mg ions (Mg2+), hydroxide ions (OH-) and hydrogen gas (H2) providing a 

microbubble propulsion mechanism which exerts enough force that enables the 

micromotors to swim. The reaction of Mg with water is a spontaneous redox 
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reaction in which Mg is oxidized and H+ protons from water molecules are reduced 

to H2 (Figure 37C). The inner Fe layer offers the ability for remote guidance and 

removal of the micromotors using an applied magnetic field. The outer Au layer 

provides surface chemistry for thiol attachment and subsequent AgNPs modification 

by electrostatic interactions (Figure 37B) and helps bacteria adhesion. The presence 

of the AgNPs on the Janus micromotor provides the particles’ bactericidal behavior.  

Figure 37C represents the possible mechanisms of bactericidal action caused by the 

water-propelled AgNPs-coated Janus micromotors: (i) direct contact with 

immobilized AgNPs on coated micromotors, (ii) contact with AgNPs that are 

released from the AgNPs-coated micromotors into the solution as colloids, and (iii) 

mediated via silver ions released either from colloidal AgNPs in the solution or 

immobilized nanoparticles.36,43,46  

 

Figure 38. Characterization of colloidal AgNPs and AgNPs-coated Janus micromotors. (A) UV-

visible spectrum of prepared AgNPs in colloidal solution (inset: TEM images corresponding to AgNPs in 

colloidal solution). (B) Top panel:  SEM image of an AgNPs-coated Janus micromotor; bottom panel: an 

enlarged SEM image of the Au modified surface with AgNPs. (C) EDX element analysis of an AgNPs-

coated Janus micromotor. (D) EDX mapping of the metallic elements of an AgNPs-coated Janus 

micromotor. 

Janus micromotors were characterized by scanning electron microscopy (SEM), 

energy dispersive X-ray spectroscopy (EDX), UV-Vis spectroscopy, and 
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transmission electron microscopy (TEM) (Figure 38). Figure 38A displays the 

characteristic maximum absorbance peak of AgNPs colloidal aqueous solution at 

398 nm in the UV-Visible spectrum. Additionally, the size of the AgNPs in 

colloidal solution is characterized by TEM (Figure 38A, inset) with an observed 

average diameter of 23 ± 6 nm. Figure 38B, C and D illustrate the characterization of 

AgNPs-coated Janus micromotors using SEM and EDX. In the Figure 38B top 

image, an SEM image shows an AgNPs-coated Janus particle, where the two faces 

of the particle can be differentiated.  The bottom image is a magnified view of a 

small area of the AgNPs coated Au surface (red square) where AgNPs are visible. 

Figure 38C illustrates the EDX analysis which confirms the metallic components of 

the AgNPs-coated Janus micromotors, including Mg, Au, Fe and Ag, where Mg is 

the major component. To show the distribution of these elements are distributed in 

the Janus micromotor structure, Figure 38D displays the mapping of the detected 

metallic elements performed by EDX analysis. As it can be observed, the bulk of 

the sphere is Mg since it is the base material of the particle. Only half of the 

particle, i.e. the Janus particle cap, contains Fe, Au and Ag.  

To prove the capability of the motion of AgNPs-coated Janus micromotors and 

consequently, their active behavior as bactericidal tools for water disinfectantion, 

their swimming behavior is studied. Figure 39A shows the quantification of the 

speed of the Janus micromotors against a short range of pHs (5.0 – 6.5) of the 

swimming solution, similar to the pH of drinking water. Figure 39C display the 

traveled distance of AgNPs-coated Janus micromotors at different pHs for 10 

seconds. With decreasing pH, the speed of the micromotors as well as their total 

distance traveled increases. This behavior is due to the increased degradation rate of 

Mg in acidic aqueous solution, producing increased amounts of H2, and 

consequently, more bubbles, for a greater self-propulsion velocity. Thus, the highest 

speeds of the micromotors are observed at pH 5.0 (26.9±1.8µm/s), followed by pH 

5.5 (14.0±0.6µm/s), pH 6.0 (12.6±3.0µm/s) and pH 6.5 (6.2±1.0µm/s). The constant 

consumption of Mg during the reaction limits the life time of the micromotors 

(Figure 39D) and is directly related to the pH of the solution. That is observed in 
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Figure 39B, where swimming lifetime of the Janus micromotors is shorter in acidic 

pH compared to micromotors in a more neutral pH.   

 

Figure 39. Swimming behavior of AgNPs-coated Janus micromotors. (A) Representation of the 

average velocities of Janus micromotors vs. different pHs, (B) representation of the average lifetime of 

micromotors vs. different pHs, (C) a AgNPs-coated Janus micromotor swimming over the pH (each 

image contains 10 s of tracking over pH 5.0, 5.5, 6.0, and 6.5, respectively), (D) a AgNPs-coated Janus 

micromotor over their swimming lifetime (each image contains 10 s of tracking over 0, 5, 10, and 20 min 

observation, respectively). Experimental conditions: PBS (pH=6.0) and 2% Tween-20. 

Addition of a biocompatible surfactant, such as Tween-20, made the Janus 

micromotors swim more efficiently, improving their active movement and showing 

higher efficacy in water solution by reducing the surface tension and producing 

small bubbles for the propulsion. The speed of the micromotors at different Tween-

20 concentrations was studied (Figure 40). The speed of Janus micromotors at pH 6 

increased with increased concentration of Tween-20, but after 2% v/v of Tween-20, 

speeds remained constant. Therefore, to reach a compromise, pH 6 and 2% of 

Tween-20 were selected as optimal pH and surfactant concentration, respectively, 
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and 15 minutes as effective swimming time to carry out the remediation of bacteria-

contaminated water by AgNPs-coated Janus micromotors.  

 

Figure 40. Velocities of AgNPs coated Janus micromotors vs. different tween concentration. 

To study the antibacterial capacity of AgNPs-coated Janus micromotors, E. coli are 

used as model bacteria. Also, different control experiments are carried out 

demonstrating the efficiency of the active AgNPs-coated Janus micromotors 

approach.  E. coli are one of the most well studied bacteria and are responsible for 

many bacterial infections in host organisms ingested from food or water sources 

being the best biological drinking water indicator for public health protection135.  

Alternative methods are needed to remove these bacteria from water sources to 

ensure their drinkability.  The AgNPs-coated Janus micromotors provide an ideal 

biocompatible platform for self-propulsion, capture and termination of bacteria, and 

removal of micromotors with dead bacteria.  After the micromotors swam and killed 

bacteria in solution, they were removed and imaged using fluorescence viability 

studies and compared to their control groups. 
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Figure 41. Bactericidal assay results using AgNPs-coated Janus micromotors. (A) Optical 

microscope images of bacteria using fluorescence lamp after bactericidal assays for control solution (B) 

% Dead E. coli after contact with 0.5 mg of Mg microparticles (Mg), Janus microparticles (JP), 

Cysteamine modified JP (JP-Cyt) and AgNPs-coated micromotors (AgNPs-JP) for 15 min in water pH 6 

(cyan) and PBS pH 6 (blue). (Insert) Dead bacteria ratio using different amount of AgNPs-coated Janus 

micromotors in water. 

Figure 41 shows the antibacterial capability of micromotors in comparison with 

control assays in PBS and water.  The amount of particles were kept the same 

between each experimental group.  The control group with only AgNPs, had the 

same quantity of AgNPs as the AgNPs-coated Janus micromotors since the 

A 

B 
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concentration of AgNPs on the surface of the micromotors was estimated during the 

micromotors fabrication process. The same quantity (w/v) of Mg microparticles was 

compared to the Au/Fe/Mg Janus particles (JP), and the cysteamine modified 

Au/Fe/Mg Janus microparticles (JP-Cyt). The groups were studied in the presence 

of two different medias, water and PBS, at the same pH. As expected, Mg and Janus 

microparticles (JP and JP-Cyt) are not able to kill bacteria since they do not contain 

AgNPs. In addition, the hydrogen and ions liberated from the reaction of 

magnesium with water from these structures does not affect significantly the 

viability of the bacteria (Figure 41B, Mg, JP and Cyt-JP)).  Static colloidal AgNPs 

are also employed as a control, since, as it is well-known, AgNPs interact with the 

outer membrane of bacteria, causing structural damage that leads to their death.36-

40,43 Figure 41, also displays the percentage of dead E. coli  in presence of AgNPs 

colloidal solution. AgNPs were able to kill around 25 % of bacteria in PBS and less 

than 40% in water. This is due to the fact that E. coli have higher viability in salt 

solutions such as PBS. Incubation of E. coli in salt free water induces stress on 

bacteria making them easier to kill. This indicates the presented motors would be 

highly effective at eliminating bacteria in drinking water that typically has low salt 

concentrations. The interaction of swimming bacteria with AgNPs and liberated 

Ag+ ions in water solutions lead to increased bactericidal activity. However, the 

bigger bactericidal effect is observed when the bacteria are in contact with AgNPs-

coated Janus micromotors which are able to kill more than 80% of E. coli. These 

micromotors swim actively in water solution at pH 6 for more than 15 min (Figure 

39B) promoting an active contact of AgNPs with bacteria and the diffusion of Ag+ 

ions, increasing the bactericidal efficiency of the AgNPs (Figure 37C). Furthermore, 

the influence of micromotors concentration in the efficiency of killing bacteria has 

been studied. As it is observed in Figure 41B (insert), the efficiency of the approach 

to kill bacteria in contaminated water is directly related to the quantity of AgNPs-

coated micromotors in the sample. Thus, depending on the amount of bacterial 

contamination in water, different concentrations of micromotors could be used to 

obtain the clean water.  
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Figure 42. Graphic presenting the Ag ions released and a table with the total metallic ions 

released from. (A) Ag+ ions released from AgNPs after antibacterial assay, (B) metal ions released from 

AgNPs-coated micromotors after 15 min in solution (no bacteria presence) and (C) metal ions released 

from AgNPs micromotors after antibacterial assay. (Table) Release of Mg, Fe and Au ions.  

