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Abstract

Purpose—Single nucleotide polymorphisms in angiotensinogen at positions -20 and -6 are 

associated with increased severity and progression of various fibrotic diseases. Our earlier work 

demonstrated that the progression of Idiopathic Pulmonary Fibrosis was associated with the A-6 

allele. This study examined the hypothesis that the homozygous CC genotype at -20 and the AA 

genotype at -6 would confer worse measures of pulmonary function (measured by pulmonary 

function tests) in Idiopathic Pulmonary Fibrosis.
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Method—Multiple logistic regression analysis was applied to a NIH Lung Tissue Research 

Consortium cohort and Spanish cohort, while also adjusting for covariates to determine the effects 

of these SNPs on measures of pulmonary function.

Results—Analysis demonstrated that the CC genotype at -20 was strongly associated with 

reduced diffusing capacity in males in both cohorts (p = 0.0028 for LTRC and p = 0.017). In 

females, the AA genotype was significantly associated with lower FVC (p = 0.0082) and Valv (p = 

0.022). In males, the haplotype CA at -20 and -6 in AGT was also strongly associated with 

reduced diffusing capacity in both cohorts.

Conclusions—This study is the first to demonstrate an association of angiotensinogen 

polymorphisms (-20A>C and -6G>A) with lower measures of pulmonary function in Idiopathic 

Pulmonary Fibrosis. It is also the first to relate the effect of gender in lung fibrosis with 

polymorphisms in angiotensinogen.
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INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is the most common form of interstitial lung disease. It 

is a “chronic, progressive, and irreversible” condition with a bias towards males and people 

in their fifth through eighth decade of life [1]. Upon diagnosis, the mean survival is three 

years. Currently, the only therapy to prolong survival is lung transplantation [1]. However, 

the five year post-operative survival rate is 44% [1] The current modes of therapy 

(corticosteroids and immunosuppressants) are of minimal benefit to IPF patients. This 

reflects the incomplete knowledge underlying the pathogenesis of IPF and paves way for 

novel therapies to address this void [2].

A strong predictor of mortality in IPF is the number of myofibroblastic foci [3]. 

Myofibroblasts play an important role in lung fibrosis. They can be derived from a variety of 

sources including pericytes, fibrocytes, epithelial or endothelial cells, and normal lung 

fibroblasts, which when stimulated with transforming growth factor (TGF)-β1 differentiate 

into myofibroblasts. Myofibroblasts within many tissues are a known source of collagen and 

angiotensin II (ANGII), and the ANGII produced by myofibroblasts is known to mediate 

fibrogenesis in various organ systems such as the heart, kidney, liver, pancreas, skin, and 

lung [4-10]. ANGII is derived from its precursor angiotensinogen (AGT), and both AGT and 

ANGII have been shown by this laboratory to be required for experimental lung fibrosis 

[11-12]. ANGII also enhances TGF-β1 synthesis in human lung myofibroblasts isolated from 

patients with IPF [9]. In turn, TGF-β1 is able to stimulate AGT transcription in 

myofibroblasts, thus creating an “ANGII-TGF- 1 autocrine loop” in myofibroblasts. 9 This 

laboratory also demonstrated that TGF-β1 inducible AGT transcription is regulated through 

two transcription factors, JunD and HIF-1α, both of which act on binding domains in the 

core promoter of AGT in the region spanning from –46 to +22 from the transcription start 

site [13].
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The core promoter also contains three single nucleotide polymorphisms (SNPs) located at 

-20, -18, and -6. The SNPs at these locations have been shown to result in changes in AGT 

transcription rate in non-pulmonary cell types. In hepatocytes, the presence of the CC 

haplotype at -20 and -18 respectively, increased AGT transcription to more than two-fold 

when compared to the AT haplotype [14]. Similarly, the presence of the A allele at -6 

increased AGT transcription in comparison to the G allele at the same locus [15]. These 

SNPs have also been associated with the severity and/or progression of various diseases 

including IgA nephropathy, hepatic fibrosis and cirrhosis, hypertension, and IPF [16-21]. In 

a Spanish IPF cohort, our lab demonstrated that the AA genotype of -6G>A was 

significantly associated with disease progression as measured by alveolar-arterial oxygen 

gradient over time [20].