The metallic ions released in solution after AgNPs and AgNPs-coated Janus 

micromotors were used for removing bacteria (Figure 42A and C) have been 

analyzed and compared with the ions released from AgNPs-coated Janus 

micromotors that were not exposed to E. coli. (Figure 42B). It is observed that the 

higher amount of released ions corresponds to Mg2+ (less than 20 µg/mL) since the 

metallic Mg structure is consumed during time in contact with aqueous solution 

(Figure 42, Table). Ag+ ion concentration in solution was 3-folds higher for AgNPs 

(0.024±0.006 µg/mL) than for the micromotors (0.007±0.001 µg/mL) in the 

presence of bacteria. However, when the AgNPs-coated micromotors swam in the 

absence of bacteria, the release was 10-folds higher than the analogous assay with 

bacteria (0.07±0.02 µg/mL). That fact could elucidate the predominant mechanism 

of killing bacteria and the higher efficiency obtained using AgNPs-coated Janus 

micromotors. Regarding the other ions that may be released from the AgNPs-coated 

micromotors to the solution during the bactericidal assay, the concentration the 

released Mg ions was between the values recommended by the World Health 

Organization (WHO) for drinking water (10-50 mg/mL) and the concentration of Fe 

ion released was below the allowed WHO concentration (0.3 mg/mL).  Currently 

there is no existing reference value for gold ions. Thus, the effective water 
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disinfection carried out by AgNPs-coated Janus micromotors may be caused by: (i) 

the Ag+ ions efficiently released from AgNPs attached on the micromotors into 

bacterial cytoplasm because of the local lower pH of the bacteria membrane36 and 

(ii) the enhancement of the killing contact of immobilized AgNPs with bacteria and 

the self-mixing provoked by self-propelled micromotors. According to the WHO, 

the level of Ag+ in drinking water is 0.005 µg/mLm whereas that the drinking water 

sources with bacteria is up to 0.1 µg/mL. The presented micromotors releases Ag+ 

concentrations, with or without bacteria, well within this range. 

It has been previously demonstrated that bacteria display preferential adhesion to 

metals47,48 and that the negative charge of their cell wall favors their interactions 

with positive charged surfaces by van der Waals and electrostatic forces136,137. Thus, 

these interactions promote, in this case, the adhesion to the Au cap where the 

AgNPs are attached (Figure 43 and Figure 44). The adhesion of bacteria to the AgNPs 

modified Au surface and the low z-potential that the synthesized AgNPs (PVP-

capped AgNPs, z-potential= -10 mV)138 favor the mortality of bacteria and their 

posterior removal from the solution by the removal of the residual micromotor 

structures after the antibacterial assay. Figure 43 confirms the adhesion of bacteria in 

water and PBS to the metal surfaces of the AgNPs-coated Janus micromotors (B 

and D), but also on the surface of the Au/Fe/Mg Janus microparticles (A and C). 

Bacteria attached to the non AgNPs-coated Au surface (Figure 43A and C) are mostly 

alive bacteria, as observed in the fluorescence microscope by green emission. 

However, the bacteria attached on the AgNPs-coated gold surface of the 

micromotors are mostly dead (red color) (Figure 43B and D). 
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Figure 43. Bacteria captured onto AgNPs-coated Janus micromotors after bactericidal assay. 

Images corresponding to captured bacteria in PBS on (A) Au/Fe/Mg Janus microparticles (JP) and (B) 

AgNPs-coated Janus micromotors (AgNPs-JP). Images corresponding to captured bacteria in water on 

(C) Au/Fe/Mg Janus microparticles (JP) and (D) AgNPs-coated Janus micromotors (AgNPs-JP). (Note all 

images have same scale bar). 

As the micromotors contain Fe as a sandwiched material (Au/Fe/Mg) on the 

particle, AgNPs coated Janus micromotors are capable to remove the bacteria from 

contaminated solutions using their magnetic properties. Figure 44A displays a 

micromotor externally guided using a simple permanent neodymium magnet. The 

micromotor swims following the applied magnetic field and can also alter its 

direction upon changes in the magnetic field orientation similarly to other 

previously reported Janus micromotors139,140. Figure 44B shows an immobilized 



 

99 | P a g e  
 

      Bacterial disinfection and removal using micromotors 

micromotor during bactericidal assay. As it is marked by the yellow arrows, 

bacteria are attached on the Au surface modified with AgNPs which helps to kill 

bacteria and remove them from the solution.  

 

Figure 44. Magnetic and bacteria adhesion properties of AgNPs-coated Janus micromotors. (A) 

Magnetic control of AgNPs-coated Janus micromotors using an external magnetic field. (B) Optical 

image of bacteria attachment on an immobilized AgNPs-coated Janus micromotor during bactericidal 

assay. (C) Left: top view of a cap from a Janus micromotor after cleaning water assay and right: close 

view of the attached E. Coli (red) on the Au surface of Janus micromotors (blue). 

After the removal of bacteria by magnetic attraction of the micromotors, they were 

observed by SEM (Figure 44C). SEM images confirm that the residual micromotor 

surface is fully covered by bacteria. Attachment of bacteria to different metals has 

been previously reported, where guided bacteria adhesion was exploited for creating 

swimming biohybrids,48 but here the metal cap has dual capabilities of capturing 

bacteria and then killing them.  The magnetic properties of the cap allow them to be 

removed from solution with the captured, dead E. coli making the micromotor 

optimal for water purification applications. 

4.3. Conclusions 

We demonstrated that Janus micromotors decorated with silver nanoparticles are an 

efficient bactericidal tool for water disinfection. Janus micromotors are self-

propelled in water and contain a layer of iron which provides magnetic properties. 
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Thus, differently from the previous reported magnesium based micromotors, 

AgNPs-coated Janus micromotors can be used to control their swimming and to 

remove them after their use from the clean solution using external magnets. Such 

controls can help to achieve targeted attack of micromotors on specific sites and to 

avoid additional contaminants in solution. The high antibacterial efficiency of 

micromotors can be explained by mainly two properties of the micromotors: (i) 

active motion of micromotors, which let the micromotors to travel around and 

improve the chances of contact of surface decorated AgNPs with the bacteria as 

well as their self-propulsion, which can increase the diffusion of Ag+ ions released 

from the AgNPs, and (ii) the capacity of the bacteria to attach on the AgNPs-coated 

Janus micromotors after contact, which provokes a major effect and speed in killing 

bacteria by the selective Ag+ released. We have proved the successful combination 

of active systems and nanomaterials to develop new micromotors for the cleaning of 

waterborne bacteria from contaminated water.  

4.4. Experimental methods 

4.4.1. Materials and reagents 

Silver nitrate, sodium borohydride, polyvinylpyrrolidone (PVP), cysteamine 

hydrochloride, disodium hydrogen phosphate, sodium chloride, potassium chloride, 

potassium dihydrogen phosphate, chloridric acid, sodium hydroxide and tween were 

purchased from Sigma-Aldrich (Germany). Acetone, isopropanol and ethanol were 

purchased from Merck (Germany). Ultrapure water (Millipore Corporation, USA) 

was used for the preparation of aqueous solutions.  

4.4.2. Equipment 

Janus particles fabrication was carried out using an in-house built electron-beam (e-

beam) deposition system. A spectrophotometer Specord 50/plus (Analytik Jena, 

Germany) was employed to characterize the synthesized AgNPs and estimate their 

amount attached to the surface of the modified Janus particles. An inverted optical 
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microscope (Leica DMI3000B), coupled with a 10X, 20X, 40X and 63X objectives, 

along with a Leica digital camera DFC3000G with LAS V4.5 soft-ware, were used 

for capturing movies. Scanning electron microscope (E-beam-SEM Ultra 55 Zeiss) 

was used for the AgNPs-coated Janus micromotor characterization and the 

visualization of the attached bacteria on the cap structure. Energy dispersive X-ray 

analysis (EDX) was carried out using EDAX connected to Cryo-SEM Ultra 55 

Zeiss EDAX. Bright field images from AgNPs were recorded using a transmission 

electronic microscope (TEM) Zeiss EM 912 Omega from NORAN. Inductively 

coupled plasma optical emission spectrometry (ICP-OES), was employed as the 

analytical technique for the detection of trace metals (Mg, Ag, Fe and Au). Origin 

Pro 9.0, Microsoft Excel 2013 and ImageJ were employed for the analysis of the 

experimental data.   

4.4.3. Synthesis of AgNPs  

Silver nanoparticles (AgNPs) were fabricated by reduction of silver nitrate with 

NaBH4 in presence of PVP as stabilizer1. Prior to the preparation of AgNPs, all 

necessary glasswares were cleaned using freshly prepared aqua regia, rinsed 

thoroughly in water, and dried in the air for 24 hours. An Erlenmeyer flask with 10 

mL of 0.02 M NaBH4 and 10 mL of 0.375 M PVP was placed in an ice bath with 

constant stirring for 20 min. Then, 10 mL of 0.02 M AgNO3 solution was added 

dropwise into the solution until the solution became vivid dark yellow. The AgNP 

colloidal solution was washed three times in ethanol by centrifugation at 13000 rpm 

for 10 min. AgNPs were characterized carrying out their UV-Visible spectrum and 

by TEM. The average size of the diameter of synthesized AgNPs was 23 ± 6 nm.  

4.4.4. Synthesis of Janus microparticles 

Commercial magnesium microparticles (catalog #FMW20, TangShan WeiHao 

Magnesium Powder Co.; 20 ± 5 μm) were dispersed in ethanol (Ethanol absolute, ≥ 

99.8% (GC)) and then filtered twice using cyclopore etched membranes with 12 µm 

pore size (7034572, Whatman) using Millipore vacuum pump (XF5423050, 
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230V/50Hz) to remove all small particles and impurities. Janus particles were 

obtained by drop casting of a suspension of the previous filtered spherical 

magnesium microparticles (15 ± 5 μm) in ethanol on an oxygen-plasma-cleaned 

glass slide followed by slow evaporation of the solvent and placed in an electron 

beam evaporation system. The high vacuum was applied and subsequently a 

monolayer of 14 nm Fe was evaporated to obtain magnetic properties and 36 nm Au 

for further surface modifications. To release particles from the glass slides into 

ethanol, short ultrasound pulses were sufficient. Afterwards, the Janus particles 

were cleaned twice in ethanol. Previously fabricated Janus microparticles were 

incubated overnight with a 1 mM cysteamine hydrochloride in ethanol solution 

overnight. The microparticles were washed with ethanol and incubated for 24 hours 

with a diluted solution of the previously prepared AgNPs in ethanol. Afterwards, 

the AgNPs-coated Janus micromotors were washed twice and stored in ethanol.  

4.4.5. Bacteria Culture 

Escherichia coli (E. coli) MG1655 cultured on LB agar plates (Sigma-Aldrich) were 

transferred to 5 mL LB broth (Sigma-Aldrich) and allowed to divide overnight at 

30°C and 200 rpm.  0.5 mL of concentrated MG1655 solution was diluted in 5 mL 

of fresh LB broth and allowed to culture another 3 hrs.  Bacteria were centrifuged 

(6000 rpm, 3 min) and resuspended twice in PBS (pH 6.5) or deionized water.  

Bacteria were diluted by a factor of 10 with water or PBS for experimentation.  

Their measured optical density at 600 nm (OD600) using a BioTek (Bad 

Friedrichshall, Germany) Gen5 Synergy 2 plate reader was 0.3.  The OD600 was 

obtained from 200 µL of media with bacteria in a 96-well plate at ambient 

temperature with bacteria free deionized water for a control.   

Bacteria on micromotors were imaged with a Zeiss Ultra 55 Gemini scanning 

electron microscope (SEM) using an accelerating voltage of 5 keV and an in-lens 

detector.  To prepare samples for SEM, biohybrids suspended in motility media 

were allowed to sediment on clean, plasma etched (1 min argon plasma, Diener 

Electronic Atto Plasma Cleaner, Ebhausen, Germany) silicon wafer chips (5 x 6 
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mm) for 1 hr at ambient temperature.  Wafers were incubated in 2.5% 

glutaraldehyde in PBS for 45 min at 4 °C, rinsed with PBS, then water.  Bacteria 

were dehydrated in a series of increasing aqueous ethanol concentrations (30%, 

50%, 70%, 90%, and 100%) for 5 min in each solution and 10 min in pure ethanol.  

Bacteria were further dehydrated and preserved using a series of 

hexamethyldisilazane (HMDS, Sigma-Aldrich) solutions; 2:1 Ethanol:HMDS (15 

min), 1:2 Ethanol: HMDS (15 min), pure HMDS (15 min).  Wafers and bacteria air 

dried followed by sputtering deposition of 3 nm gold using a Bal-tec MED 020 

coating system (Leica).   

4.4.5. Experimental procedures 

The AgNPs-coated Janus micromotors were prepared by following the previous 

protocol. Then, the AgNPs-coated Janus micromotors were characterized using 

different characterization techniques, such as, SEM and EDX. After 

characterization, the AgNPs-coated Janus micromotors were transferred together in 

a falcon tube, most of the solvent was removed and they were dried at room 

temperature over 2 hours to be divided into several aliquots of 0.5 mg (1.11x105 ± 

3.8x104). The same protocol was carried out to the controls (magnesium 

microparticles, Fe/Mg Janus microparticles and Au/Mg Janus microparticles).   

Once the AgNPs-coated Janus micromotors have been characterized and weighed, 

their bactericidal activity was tested. Each aliquot of 0.5mg of AgNPs-coated Janus 

micromotors were placed in petri dishes containing total 2 ml of bacteria in water or 

PBS and tween (2.0 % w/v) at the pH (6.0).  The assay was carried out in triplicate 

(n=3) for 15 minutes while the micromotors were swimming in the bacteria 

solution. Each control experiment was also carried out in triplicate. Micromotors 

were removed from the solution using neodymium (NdFeB) magnet. The bacteria 

present in the solution and the bacteria attached to the cap of the micromotors were 

washed and re-suspended in fresh deionized water.  Samples were incubated with 1 

μL/mL of propidium iodide and STYO 9 (Life Technologies) for 10 min with gentle 

shaking.  Then, they were centrifuged, washed twice with PBS (pH 6.5), and 
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immediately imaged with a fluorescent microscope.  Percent cell viability was 

defined as the total number of live cells divided by the sum of live and dead cells 

using Image J software. 

To measure the amount of residual metals ions (Mg, Ag, Fe and Au) left in the 

solution after antibacterial assay, 0.5 mg of AgNPs-coated Janus particles were 

placed in a water solution (2% tween, pH 6) for 15 minutes in triplicated. Then, the 

solutions with without micromotors were analyzed using ICP-OES. 
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CHAPTER	5.	
MULTIFUNCTIONAL	MICROMOTORS	AND	

SCALABLE	SYNTHESIS	
  

The results described in this chapter are published in the following 
articles. 
 
(Section 5.1) 
 
Villa, K.; Parmar, J.; Vilela, D.; Sánchez, S. Metal-Oxide-Based Microjets 
for the Simultaneous Removal of Organic Pollutants and Heavy Metals. 
ACS Appl. Mater. Interfaces 2018, 10 (24), 20478–20486. 
 
(Section 5.2) 
 
Parmar, J.; Villa, K.; Vilela, D.; Sánchez, S. Platinum-Free Cobalt Ferrite 
Based Micromotors for Antibiotic Removal. Appl. Mater. Today 2017, 9, 
605–611. 
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5.1. Multifunctional photocatalytic micromotors  

5.1.1. Introduction   

Tubular micro- and nanomotors are usually fabricated by polycarbonate-template-

assisted electrodeposition,23 self-assembly of organic molecules24,25 and rolled-up 

nanotechnologies.26 These methods lead to micro- and nanomotors with a precise 

geometry and controlled shape. However, specialized equipment such  metal 

evaporators, cleanroom facilities for lithography process or electrochemical 

workstations is required to use these technologies.27,28 Therefore, there is a need for 

the development of facile synthesis of micro- and nanomotors that involves only 

basic and inexpensive equipment.29 Some efforts have been made to develop other 

simple methodologies for the synthesis of micro- and nanomotors, by using  

emulsions,30 microfluidics31,32 or by simple aggregation processes,33 but tubular 

motors cannot be obtained easily by such procedures. Our group has recently 

reported the fabrication of tubular mesoporous silica micromotors by sol-gel 

synthesis using a polycarbonate membrane as a template, which uses platinum as 

catalyst for the self-propulsion in H2O2.34 In order to reduce the cost associated with 

large-scale micromotors synthesis and solve platinum poisoning under harsh 

chemical environments, micromotors based on metal oxide catalysts have 

previously been proposed as inexpensive materials for the propulsion of 

micromotors, but the resulting speeds are still too low.30,33,35–38  

Previous research has demonstrated the potential of combining the self-propulsion 

of micromotors with advanced oxidation processes (AOPs) such as Fenton11,39 

reactions and photocatalysis17,40,41 for environmental remediation. Photocatalytic 

processes are environmentally-friendly and offer the possibility of using solar 

radiation as the main energy source, which significantly decreases the cost of water 

treatments2,42–44. Considering that the visible region is one of the major components 

of solar irradiation, the development of photocatalytic and Fenton-like micromotors 
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that can harvest solar irradiation to remove different kind of pollutants has the 

potential to advance micromotors-based water cleaning methods.   

Here, we present multifunctional mesoporous silica-based micromotors with MnO2 

immobilized on the inner surface and decorated with γ-Fe2O3 nanoparticles (NPs) 

(band gap of ~2.0 eV)45 as magnetic photocatalyst on the outer surface, hereafter 

called FeSiMnOx micromotors (Fe2O3/SiO2-MnO2 micromotors). FeSiMnOx 

micromotors are fabricated by growing silica tubes on a polycarbonate template by 

sol-gel method. The immobilized MnO2 and Fe2O3 catalysts act as functional 

materials for both propulsion and removal of pollutants. Furthermore, the 

FeSiMnOx micromotors are magnetically steered and guided in a controlled manner, 

facilitating their recovery and further reuse.  

5.1.2. Results and Discussions 

FeSiMnOx micromotors were synthesized by facile and scalable procedures as 

shown in Figure 45. The tubular structure was achieved by using a polycarbonate 

(PC) membrane as template and a mixture of SiO2 precursors at 80 ºC.34 Then, 10 

mM KMnO4 was reduced to MnO2 inside the pores of the membrane by a 

hydrothermal reaction. After releasing the tubes from the PC membrane, γ-Fe2O3 

NPs were mixed with SiO2-MnO2-based microtubes and attached to their outer 

surface. The final tubular structure consists of a biconical mesoporous silica tube 

with MnO2 inner layer and γ-Fe2O3 NPs on the outer surface (Figure 45).  

The structural and morphological characterization of the micromotors was carried 

out by TEM-EDX-mapping and SEM, respectively (Figure 46). The SEM images 

show that the micromotors have a tubular biconical structure (see blue inset) with a 

length of about 17 µm (Figure 46A). The length of the micromotor is co-related with 

the thickness of the PC membrane (20 µm) used for the synthesis process. The TEM 

image in Figure 46B shows a color contrast along the SiMnOx tube due to the non-

homogeneous dispersion of MnO2 on the inner surface. This heterogeneity in the 

inner surface of the micromotors may result in several nucleation points for bubble 

growth, which can be beneficial for the micromotors motion. 
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Figure 45. Chemical fabrication of mesoporous Fe2O3/SiO2-MnO2 (FeSiMnOx) micromotors for the 

photocatalytic degradation of organic pollutants and removal of heavy metals. 

After the modification of the outer surface of the SiMnOx micromotors with γ-Fe2O3 

NPs, it is observed that the γ-Fe2O3 NPs are distributed along the surface (Figure 46C 

and red dotted inset) and on the edges of the cavity of the FeSiMnOx micromotors 

(see blue square inset in Figure 46C). Figure 46D displays the rough outer surface of 

the FeSiMnOx  micromotors. This results from the adherence of γ-Fe2O3 NPs to the 

silica surface, due to the electrostatic interaction between the external -NH2 groups 

from the SiO2 tubes surface and the negative charge of γ-Fe2O3 NPs (-7.43 ± 1.53 

mV, average ± standard error of mean, n = 6) measured by DLS. As observed in 

Figure 2E, these γ-Fe2O3 NPs have a diameter size ranging from 20-50 nm. The 

TEM-EDX spectrum confirms the presence of Si, Fe and Mn in FeSiMnOx 

micromotors (Figure 46F). Furthermore, EDX mapping and the profile analysis of the 

tubes for the different elements show the distribution of Mn in the tubes and the 

dispersion of Fe2O3 NPs along their surface (Figure 46G and H).  
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Figure 46. Characterization of FeSiMnOx micromotors. A) SEM image of the SiMnOx micromotor, 

inset corresponding to the cavity of the tube, B) TEM image of the SiMnOx micromotor, C) SEM image of 

the FeSiMnOx micromotor, blue solid inset corresponding to the tube cavity and red dotted inset 

corresponding to γ-Fe2O3 NPs on the outer surface, D) TEM image of the FeSiMnOx micromotor, E) 

Magnification of the red dotted lines in Figure 2D, F) EDX spectrum of the FeSiMnOx micromotor, G) 

EDX mapping of the FeSiMnOx micromotor and H) element profile of the FeSiMnOx (represented by a red 

dotted line). 