On this basis, it was hypothesized here that the presence of CC genotype at -20 and/or the 

AA genotype at -6, particularly when found together, would confer lower measures of 

pulmonary function in IPF as measured by pulmonary function tests (PFTs). In accord with 

this hypothesis, it was theorized that the presence of both of these alleles would confer a 

“risk haplotype” for IPF; the risk haplotype was predicted to be CA (at the -20 and -6 loci, 

respectively).

METHODS

Subjects

The Lung Tissue Research Consortium (LTRC) provided 163 blood samples and over 1100 

associated clinical variables from IPF patients. From these, samples that were unable to be 

genotyped and samples that were missing variables of interest were excluded. The final pool 

consisted of 149 samples and 68 variables of interest that came from the categories of 

demographics, tobacco use, environmental exposure, disease history, medications, 

pulmonary function tests, and arterial blood gases. This pool was composed of 94 males and 

55 females (mean ± SD age: 63.4 ± 8.5 and 62.4 ± 9.2 respectively). Similar analyses were 

performed on a second cohort consisting of 203 patients from a Spanish population. This 

group was composed of 123 males and 80 females (mean ± SD age: 66.1 ± 10.6 and 67.5 ± 

13.1 respectively).

Genotyping polymorphisms at -20 and -6

The genotyping protocol was derived from Jeunemaitre et al. with modifications in primer 

design [22]. The primers utilized were 5′- GTC GCT TCT GGC ATC TGT CC -3′ (forward) 

and 5′- CCT TTT CCT CCT AGC CCA CA -3′ (reverse). A salting procedure was used to 

extract genomic DNA from peripheral leukocytes (23). Each sample was subjected to the 

following PCR cycling conditions: 94°C for 5 minutes, followed by 35 cycles, each at 94°C 

for 30 seconds, 63°C for 30 seconds, and 72°C for 45 seconds, with a final extension at 

72°C for 7 minutes. Each reaction was performed in a 20 μL volume containing 0.5U Taq 

polymerase (Promega Corp, Madison, WI), 1.5 mM MgCl2, 0.2 mMdNTPs, 0.1 μg/

μLPuregeneRNAse A Solution (Gentra Systems, Minneapolis, MN), and 1 μM of each 

primer. The amplification of each product was checked on a 2% agarose gel using 5 μL of 

the PCR product. If amplification was sufficient, the remaining 15 μL underwent a 
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purification step to remove contaminating primers and dNTPs. The purification step 

consisted of adding 0.45 μL (5 U/μL) of Antarctic Phosphatase (New England Biolabs), 1.5 

μL of 10x Antarctic Phosphatase buffer (New England Biolabs), and 0.225 μL (10 U/μL) of 

Exonuclease I (USB). This mixture was incubated at 37°C for 30 minutes followed by a 20 

minute incubation at 80°C. Sequencing was performed using 2 μL of purified PCR product, 

9.7 μL of water, and 0.3 μL (100 μM) of primer. Both forward and reverse primers were 

utilized in separate reactions and sequenced on an ABI Prism 3700 DNA Analyzer at the 

Research Technology Support Facility at Michigan State University. The results were 

analyzed using the program, Sequencher v4.7(Gene Codes Corp., Ann Arbor, MI) to 

determine SNPs rs 5050 (-20G>A) and rs 5051 (-6A>C) located in the promoter of AGT.

Statistical Analysis

The relationship between measures of pulmonary function (as measured by PFTs including 

FEV1, FVC, FEV6, mean DLCO, Valv, and KCO) and the genotyped SNPs at -20 and -6 was 

tested by fitting regression models assuming different gene action modes (i.e., additive, 

dominance and recessive) after adjusting for the effects of covariates. Data analysis was 

done with statistical software R (2.13.2 version). From the original 163 individuals, the pool 

of 149 individuals was included for analysis after exclusion of samples that were unable to 

be genotyped and those in which variables of interest were missing. To account for possible 

gender differences in disease progression, missing phenotypic values were imputed using 

the mean value of the corresponding phenotype for male and female data separately. 