The mechanism of propulsion of FeSiMnOx micromotors is based on the catalytic 

descomposition of H2O2 into water and oxygen gas by MnO2, leading to the 

generation of microbubbles in their cavity. The motion capabilities of FeSiMnOx 

and SiMnOx micromotors were examined using an optical microscope. To find out 

the relation between MnO2 loading and motion of SiMnOx micromotors, different 

concentrations of KMnO4 (10-30 mM) were studied. An increase of KMnO4 

concentration (>10 mM) resulted in a total blockage of the internal holes of the 

micromotors and/or rupture of the tubular structure in half. As a result, not all the 

microtubes were swimming, and if they were their speed was very low. Therefore, 

10 mM KMnO4 was selected as the optimal concentration for the synthesis of 

SiMnOx and FeSiMnOx micromotors. 
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Figure 47A shows the motion behavior of SiMnOx and FeSiMnOx micromotors in 5 

wt% H2O2 and 0.2 wt% of SDS. Both micromotors display directional trajectories, 

but FeSiMnOx micromotors show a faster speed than SiMnOx. This improvement in 

the speed of FeSiMnOx micromotors is related to the presence of γ-Fe2O3 NPs, 

which can also catalyze the decomposition of H2O2 into O2 gas through a series of 

complex reactions.47–49 The agglomeration of γ-Fe2O3 NPs on the tubes surface 

might be beneficial for the enhancement of the propulsion of FeSiMnOx 

micromotors.   

 

Figure 47. Motion characterization of FeSiMnOx micromotors. A) Optical images of the trajectories of 

SiMnOx and FeSiMnOx micromotors swimming for 2 s at 5 wt% H2O2, B) speed of the SiMnOx and 

FeSiMnOx micromotors at different H2O2 concentrations (n=5, error bars represent the standard error of 

the mean) and C) Swimming trajectories of SiMnOx and FeSiMnOx micromotors at 5 wt% H2O2. 

Figure 47B illustrates the speed of SiMnOx and FeSiMnOx micromotors at different 

H2O2 concentrations (1, 3, 5 and 7 wt%). The speed of the jets increases by 

increasing the fuel concentration, reaching the highest values at 7 wt% H2O2 of 

165±13 µm s-1 and 485±32 µm s-1 for SiMnOx and FeSiMnOx micromotors 

A B 
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respectively. FeSiMnOx micromotors are almost 3 times faster than the bare 

SiMnOx, swimming at approximately 28 body length s-1 at 7 wt% H2O2. As 

despicted in Table 3, the speed showed by FeSiMnOx micromotors is the highest 

reported so far for tubular micromotors propelled by non-metallic catalysts. The 

trajectories of the SiMnOx and FeSiMnOx micromotors are shown in Figure 47C. It 

was observed that FeSiMnOx and SiMnOx micromotors move randomly following 

helical or straight paths.  

Table 3. Speed comparison of different micromotors propelled by non-metallic catalysts. 

Materials in  
micromotors 

Shape [H2O2] 
(% 
wt) 

Speed 
(m s-1) 

Approximate  
Body-length s-1 

Ref. 

PEDOT/MnO2 Tube 5 20080 16 141 

Fullerene-MnO2 Tube 5 395 --- 142 

MnO2 Amorphous 12 ~50 10 142 

Graphene/MnO2 Tube 5 210.4±80.4 21 143 

Graphene/MnO2 Alveolate 2.5 47.92 7.4 144 

PEDOT/MnO2 tube 6 ~125 15.6 145 

MOF/Co Amorphous 5 ~25 5 146 

MOF/Mn Amorphous 5 ~12 2.4 146 

MnFe2O4 Hollow sphere 2 ~260 11 147 

Fe2O3/SiO2/MnO2 Tube 5 380.8±38.7 22.4 This work 

 

The presence of γ-Fe2O3 NPs provides magnetic properties to the FeSiMnOx 

micromotors. Considering the intended use of micromotors for water cleaning, 

magnetic properties add beneficial functionality for guiding their swimming 

direction and for their removal by an external magnet after the cleaning 

treatment,13,56 avoiding further water contamination by the catalyst itself, which is 

one the key issues in water treatment.8 Moreover, the magnetic properties of 

FeSiMnOx would allow to magnetically guide them towards polluted areas that are 

difficult to access. More importantly, once the different kind of pollutants are 

removed, the micromotors could be guided13 or transferred56 to another container 
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for further decontamination processes. Figure 48A-B displays the snapshots of the 

micromotors without and with magnetic control, respectively. The orientation of the 

micromotors was randomly distributed in the absence of a magnetic field (Figure 

48C). After applying the magnetic field, most of the micromotors were aligned and 

following the instructed direction (downward), even in the presence of massive 

bubbling (Figure 48D).  As can be seen from Figure 48E, after applying the magnetic 

field, the direction of FeSiMnOx micromotors can be also changed instantly from 

left to right (Figure 48E). 

 

Figure 48. Magnetic control of FeSiMnOx micromotors. A) A snapshot from a video of FeSiMnOx 

micromotors swimming with random orientation, B) A snapshot from a video of FeSiMnOx micromotors 

with their orientation controlled by magnetic guidance (downward), C) Distribution of orientation of 

micromotors without magnetic field (n=100), D) Distribution of orientation of micromotors in the presence 

of magnetic field along Y axis (n=100) and E) Optical snapshot from a video of FeSiMnOx micromotors 

controlled by magnetic guidance (left and right). 

The photocatalytic performance of the FeSiMnOx micromotors was evaluated upon 

the degradation of tetracycline (TC) and Rhodamine B (RB) (chosen as model 
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pollutants from the pharmaceutical and dye industries, respectively). These kinds of 

pollutants are known as refractory organic compounds, being very difficult to 

remove by the classical wastewater treatments.  

First, to evaluate the photocatalytic performance of FeSiMnOx micromotors, control 

experiments without micromotors were carried out. To this end, the contribution of 

H2O2 (in the dark) and H2O2 plus visible irradiation was studied in the degradation 

of the above-mentioned pollutants.  As can be seen in Figure 49A-B, both controls 

are only degrading 10% and 30% after 15 min in the case of TC and RB, 

respectively. In addition, enhanced degradation rates of both pollutants were not 

observed after visible irradiation in the presence of H2O2 and without micromotors.  

The photocatalytic experiments were then performed in the presence of 

micromotors. As it is observed in Figure 49A and B, the degradation rates were 

markedly improved in comparison with the control tests, following an increasing 

trend: FeSiMnOx > SiMnOx > FeSiMnOx (in the dark) > FeSiOx microtubes. Since 

FeSiOx microtubes (without MnO2) do not present self-propulsion, the slight 

degradation performance was due to the photocatalytic properties of Fe2O3 NPs on 

the surface of FeSiOx microtubes. In the case of SiMnOx micromotors, MnO2 can 

act as a dual catalyst for the decomposition of H2O2 to generate O2 bubbles for the 

motion but also for the degradation of organic pollutants via Fenton-like 

reaction.35,57,58 However, as shown in Figure 49A and B, the resulting performance is 

much slower than the one obtained with the FeSiMnOx micromotors.  

The fast degradation activity shown by FeSiMnOx micromotors is mainly due to the 

efficient photocatalytic performance exhibited by γ-Fe2O3 NPs on the surface of the 

micromotors, along with the catalytic properties of MnO2 on the inner surface. 

When the degradation reactions were carried out in the presence of FeSiMnOx 

micromotors and H2O2 under dark conditions (Figure 49A and B), the removal yield 

was much lower than FeSiMnOx micromotors under visible light irradiation.  
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Figure 49. Removal of contaminants in wastewater over FeSiMnOx micromotors after 15 min of 

reaction. (A) C/Co kinetics of photocatalytic degradation of TC, (B) C/Co kinetics of photocatalytic 

degradation of RB, (C) Removal of lead and cadmium by adsorption on FeSiMnOx micromotors in 

presence of 10 ppm RB at 0 min (black) after 7 min (blue) and 15 min (red) of reaction. 

The mechanism of the photocatalytic degradation of RB and TC involves the 

activation of γ-Fe2O3 photocatalyst with visible irradiation to generate electron-hole 

pairs. These photogenerated pairs can migrate to the catalyst surface and react with 

the adsorbed molecules to produce hydroxyl (HO●) and superoxide (O2
●-) 

radicals.59–61 Given the high oxidation potential of these radicals,62 they can perform 

the total degradation of the organic matter (pollutants) to non-harmful molecules 

(CO2 and water). At the same time, MnO2 can also produce additional HO● radicals 

through the Fenton-like reaction in the presence of H2O2
57,63–66, resulting in an 

enhancement of the total oxidation of the organic pollutants.  

Finally, to prove that FeSiMnOx micromotors can remove other types of 

contaminants, we selected Cd2+ and Pb2+ as model pollutants of toxic heavy metals. 

A B 

C 
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Taking advantage of the interactions between Fe2O3 NPs and heavy metals67,68, we 

used FeSiMnOx micromotors for the removal of Cd2+ and Pb2+ in the presence of 

another pollutant, such as RB. Figure 49C illustrates the results corresponding to the 

capture of both heavy metals from water after 7 and 15 min of treatment with 0.3 

mg FeSiMnOx micromotors in 5% H2O2. It was observed that FeSiMnOx 

micromotors were able to remove more than 98% and 94% (n=3) of Cd2+ and Pb2+, 

respectively, from a contaminated water with 1 ppm of each metal. Thus, we 

demonstrated that FeSiMnOx micromotors can be used for the efficient remediation 

of several classes of contaminants, such as antibiotics, dyes and heavy metals in 

wastewater.  

5.1.3. Conclusions 

In conclusion, we have developed highly efficient FeSiMnOx micromotors for 

multifunctional environmental applications, such as the degradation of persistent 

organic pollutants under visible irradiation and the removal of heavy metals from 

wastewater. The micromotors can be easily guided and extracted using a magnetic 

field. Remarkably, FeSiMnOx micromotors exhibited the highest speed (485±32 µm 

s-1) that has been obtained so far for tubular micromotors powered by non-noble 

metals such as MnO2. The synthesis of micromotors was carried out using only 

chemical methods and simple apparatus, which is an advantage for their eventual 

mass-production. The strategy of combining two metal oxides (Fe2O3/MnO2) that 

can decompose H2O2 with simultaneous generation of hydroxyl radicals resulted in 

a significant improvement in the photocatalytic performance of the micromotors. 

This approach opens up new inexpensive alternative methods to fabricate other 

types of metal-oxide based micromotors and microtubular structures for different 

applications in the environmental field.  