Analysis for the Spanish cohort was similar except for the inclusion of covariates (due to the 

lack of collection of these variables).

All the phenotypes (as measured by PFTs) were individually analyzed. A stepwise variable 

selection was initially performed on all covariates for each phenotype in R. The selected 

covariates were then fitted into the genetic models (Table S1) together with the SNP 

variables. For each phenotype, roughly ten to fifteen covariates were left after variable 

selection. Three genetic models representing different gene action modes were considered in 

this study (the joint model analyzing the whole population in Table S1). In practice, the true 

disease model is unknown. Statistically, a model selection criterion can be used to choose 

which genetic model fits the data best. The Akaike information criterion (AIC) was chosen 

to select the optimal model, which is defined as AIC = -2logL + 2k, where L is the 

regression likelihood and k is the total number of parameters fitted in the model. The one 

with the minimum AIC value is chosen as the optimal one. For the three models, testing a 

SNP effect is equivalent to testing H0: β1 = β12 = 0, a 2 degrees of freedom (df) likelihood 

ratio test, while adjusting for the effects of other covariates. The likelihood ratio statistic 

asymptotically follows a chi-square distribution with 2 df. For each phenotype, multiple 

testing adjustment was done for the two loci. Thus any SNP with a p-value < 0.025 was 

considered statistically significant by maintaining a family-wise error rate of 0.05. To assess 

if male and female populations have different genetic bases in determining worse measures 

in pulmonary functions, the above models were modified by removing the sex covariate as 

well as the genetic-by-sex interaction term (the sex-specific model in Table S1) and were 

fitted to the male and female data separately. The same set of covariates fitted with the male 

and female combined data was fitted into the modified models. Likelihood ratio test was 
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applied to test the significance of the regression coefficients after selecting the optimal 

model by the AIC criterion. A power study revealed that the datasets have more than 90% 

power to detect a mean difference larger than 0.7 between the largest and smallest means 

among the three genotype groups with a sample size of 55, the smallest sample size (for 

female in the LTRC cohort).

RESULTS

Characteristics of the patient population

Table 1a and 1b summarizes the age and mean pulmonary function test values for the LTRC 

and Spanish population subjects for which all genotyping and function test data were 

available. The data are separated by gender in accord with the finding of gender-specific 

differences in the association between AGT genotype and PFT values to be discussed below. 

No statistically significant differences were observed between males and females in any of 

the data reported in Table 1.

Genotype and allele frequencies

The genotype and allele frequencies for the -20A>C and -6G>A polymorphisms in AGT are 

summarized in Tables 2 and 3. No statistically significant differences were observed in the 

allele frequencies at either the -20 or -6 loci between men and women (Table 3).

Influence of AGT genotype on pulmonary function tests- whole population analysis

In an analysis of each cohort s a whole (Table 4, i.e. without separation by gender), the CC 

genotype at -20 was most strongly associated with reduction of KCO in both cohorts. 

However, the impact of gender on this measure was also significant (see below). The AA 

genotype at -6 also associated with reduction of KCO. In the LTRC cohort, gender did not 

influence this measure. Table 4 lists only those PFT data for which statistically significant 

differences were observed in this analysis.

Influence of AGT genotype on pulmonary function tests- gender-specific analyses

When the whole population was reanalyzed with sample separation on the basis of gender, 

several gender-specific effects of AGT genotype on PFT values were revealed. In the male 

IPF population (Table 5a), the CC genotype at the -20 locus was associated with a very 

strong reduction in KCO (from 3.19 ± 0.84 to 1.46 ± 0.34) of high statistical significance (p 

= 0.0028) in the LTRC cohort. This effect was also seen in the Spanish cohort [Table 5b (p 

= 0.017)]. The AA genotype at -6 also associated with reduced KCO in males, but with 

lower statistical significance (p=0.0214) in the LTRC cohort.