5.1.4. Experimental methods  

5.1.4a. Synthesis of micromotors 
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Mesoporous silica (SiO2) microtubes were obtained using a polycarbonate 

membrane (Whatman, conical-shaped micropores with 2 μm diameter) as the 

template, and a mixture of tetraethyl orthosilicate (TEOS, ≥99.0% (GC), Sigma-

Aldrich), hexadecyltrimethylammonium bromide (CTAB, BioUltra ≥99.0%, Sigma-

Aldrich), 3-aminopropyltriethoxysilane (APTES, 99.0%, Sigma-Aldrich) and 

triethanolamine (TEOA, ≥99.0 %, Sigma-Aldrich), as described in a previous work 

reported by our group.34 These SiO2 microtubes were used as the scaffold for the 

micromotors. Once the mesoporous silica tubes were grown inside the membrane, it 

was placed in 30 mL of 10mM KMnO4 (ACS reagent ≥99.0%, Sigma-Aldrich) and 

transferred into a 50 mL Teflon-lined stainless-steel autoclave and heated at 160 °C 

for 9 h. Afterwards, the black resulting membrane was polished with water to 

remove the excess of MnO2. The SiO2-MnO2 microtubes were released by 

dissolving the membrane template in CH2Cl2 (GPR RECTAPUR, VWR) for 15 min 

and then washing them twice for 3 min with CH2Cl2, ethanol and water, 

respectively.  

To optimize the MnO2 filling inside the silica tubes, different KMnO4 loadings of 

10, 20 and 30 mM were tested. The best swimming behavior was observed in 

MnO2-based microtubes synthesized with 10 mM of KMnO4, thus being this 

concentration of KMnO4 selected as the optimal concentration for our fabrication 

protocol.   

Finally, the surface of SiO2-MnO2 microtubes was functionalized with γ-Fe2O3 

(Maghemite, nanopowder <50 nm, Sigma-Aldrich) by mixing them with 1 mL of an 

ethanolic suspension containing 0.001 g of γ-Fe2O3 nanoparticles (NPs) for 6 h. 

After this, the Fe2O3/SiO2-MnO2 microtubes were separated from the NPs by 

filtering the suspension with a 2 μm pore size membrane (Whatman), and then they 

were washed several times with ethanol and water, respectively.  

For the sake of simplicity, the Fe2O3/SiO2-MnO2-based microtubes have been 

labelled as FeSiMnOx micromotors, SiMnOx micromotors (without Fe2O3) or 

FeSiOx microtubes (without MnO2).   
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5.1.4b. Micromotors characterization 

A JEOL JEM-2100 LaB6 microscope operating at 200 kV accelerating voltage and 

equipped with an Oxford Instruments INCA x-sight (Si(Li) detector) and a Zeiss 

SESAM microscope (200kV) equipped with an EDS System from ThermoFisher 

were used to perform transmission electron microscopy (TEM) and Energy-

dispersive X-ray (EDX) analysis. Scaning Electron Microscopy (SEM) images were 

taken on a FEI NOVA NanoSEM 230 microscope. Surface charge of γ-Fe2O3 NPs 

was examined by Dynamic Light Scattering (DLS, Wyatt Möbius coupled with an 

Atlas cell pressurization system). The motion of micromotors was observed and 

recorded by using an inverted optical Microscope (Leica DMI 3000 B) equipped 

with a camera (Leica DFC 3000 G) with LAS V4.5 software. For recording the 

videos, 10 µl of micromotors suspension was placed onto a glass slide and 0.2 wt% 

of sodium dodecyl sulfate (SDS, ACS reagent ≥99.0%, Sigma-Aldrich) was added 

in the presence of different concentrations of H2O2. The speed and tracking of 

micromotors was calculated from the recorded videos and analyzed using openCV 

libraries and Python-based software.  

The magnetic control setup consists of two pairs of coils in Helmholtz 

configuration, which create a magnetic field gradient in, respectively, the X and Y 

directions. Cylindrical steel rods are put inside the coils to increase the strength 

field. The intensity of the gradient is controlled remotely through an Arduino 

microcontroller, whose current is amplified using a TS250 Wave Amplifier. A 

Python script with a user interface is used to send orders to the Arduino in real time, 

allowing total control of the magnetic field from a PC. The gradient per unit of 

electric current created by the coils for each pair is 18 G (A⋅mm)-1. During the 

magnetic control experiments, a maximum current of 2.5 A was used. 

5.1.4c. Photocatalytic set-up  

The photocatalytic degradation of aqueous solutions of rhodamine (RB) and 

tetracycline (TC) was carried out in a 5mL cylindrical glass vessel. For the 
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photocatalytic experiments, a 300 W high pressure UV-visible lamp (Ultravitalux 

Osram, 280-780 nm) was used as light source. A polyester UV filter sheet (Edmund 

Optics) was used to remove wavelengths radiation below 400 nm and to ensure only 

visible irradiation. In all degradation experiments, 1 mL of RB (10 ppm) or TC (50 

ppm) solution containing 0.3 mg of micromotors was placed in the vessel with 0.2 

wt% SDS as surfactant. No acidic or basic pH adjustments were performed during 

the photocatalytic tests.  

Prior to illumination, the micromotors were kept in the dark for 30 min to reach 

adsorption-desorption equilibrium on their surface. In this way, the decrease in the 

absorbance signal of the pollutants due to adsorption can be ruled out in the 

degradation experiments. After that, the lamp was turned on and 5 wt% H2O2 was 

added to initiate the reaction. Liquid aliquots were periodically taken out during the 

reaction (before the absorbance measurements, the solids were removed by 

centrifugation in the case of SiMnOx micromotors or by a magnet in the case of 

FeSiMnOx and FeSiOx micromotors). They were then immediately analyzed by 

measuring their absorbance at 555 nm and 358 nm for RB and TC respectively, 

using a UV-Vis spectrophotometer (Specord 50 plus).  

Control experiments without micromotors (only H2O2 or H2O2 + light irradiation) 

were also performed to evaluate the contribution of the photolysis of H2O2 on the 

oxidation of our target pollutants. Additionally, a test with non-filled FeSiOx 

microtubes (without MnO2) in the presence of H2O2 under light irradiation was also 

carried out to investigate the importance of the motion of micromotors on the 

photocatalytic performance.   

 

 

5.1.4d. Heavy metals removal   
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To prove the capability of FeSiMnOx micromotors to capture heavy metals, 0.3 mg 

of the micromotors was added to 1 mL of a water solution, which contained 1 ppm 

of lead (Pb2+) and cadmium (Cd2+), in the presence of another contaminant (10 ppm 

of RB). After allowing the FeSiMnOx micromotors to swim for 7 and 15 min in the 

previously prepared solution, the concentration of both heavy metals was 

determined at both time intervals by square wave voltammetry using a mercury-

coated glassy carbon electrode (GCE)46 as working electrode. Prior to the 

measurements, any trace of H2O2 was removed by adding an excess of 1 M sodium 

bisulfite solution to avoid any interference in the electrochemical signals. First, the 

mercury film was pre-plated at the beginning from a non-deaerated 80 mg L−1 

mercury solution (in 0.02 M HCl), by holding the carbon strip electrode at −1.15 V 

for 15 min. Then, the potential was switched to −0.20 V for a 2 min cleaning period. 

The subsequent cycles involved the Pb2+ and Cd2+ deposition (3 min of 

preconcentration at −1.15 V) and stripping steps (from -1.15V to -0.2V). Before the 

next measurement, the electrode is maintained for 60 s at -0.2 V to ensure that Pb 

and Cd do not remain on the working electrode surface. After finishing the 

measurement of heavy metals, the mercury film is removed from the GCE by 

holding it at +0.4 V for 5 min.  An acetate buffer 0.02 M solution (pH 4.8) was used 

as electrolyte during the sensing of the heavy metals, the intermediate steps and the 

removal of the mercury film from the GCE. 

The linear range was between 0.01–0.1 ppm for Pb2+ (Areapeak=1.086+0.027[Pb2+], 

r=0.980) and Cd2+ (Areapeak=0.04255+0.01405[Cd2+], r=0.990), respectively. To 

measure the concentration of Pb2+ and Cd2+ ions from the assay solution, a dilution 

1:10 (total volume 5 mL, 0.02 acetate buffer solution) was carried out, before and 

after the removal of both ions by the FeSiMnOx micromotors. 
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5.2. Template free synthesis of micromotors 

5.2.1. Introduction 

Most of the micromotors-based systems reported for environmental applications are 

propelled by bubble thrust and contain platinum as a catalyst to obtain motion by 

decomposition of H2O2. They are typically fabricated by various multi-step 

processes like template assisted synthesis or photolithography, and subsequent 

glancing angle deposition. These techniques produce multi-material structures with 

a cavity where bubbles can grow from the locally saturated oxygen and get ejected, 

which induces self-propulsion. The motion of the catalytic self-propelled 

micromotors enhances micro-mixing and mass transfer in the aqueous system, thus 

increasing the removal rate of pollutants present in wastewaters by the functional 

material (adsorbent or oxidative catalyst) 69,77. For instance, micromotors have been 

proven to be useful for heavy metal removal148,149, organic removal71,150–155 and 

bacteria disinfection36,118,119,156. One of the major challenges is the prohibitive cost 

associated with the use of platinum for micromotors propulsion157. Furthermore, 

current fabrication methods make scaling up challenging and expensive21. The mass 

production method of micromotors based on an inexpensive material is the key to 

their large-scale viability for water treatment remediation. Efforts have been made 

to develop platinum free catalytic micromotors for organic removal from water, 

nevertheless the reported systems still require the addition of surfactants to work 

efficiently158–160. These surfactants are often toxic and add an extra organic 

contamination load in water. 

Iron and other transition metals based react with H2O2 via Fenton-Like reactions to 

produce reactive oxygen species (ROS), especially hydroxyl radicals (HO.) by 

decomposition of H2O2. Fenton-Like processes are complex and include multiple 

chain reactions, which generate hydroxyl radicals and oxygen gas during the 

catalysis cycle161. Hydroxyl radicals generated by Fenton-like reactions are 

extremely oxidative, thus they are very important for advanced oxidative process to 

degrade refractory organic pollutants which cannot be removed naturally by 
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microorganisms162. Pharmaceutical pollutants, namely antibiotics, hormones, and 

phenolic compounds are among the refractory pollutants that are toxic for humans 

and aquatic life even at very low concentrations163. Currently, industrial and 

municipal water treatment plants widely use activated sludge methods to remove 

organic pollutants from wastewater, which is often not sufficient to remove these 

contaminants164,165.  

Here, we present platinum and surfactant free cobalt ferrite-based bubble propelled 

micromotors (CFO micromotors) for oxidation of tetracycline (TC) antibiotic, as 

pharmaceutical model pollutant, via Fenton-like reaction. Tetracycline is one of 

most widely used antibiotic for human and veterinary healthcare166. The CFO 

micromotors function as self-propelled heterogeneous Fenton-like catalysts in 

presence of H2O2, which acts as both fuel for micromotors propulsion and reagent 

for Fenton-like oxidation of the antibiotic pollutant. Furthermore, CFO micromotors 

are also ferromagnetic in nature, which makes it possible to easily recover the 

micromotors after the completion of degradation process.  

5.2.2. Results and discussion 

CFO micromotors were fabricated  from the cobalt ferrite nanoparticles, which were 

synthesized by using cobalt(II) acetate and iron(III) chloride (molar ratio Co2+/Fe3+ 

= 0.5) as precursors in ethylene glycol via solvothermal route167. The solvent 

ethylene glycol acts as a reducing agent while sodium acetate and polyethylene 

glycol are added in the solution to prevent the aggregation of nanoparticles during 

the synthesis in the liquid phase.  

The synthesized cobalt ferrite nanoparticles were dried to obtain agglomerated 

micrometer-sized CFO micromotors as depicted in Figure 50A. The CFO 

micromotors decompose H2O2 into strongly oxidizing hydroxyl radicals via Fenton-

like reaction that can oxidize TC antibiotic into intermediate oxidized products and 

eventually into carbon dioxide (CO2). In addition, the oxygen gas (O2) bubbles 

generated during H2O2 decomposition induce self-propulsion of the micromotors, 



 

122 | P a g e  
 

5.2. Template free synthesis of micromotors 

which enhances mass transfer and micro-mixing of the solution to further promote 

the degradation of tetracycline (TC) by the hydroxyl radicals (Figure 50B).  

 

Figure 50. Scheme of the synthesis and mechanism of the cobalt-iron micromotors (CFO 

micromotors). (A) Synthesis of the CFO micromotors by drying of cobalt ferrite nanoparticles. (B) 

Degradation of tetracycline (TC) antibiotic by using the self-propelled CFO micromotors. 

CFO micromotors were characterized by TEM and SEM (Figure 51A, B &C). Figure 

51A displays a TEM image of synthesized cobalt ferrite nanoparticles. It is observed 

that the diameter of individual nanoparticles is smaller than 100 nm. The cobalt 

ferrite nanoparticles have tendency to agglomerate because of strong magnetic 

interactions between the particles, therefore it is hard to prevent their 

agglomeration, even in the suspension form.167,168 Once the nanoparticles are 

washed to remove unreacted solvents and surface stabilizer and dried , they strongly 

adhere with each other and require significant stress to deform.169,170 The aggregated 

nanoparticles form microparticles of various sizes, ranging from submicron scale 

aggregates to a few hundred micrometers. The resulting microparticles were further 
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grinded and sieved to obtain micromotors under 100 micrometers. Figure 51B and C 

show SEM images of a micrometer sized CFO micromotor obtained from 

aggregated nanoparticles. The surface of micromotors is rough and porous because 

of the hierarchical aggregation of the already agglomerated nanoparticles. The 

roughness and porosity of surface (Figure 51C) increase the surface area and provide 

favorable points for bubble nucleation, necessary for propulsion.  

 

Figure 51. Characterization of the CFO micromotors. (A) TEM image of cobalt ferrite nanoparticles (B) 

SEM image of a CFO micromotor. (C) SEM image of the surface morphology of a CFO micromotor. (D) 

Element composition of the CFO micromotors obtained by electron energy loss spectroscopy (EELS). (E) 

X-ray diffraction (XRD) pattern of CFO micromotors. 

The composition and crystalline structure of the CFO micromotors was analyzed by 

electron energy loss spectroscopy (EELS) method and XRD respectively (Figure 51D 

&E). Individual elements present in the micromotors were quantified to estimate 

their amount in the structure. Mainly three elements cobalt, iron, and oxygen were 

detected. The ratio of cobalt and iron elements was found to be 0.5 which is 

consistent with the ratio of the cobalt and iron precursor used in the synthesis of the 

micromotors (Figure 51D), confirming the CoFe2O4 structure. The XRD patterns of 
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the dried CoFe2O4 micromotors (Figure 51E) evidence a poorly crystalline structure. 

The (311) and (440) lattice planes correspond to CoFe2O4 (JCPDS 22-1086).  

 

Figure 52. Swimming behavior of CFO micromotors. (A) Tracking of an individual CFO micromotor 

swimming in 5% w/w H2O2 concentration. (B) Tracking of multiple CFO micromotors swimming in 5 % 

w/w H2O2. 

The motion of cobalt ferrite nanoparticles and micromotors was investigated by 

optical microscopy. We observed that the nanoparticles do not exhibit bubble 

propulsion in H2O2 solution. Bubbles were only observed in the bulk liquid or on 

the surface of the container due to gas saturation in the sample. On the contrary, in 

the case of CFO micromotors, they self-propel by the bubbles generated from the 

decomposition of H2O2 fuel at their surface because their bigger size and rough 

surface can provide sufficient nucleation points for bubbles to grow. It has 

previously been reported that the size limit of the catalytic micromotors for bubble 

propulsion depends on the catalytic activity, concentration of H2O2 and various 

geometrical factors33. For instance, platinum coated spherical micromotors can only 

exhibit bubble propulsion if their diameters are above 10 µm32. However, tubular 

micromotors can swim by bubble propulsion even with sub-micrometer diameter 

due to the confinement of the gas generated in the tubular structure171. In the case of 

CFO micromotors, a precise quantification of their cut-off size for bubble 

propulsion is difficult to assess due to the asymmetric shape of the micromotors 

which leads to a different number of nucleation points for the bubble growth and 

detachment. Figure 52A shows tracking of an individual CFO micromotor swimming 

A B 



 

125 | P a g e  
 

      Multifunctional micromotors and scalable synthesis 

in 5% w/w H2O2 for 10 seconds.  We observed that the motion of the micromotors 

was pulsatile and the recoil force of the bubble detachment mainly contributed to 

their motion. Swarms of CFO micromotors rapidly move around the liquid 

producing a chaotic swimming behavior that can induce an efficient mixing in the 

system. Figure 52B illustrates the tracking of four different CFO micromotors 

swimming for 10 seconds. CFO micromotors can maintain individual swimming 

direction even though bursting and fusion of the bubbles create often strong drift in 

the liquid. 

 

Figure 53. Degradation of TC antibiotic by CFO micromotors. (A) Effect of different amount of CFO 

micromotors. (Inset: Extraction of micromotors using NdFeB magnet) (B) Effect of different 

H2O2concentrations. (Inset: TC removal after 10 minutes of reaction with micromotors at different H2O2 

concentrations).  (C) Effect of presence of various surfactants 

The CFO micromotors were studied for their efficiency towards TC degradation via 

Fenton-like reaction.  First, the micromotors concentration was optimized by using 

different amounts of CFO micromotors from 0.05 to 0.2 g/L in the presence of 5% 

A B 

C 
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w/w H2O2 (Figure 53A). We observed that the degradation rate of TC did not increase 

above 0.1 g/L micromotors. To study the effect of H2O2, further experiments were 

carried out using 0.1 g/L CFO micromotors and varying the H2O2 concentration 

(1%, 2.5%, 5% and 7.5% w/w). As it is observed in Figure 53B, the TC degradation 

rate increased by increasing H2O2 concentration, reaching a maximum at 5% w/w 

(Figure 53B inset). 0.1 g/L micromotors and 5% w/w H2O2 were selected as 

optimized concentrations and for further experiments to study the effect of 

surfactants and the generation of hydroxyl radicals.  

Generally, surfactants are added to the solution to improve the overall swimming 

behavior of the micromotors regarding directionality and speed. Surfactants 

stabilize the interface of bubbles therefore facilitating their detachment from the 

micromotors surface, which smoothens the swimming and decreases the drift in the 

liquid due to fusion and bursting of bubbles172. In certain cases, surfactants are even 

necessary to achieve motion of micromotors.173 Recently, it has been reported that 

addition of surfactants improves pollutant removal efficiency of micromotors 

because of the improvement in the swimming behavior and adsorptive separation of 

pollutants on the bubbles.69,158,159  However, surfactants increase the organic matter 

of the wastewater and can be toxic, requiring further treatment such as 

electrocoagulation processes174,175. We studied the performance of CFO 

micromotors for TC antibiotic degradation in the presence of various surfactants, 

such as sodium dodecyl sulfate (SDS), triton-X and Tween 20 and without the 

addition of surfactant. CFO micromotors performed better (~84%) for removal of 

TC when surfactants were not added in the system. However, the presence of 

surfactants severely affected the performance of degradation of TC by the CFO 

micromotors (Figure 53C). Indeed, it was observed that SDS (~54 % removal) 

decreased the efficiency of TC degradation more significantly than Tween 20 and 

Triton-X (~70 % and ~59% removal respectively). The extra organic load added by 

the presence of the surfactant can competitively consume the reactive oxygen 

species produced by the Fenton-like reaction. Furthermore, surfactants form 

micellar structure around TC molecules that may oxidize first and prevent access of 
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hydroxyl radicals to TC. This effect can be enhanced for anionic surfactant like 

SDS due to its electrostatic interaction with TC176.  

The degradation efficiency of TC by the CFO micromotors was compared with 

control experiments using only H2O2 without the addition of the CFO micromotors 

and the TC degradation by the micromotors without the addition of H2O2. As shown 

in Figure 54A, only a small decrease in the characteristic absorbance peak of TC in 

both control experiments were observed, which can be attributed to the oxidative 

nature of the H2O2 and adsorption of TC on the CFO micromotors. TC degradation 

was minimal in the control experiments while in the presence of swimming CFO 

micromotors most of the antibiotic was degraded from the solution after 10 min of 

the Fenton-like reaction, being the characteristic absorbance peak of TC negligible.  

 

Figure 54. Degradation of TC and production of hydroxyl radicals. (A) Degradation of TC by the 

CFO micromotors approach at optimized H2O2 concentration (5%) and CFO micromotors amount (0.1 

g/L) over time. (B) Hydroxyl radical generated during the swimming of CFO micromotors in H2O2 probed 

by fluorescence intensity measurement of 2-hydroxyterephthalic acid converted from terephthalic acid. 

(Inset: fluorescence spectra scan over time). 