In females (Table 6), significant associations were only seen at the -6 locus. The -20 locus 

had no apparent effect. The AA genotype at -6 was associated with a reduction in FVC ( p = 

0.0081) and Valv (p = 0.022) in the LTRC cohort. However, in the Spanish cohort, this 

genotype was associated with an increase in diffusing capacity (p = 0.023). ). As discussed 

further below, the lack of decrease in KCO may be related to the large decrease in Valv 

associated with the AA genotype at -6 in females (p = 0.022).
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Analysis of an “IPF risk haplotype”

Multiple loci analysis revealed that in males, the AGT haplotype CA (at -20 and -6, 

respectively) was strongly associated with reduced KCO in both the LTRC cohort (p = 

0.0048) and the Spanish cohort (p = 0.014). This association was not statistically significant 

in females. Interestingly, the AG haplotype at -20 and -6 also was associated with reduced 

KCO in males, but at lower statistical significance (p=0.031) in the LTRC cohort. When the 

male and female combined data were analyzed, no significant haplotype was found.

DISCUSSION

The influence of AGT genotype on pulmonary function tests in IPF

Given that diffusing capacity for carbon monoxide is the best noninvasive clinical measure 

of the thickness of the alveolar-capillary diffusion barrier, it was theorized that diffusing 

capacity would be decreased the most in individuals with AGT genotypes already associated 

with hypertension and/or higher rates of AGT transcription in other organs. In males with 

IPF, this proved to be the case; the lowest KCO values were observed in individuals with the 

genotypes CC at -20 and AA at -6. The most drastic decrease was observed with the CC 

genotype at -20, with which the KCO decreased more than two-fold compared to the AA 

genotype (table 5). In males, FEV1 and FVC also increased, rather than decreased, with the 

CC genotype at the -20 locus; this might be due to more forceful expirations assisted by the 

increased elastic recoil imparted by the fibrotic lung parenchyma. Unfortunately, it is not 

possible to explore this hypothesis further with the LTRC dataset. Regardless, in females 

with IPF the lowest FVC and Valv values and highest KCO were observed in individuals 

with the AA genotype at -6 (table 6). These data are consistent with our earlier observations 

[21].

Influence of gender on the effects of the -20 and -6 loci on PFTs in IPF

IPF is known to affect more men than women, but little is known about the cause of this 

gender difference. This study is the first to report an association with gender of genetic 

variants in AGT at the -20 and -6 loci at both the genotype and haplotype level. On the 

genotype level, the male gender had a stronger effect at the -20 locus, while the female 

gender imparted a greater effect at the -6 locus. Other authors studying non-pulmonary 

systems have also observed gender-specific effects of AGT variants; for example, Chapman 

et al. demonstrated that the -6 locus was also more significantly associated with increased 

carotid intimal medial thickening in the female population [25]. In the present study, 

haplotype analysis revealed that the IPF “risk haplotype” CA was significant only in males 

(the AG haplotype was also significant but to a lesser degree). Although other authors have 

noted an additional, albeit rare, SNP in AGT at the -18 position [14]. The -18 locus was 

genotyped here but was not analyzed further due to the lack of this variant in the LTRC or 

Spanish cohorts.

AGT promoter sequence variants and transcription rate

In studies of AGT synthesis by isolated human hepatocytes, SNPs at the -20 and -6 loci 

influence the transcription rate of AGT mRNA [14-15]. The transcription rate is higher with 
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the C allele at -20 and the A allele at -6. In earlier studies of both animal models of lung 

fibrosis and isolated lung cells, transcription of the AGT gene has been shown to be required 

for the fibrogenic response to bleomycin and for the apoptotic response of alveolar epithelial 

cells to a number of profibrotic stimuli [9,12]. Taken together, these findings suggest, and 

indeed had lead us to hypothesize, that higher rates of AGT transcription in lung cells 

imparted by the CA haplotype would lead to worse lung fibrosis in IPF patients as indicated 

by reductions in KCO, DLCO or FVC. As discussed above, most of these effects were found 

in this study, but in a surprising gender-dependent manner.