The degradation pathway of TC was previously studied by other researchers giving 

a general idea of its possible mineralization pathways 177. The mechanism includes 

oxidation of the methyl and amino groups attached to the aromatic rings, followed 

by the ring opening reactions that subsequently become oxidized into the short 

chain carboxylic acids before mineralization into carbon dioxide. Because of the 

complex structure of the TC molecules, many intermediate molecules can be 

A B 
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produced during the oxidative removal. Hydroxyl radicals are considered the key 

oxidative radicals generated in the Fenton-like reaction that are mainly responsible 

for such mineralization process. To verify the generation of the hydroxyl radical by 

CFO micromotors, we used terephthalic acid as probe molecule, that acts as 

selective scavenger of hydroxyl radicals and converts into 2-hydroxyterephthalic, 

which is fluorescent. The increase in 2-hydroxyterephthalic acid concentration was 

measured by fluorescence spectrometry. Figure 5B displays the increase in the 

fluorescence signal of 2-hydroxyterephthalic acid over time when the CFO 

micromotors are swimming in mixture of H2O2 and terephthalic acid solution, thus 

confirming the presence of the hydroxyl radicals. Fluorescence signal of 2-

hydroxyterephthalic acid rapidly increases over the time during the Fenton-like 

reaction of CFO micromotors indicating an increase in the generation of hydroxyl 

radicals. Hydroxyl radical production rate slows down after 20 minutes of reaction 

which can be attributed to depletion in both, H2O2 and terephthalic acid 

concentrations.  

Fenton reaction mechanism, proposed by Haber and Weiss, can explain both the 

production of hydroxyl radicals for organic degradation (Eq. 8) and oxygen bubble 

for self-propulsion in the ferrous ions recycling step (Eq. 10). 
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Presence of cobalt in the catalyst structure can also activate H2O2 for increased 

production of hydroxyl radicals, thus increasing the efficiency of the catalyst (Eq. 

11).  
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Co3+ can be recycled back to Co2+ by Fe2+ because of the thermodynamically 

favorable redox reaction to accelerate decomposition of H2O2
178 (Eq. 13). Apart 

from above mentioned radical mediated production of oxygen gas, surface oxygen 

vacancies present in the metal oxides  can also decompose H2O2 directly into 

oxygen and water without producing intermediate hydroxyl radicals 179. However, 

the detection of hydroxyl radicals suggests the involvement of radical mediated 

pathways for CFO micromotors for both the degradation of TC and generation of 

oxygen gas for self-propulsion.  

5.2.3. Conclusions 

We have fabricated inexpensive CFO based micromotors by nanoparticle drying 

process, using easily scalable synthesis methods. The CFO micromotors can swim 

without the addition of surfactants in the system and efficiently degrade antibiotics 

from wastewater. Furthermore, we observed that the presence of the surfactants 

decreases the efficiency of CFO micromotors. We have also verified the production 

of hydroxyl radicals to support the oxidation mechanism of TC by CFO 

micromotors. Since the hydroxyl radicals are non-selective oxidants, these 

micromotors can potentially be used for wide range of pharmaceutical and other 

organic pollutants. We believe that CFO micromotors do not only demonstrate the 

usability of self-propelled micromotors for wastewater cleaning, but also show an 

improvement of previously reported systems, since they are composed of cheap 

materials and do not require the addition of surfactants, which are an extra organic 

load on the water. 

5.2.4. Experimental methods  

5.2.4a Synthesis and characterization of micromotors 

CFO micromotors were fabricated from cobalt ferrite nanoparticles.  Cobalt ferrite 

nanoparticles were synthesized by solvothermal method using cobalt acetate (CoAc, 

sigma 403024) and Iron(III) chloride hexahydrate (FeCl3·6H2O, sigma F2877) as 

the precursors. First, 0.92 g CoAc and 1 g FeCl3·6H2O were dissolved in 30 ml of 



 

130 | P a g e  
 

5.2. Template free synthesis of micromotors 

ethylene glycol (sigma 324558). Then, 2.78 mg of sodium acetate (NaAc, sigma 

S8750) and 1 ml of polyethylene glycol (PEG 200, Alfa Aesar B21918) as the 

stabilizer were added to the previous mix. The prepared solution was transferred 

into 50 ml Teflon lined hydrothermal autoclave and heated to 170C for 15 hours. 

After the reaction was completed the reactor was cool down to room temperature 

and then the content was transferred into a beaker. The nanoparticle suspension 

obtained was washed multiple times with isopropanol (Panreac 211090) to remove 

ethylene glycol and unreacted precursor molecules. Then, the resulting suspension 

was dried using an oven at 80oC for 15 hours. The drying process induces the 

aggregation of the cobalt ferrite nanoparticles into few hundred-micrometers sizes 

of microparticles. These microparticles were manually grounded and sieved to 

obtain CFO micromotors with the size under 100 micrometers.  

A diluted suspension of the cobalt ferrite nanoparticles was dried overnight at room 

temperature on a copper grid to prepare samples for the transmission electron 

microscopy (TEM) analysis. JEOL Centurio model was used to obtain images of 

nanoparticles. Electron energy loss spectroscopy (EELS) (Gatan GIF ERS electron 

energy-loss spectrometer)) coupled with TEM was used to quantify ratio of Co and 

Fe present in the nanoparticles.  The scanning electron microscope (SEM) images of 

CFO micromotors were obtained using a FEI NOVA NanoSEM 230 system. The 

crystalline structure of micromotors were further characterized by using the Bruker 

D8 Advance diffractometer equipped with a Cu Kα radiation (1.5417 Å) source, a 

LYNXEYE super speed detector and a Ni filter.  

Swimming behavior of the CFO micromotors was analyzed using an inverted 

optical microscope Leica DMI 3000 B equipped with a camera Leica DFC 3000 G. 

A custom-made 3D printed sample holder was prepared to position the glassware 

under the microscope for observing the swimming of the micromotors in-situ.  

5.2.4b. Antibiotic degradation experiments using CFO micromotors. 
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Tetracycline (TC, sigma T7660) was selected as target antibiotic. TC degradation 

experiments were carried out in a glass beaker containing CFO micromotors in 50 

mg/L TC solution and 5% H2O2 (sigma 31642). In all the experiments, the 

concentration of the TC was kept constant. To optimize the degradation approach, 

we studied different parameters. First, the effect of the amount of CFO micromotors 

in the efficiency of TC degradation was studied. To this end, three different 

suspensions of CFO micromotors with the concentrations of 0.05 g/L, 0.1 g/L, and 

0.2 g/L were used in triplicate. To achieve the optimized H2O2 concentration for TC 

degradation using CFO micromotors, four concentrations of H2O2 were evaluated (1 

%w/w, 2.5% w/w, 5% w/w and 7%w/w). 

The effect of surfactant was studied by using the optimized concentration of 0.1 g/L 

CFO micromotors, 5% w/w H2O2 and 50 mg/L TC. Four sets of experiments were 

carried out (n=3) containing three different surfactants, sodium dodecyl sulfate 

triton-X and tween 20 in 1% w/w concentration in three different sets and one 

without the presence of any surfactant.  

In all the degradation experiments, aliquots of the different samples were taken at 

timed intervals. The concentration of TC in each sample was measured by reading 

the absorbance value of the sample at 358nm using a UV-Vis spectrometer.  

5.2.4c. Identification of hydroxyl radicals. 

Terephthalic acid was used as a probe to investigate the hydroxyl radical generation 

during the Fenton-like reaction of CFO micromotors. A solution containing 

terephthalic acid (0.5mM) (sigma 185361), H2O2 (5 % w/w) and CFO micromotors 

(0.1 g/L) was used for the experiment and an identical solution without micromotors 

was used as control. The presence of 2-hydroxyterephthalic acid was produced by 

the reaction between terephthalic acid and the generated hydroxyl radical species. 

This product was detected by measuring its fluorescence spectra from 350nm to 

600nm at 320nm excitation wavelength using a multimode microplate reader 

(Tecan Infinite M200 PRO).  
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CHAPTER	6.	
CONCLUSIONS	AND	FINAL	REMARKS	

Waste‐water treatment and water reuse are an essential part of environmental 

sustainability. However, pollution originating from human activities is often 

difficult to clean by nature’s method of waste removal. Organic pollutants, heavy 

metal and pathogenic microorganism contamination in water pose a serious risk to 

the public health and other life forms, if the wastewater is released without any 

additional treatment. To tackle the scarcity of clean water, nanotechnology is widely 

hoped for the development better treatment solutions10. Currently, researchers 

working in nanotechnology are designing new nanosystems and nanomaterials for 

fast and efficient removal of pollutants from water.  

In this direction, we developed self-propelled micromotors that can efficiently 

remove organic pollutants, heavy metals and bacterial contaminants from polluted 

water. These micromotors are actively propelled in H2O2 containing media, due to 

the propulsion force generated by oxygen gas bubbles produced via catalytic 

decomposition on H2O2. In the case of bactericidal micromotors, the propulsion is 

driven by hydrogen gas bubbles produced during the reaction of magnesium, 

present in the micromotors structure, with water. The active motion of the 

micromotors is coupled with functional materials that are mainly responsible for 

pollutant removal activity. We designed micromotors that use iron, iron oxides and 

cobalt ferrite as active materials for removal of organic pollutants via Fenton-like 

reactions. Heavy metal removal is targeted by using graphene oxides or silica as 

adsorbents, and bactericidal motors are decorated with silver nanoparticles for 

contact killing. We observed that the active micromotors demonstrated an 

improvement in pollutant removal efficiency, compared to the non-active 

micromotors with the same functional materials and structure. This effect is 
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attributed to the enhanced mass transfer induced by the active motion of the 

micromotors.  

To expand the applicability of such micromotors to more realistic scenarios, some 

of the key limitations of current systems need to be addressed. One of the main 

challenges is related to the fabrication of micromotors via low-cost and scalable 

techniques. Currently used common fabrication methods require additional 

facilities, such as electrochemical stations, clean rooms, metal evaporators or 

lithography platforms, which are expensive for the large-scale synthesis necessary 

to clean up large volumes of contaminated water. Another economy related 

challenge is to avoid the use of expensive precious metals in the structure of 

micromotors, such as commonly used Ag, Pt, Pd and Au catalysts. We explored 

different approaches dealing with fabrication scalability and the use of alternative 

low-cost metals for their propulsion. We developed a synthesis protocol for tubular 

micromotors with multifunctionality. These micromotors have low-cost metal 

oxides, involving Mn, Si and Fe based oxides in their structure. The polycarbonate 

template assisted synthesis protocol does not require use of electrochemical setup, 

nor cleanroom and photolithography techniques, and the entire process can be done 

via sol-gel chemistry and hydrothermal methods.    

Another important technical challenge is the use of the surfactants for the efficient 

propulsion of bubble-propelled micromotors. Surfactants ease the release of the 

bubble, facilitating their propulsion. Bubble-propelled micromotors are reported to 

swim either very slowly or not at all without surfactants172,173,180. Considering that 

these surfactants add extra organic load in the water and they can also compete with 

the pollutants during the degradation reaction, it may limit the overall efficiency of 

the performance of micromotors. Therefore, it is vital to ensure that micromotors do 

not leave any harmful reactants, by-products or other kinds of pollutants once their 

task is completed. We synthesized cobalt ferrite based micromotors that can propel 

without the presence of surfactants. These micromotors are simple in structure, 

fabricated by template free method of simple aggregation of nanoparticles and 

contain a single material, that acts as both the propulsion catalyst and Fenton-like 
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catalyst for degradation of pharmaceutical organic pollutants. The preparation of 

micromotors based on merely synthetic chemical procedures is promising for their 

potential mass-production. However, the structures synthesized by using these 

chemical methods are rather simple, usually containing a single material, and such 

methods do not allow much control for the synthesis of complex structures. Future 

efforts should be directed towards the development of scalable and low-cost 

synthesis methods for the fabrication of micromotors using inexpensive catalysts 

with multi-material configurations.  The current system of micromotors can still be 

used for small scale water treatment systems, for removal of extremely toxic 

pollutants that are probably too dangerous to transport, for example wastewater 

generated during laboratory experiments involving synthesis of poisonous organic 

or inorganic compounds or infectious agents with high potential of biohazard.  

The need of a chemical fuel can limit the application of micromotors for some 

environmental remediation purposes. Even though H2O2, commonly used in many 

advanced oxidative processes, is considered a green reagent (that leaves only water 

and oxygen), micromotors designed for the adsorptive or antimicrobial activity 

should explore alternative propulsion strategies in future. Having on board active 

materials such as magnesium, zinc or iron that react with water for propulsion and 

leave environmental friendly by-products could be an attractive alternative, if the 

fuel enables micromotors function for long enough time to complete their task.  

Some of the remaining challenges to be addressed include special attention to the 

reusability of these micromotors for the removal of different pollutants, including 

changes in the speed over usage time and maximum cycles of efficient 

decontamination. Moreover, the development of multifunctional micromotors that 

can simultaneously decontaminate several types of pollutants commonly found in 

wastewater can pave way for highly efficient single-step universal water treatment 

technology.
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Resumen en español 

El escaso suministro de agua limpia y el aumento de la contaminación del agua son 

desafíos globales clave para la sostenibilidad del agua, sobre todo teniendo en 

cuenta que gran parte del agua residual generada por la actividad agrícola e 

industrial humana no se trata. Los materiales y sistemas nanotecnológicos han 

surgido como nuevas herramientas para mejorar la eficiencia del tratamiento de 

aguas. Entre ellos, los micromotores autopropulsados han mostrado varias 

características ventajosas. Los micromotores son sistemas de propulsión autónoma 

que utilizan energía química presente en su entorno o pueden también ser 

propulsadas a través de campos de fuerzas aplicadas externamente. Varios diseños, 

composición de materiales y mecanismos de propulsión se han sido reportados en el 

campo de los micromotores. En los últimos años, demostraron muchas aplicaciones 

de prueba de concepto en campos como la biomedicina, la detección y la 

remediación ambiental.Entre ellos, principalmente los micromotores propulsados 

por burbujas, los cuales se mueven debido a la generación y liberación de burbujas 

de gas de su superficie, se utilizan como una herramienta para aplicaciones de 

remediación de aguas. Esto se debe a la eficacia añadida de la transferencia de masa 

a la microescala, que se origina a partir de su movimiento y el movimiento de las 

burbujas liberadas. La micromezcla tiene una influencia importante en la cinética 

aparente de las reacciones químicas rápidas, en las que la velocidad de la reacción a 

menudo está limitada por la difusión. Además, la estructura de los micromotores se 

puede modificar para dirigirse a una amplia variedad de contaminantes, según los 

requerimientos. Los micromotores que sintetizamos durante el trabajo de 

investigación para esta tesis pueden eliminar contaminantes orgánicos y metales 

pesados, así como exhibir actividad anti bactericida. 

Estudiamos micromotores de hierro/platino (Fe/Pt) por su reutilización, efecto de 

tamaños, su comportamiento durante su movimiento y propiedades catalíticas. Estos 

micromotores se fabricaron mediante enrollamiento espontáneo de nanomembranas 

de hierro y platino, depositadas en los patrones prefabricados definidos en una capa 
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sacrificial fotorresistente. La relajación de la tensión interna presente en las 

nanomembranas, tras el ataque de la capa de sacrificio, condujo al enrollamiento de 

las membranas en estructuras tubulares de micromotores. La capa de hierro presente 

como superficie externa de estos micromotores puede degradar los contaminantes 

orgánicos a través de la reacción tipo Fenton y la capa interna de platino actúa como 

el motor, siendo el catalizador que descompone el peróxido de hidrógeno en 

oxígeno para generar una propulsión por burbujas. Observamos que los 

micromotores Fe / Pt pueden nadar continuamente durante horas y pueden 

almacenarse durante semanas antes de volver a ser usados, sin que esto repercuta de 

manera significativa en su actividad. Se pueden extraer fácilmente del agua después 

del proceso de limpieza debido a sus propiedades magnéticas (Figura 1A). Los 

resultados de nuestros experimentos sobre el análisis de superficie de micromotores, 

estudio de nanoindentación y liberación de hierro sugirieron que los micromotores 

Fe / Pt actúan como un catalizador heterogéneo debido a las especies de óxido de 

hierro generadas in situ en la superficie, sin lixiviación de alta concentración de 

hierro en los medios. 

 

Figura 1. Eliminación de contaminantes usando micromotores. (A) Degradación de 

contaminantes orgánicos a través de una reacción de oxidación avanzada similar a Fenton 
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catalizada por micromotores de hierro / platino reutilizables. (B) Eliminación mejorada de 

contaminantes de metales pesados (es decir, iones de plomo) por adsorción en 

micromotores basados en óxido de grafeno para nado. (C) matar y eliminar bacterias (es 

decir, E. coli) usando micromotores bactericidas que contienen magnesio revestidos con 

nanopartículas de oro y plata. 

Desarrollamos micromotores basados en óxido de grafeno (micromotores GOx) 

para la eliminación de metales pesados que consisten en multicapas nanométricas de 

óxido de grafeno, níquel y platino. Estos micromotores pueden capturar, transferir y 

eliminar metales pesados (es decir, plomo) del agua contaminada. Los 

micromotores GOx se sintetizan mediante electrodeposiciones de capas de óxido de 

grafeno, níquel y platino, los cuales son electroreducidos en la parte interior de 

membranas de policarbonato porosas. Los micromotores tubulares se obtienen 

después de disolver la plantilla de policarbonato. La capa externa de óxido de 

grafeno captura el plomo en su superficie, y la capa interna de platino proporciona 

autopropulsión en presencia de peróxido de hidrógeno, mientras que la capa 

intermedia de níquel permite el control magnético externo de los micromotores. 

Observamos que los micromotores móviles GOx pueden eliminar el plomo hasta 10 

veces más que los micromotores GOx no móviles (Figura 1B), limpiando el plomo 

en agua de 1000 ppb a menos de 50 ppb en menos de 60 min. Estos micromotores 

se pueden reciclar y reutilizar después de la recuperación del metal pesado de su 

superficie mediante el uso de medios ácidos para la desorción de iones metálicos. 

Hemos demostrado el control de su movimiento y direccionalidad en un sistema 

microfluídico como prueba de concepto. 

Diseñamos también micromotores tipo Janus decorados con nanopartículas de plata 

(AgNP) para la desinfección y eliminación de la bacteria Escherichia coli (E. coli) 

en agua contaminada. Los micromotores Janus se sintetizaron recubriendo un lado 

de una micro-partícula de magnesio con capas de hierro y oro, las cuales 

posteriormente se funcionalizaron con AgNP. El magnesio presente en los 

micromotores funciona no sólo como estructura principal para conseguir una forma 

esférica, sino también como fuente de propulsión mediante la producción de 
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burbujas de hidrógeno al entrar en contacto con el agua. La capa interna de hierro 

proporciona la funcionalidad requerida para el posterior control magnético externo, 

mientras que la capa de oro externa decorada con AgNPs promueve la adhesión de 

bacterias y dota de propiedades bactericidas a los micromotores (Figure 1C). 

En nuestro esfuerzo por desarrollar micromotores multifuncionales y métodos de 

síntesis escalables, desarrollamos dos tipos de micromotores. (i) Micromotores 

mesoporosos basados en sílice con una capa de dióxido de manganeso (MnO2) en la 

superficie interna y recubiertos con nanopartículas γ-Fe2O3 (micromotores 

FeSiMnOx). Estos micromotores pueden eliminar contaminantes orgánicos y 

metales pesados, y se sintetizan utilizando solo métodos químicos asistidos por un 

molde (por ejemplo, una membrana porosa). La degradación de los contaminantes 

orgánicos se logra gracias a las reacciones fotocatalíticas similares a Fenton 

catalizadas por nanopartículas de Fe2O3 y su propulsión es impulsada por MnO2 y 

en parte por nanopartículas de Fe2O3, que catalizan la descomposición del peróxido 

de hidrógeno. Estos micromotores son uno de los micromotores más rápidos que 

utilizan un catalizador metálico no noble para la descomposición de H2O2. (ii) Los 

micromotores de ferrita de cobalto (micromotores CFO) fueron sintetizados sin 

necesidad de utilizar ningún molde. Están formados por nanopartículas de ferrita de 

cobalto agregadas, que actúan como catalizadores para la propulsión y para 

reacciones tipo Fenton. Medimos cualitativamente la generación de radicales 

hidroxilos por micromotores CFO y estudiamos el efecto de los tensioactivos sobre 

la eficiencia de degradación de los micromotores CFO. 

Esperamos que la síntesis de micromotores a través de métodos relativamente 

fáciles empuje la implementación de micromotores en soluciones comercialmente 

prácticas para el tratamiento del agua. Asimismo, se deben realizar esfuerzos 

futuros para un mayor desarrollo de métodos de síntesis escalables y el uso de 

materiales eficientes y económicos en la estructura de micromotores. En general, 

nuestros resultados muestran que los micromotores autopropulsados 
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multifuncionales tienen el potencial de convertirse en una herramienta efectiva para 

la limpieza de aguas en el futuro. 
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