Possible mechanisms underlying gender-specific effects of AGT sequence variants

Hormonal regulatory elements located in the same AGT promoter domain as the SNPs 

studied here also influence the transcription rate of AGT. Of particular interest is the 

estrogen response element that is located in the AGT promoter region spanning – 11 to – 25 

[26]. Estrogen receptor alpha (ER-α) preferentially binds to the -20 locus if the A nucleotide 

is present, and induces an increase in AGT transcription by human liver cells [26]. Estrogen 

also mediates fibrogenesis by up-regulating the transcription of procollagen I and TGF-β1 

[27]. TGF-β1 stimulates fibroblasts to transition into myofibroblasts, which in turn deposit 

collagen and express AGT constitutively [9, 13]. Another potential mechanism that might 

regulate AGT differentially by gender is the possibility that estrogen receptor binding to the 

AGT promoter prevents the binding of other transcription factors that might otherwise up- or 

down-regulate AGT transcription.

Conversely, the binding domain of the orphan receptor Arp-1 shares homology to the 

binding domain for ER-α [28]. The binding of Arp-1 to this domain reduces estrogen-

induced AGT transcription [28]. These data suggest that the balance between estrogen and 

Arp-1 at the -20 locus may thus be an influential factor in this gender discrimination. In 

males, it is possible that the balance may favor estrogen-induced AGT transcription instead 

of repression by Arp-1. IPF affects people in their fifth to eighth decade of life, and women 

in these decades tend to be in the post-menopausal stage. In this stage estrogen levels drop, 

and this may explain the bias for males at the -20 locus. In males with IPF, the KCO 

decreased with the presence of CC genotype at -20, while in females there was an increase 

in the KCO at this same locus. Thus, the balance between ER-α and Arp-1 may play a role 

in this difference, and this topic will be an interesting issue for future investigation.

Another possible explanation for this gender difference is the potential role of androgens in 

AGT transcription. Throughout the human lifespan, androgen receptors (AR) are expressed 

in both mesenchymal and epithelial cells. In studies of the prostate gland, ANGII enhanced 

the expression of AR through the ANGII type-1 receptor [29], and one of the down-stream 

effects of this cascade is prostate cell proliferation. If this model is applicable to the lung, 

modulation of androgen receptors might also contribute to increased severity of IPF in 

males. For these reasons, the potential role of androgens in the gender differences that AGT 

variants exert on IPF severity will also be an interesting topic for further research.

In this regard it is important to note that if comparisons are made of human, mouse and rat 

AGT promoter sequences, there is relatively low homology between these species in the 

TGF-β1-responsive domain of AGT between the TATA box and the transcription initiation 
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site [13]. Due to these sequence differences, human lung cells in culture should remain an 

important model to complement and extend the studies reported here. Moreover, caution 

should be exercised in attempts to extrapolate data on the regulation of AGT expression 

obtained from animal models to human lung fibrosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Mean values for variables of interest in the LTRC population and Spanish cohorts.

LTRC SPANISH

CHARACTERISTICS
2 MALES (n = 94) FEMALES (n = 55) MALES (n = 123) FEMALES (n = 80)

AGE (years) 63.4 ± 8.5 62.4 ± 9.2 66.1 ± 10.6 67.5 ± 13.1

FEV1 (L) 2.3 ± 0.6 1.7 ± 0.5
78.6 ± 20.0

*
80.2 ± 22.5

*

FVC (L) 2.8 ± 0.8 2.0 ± 0.6
70.1 ± 15.7

*
71.4 ± 20.1

*

FEV1/FVC (%) 82.7 ± 6.4 83.4 ± 7.2 ------ ------

FEV6 (L) 2.8 ± 0.7 2.0 ± 1.0 ------ ------

PEF (L·s-1) 8.5 ± 2.2 6.0 ± 1.6 ------ ------

TLC (% predicted) ------ ------ 70.5 ± 14.1 69.8 ± 15.7

PAO (mm Hg) ------ ------ 71.7 ± 12.8 73.3 ± 14.1

DLCO (mL·min-1·mmHg-1) 12.1 ± 4.7 10.0 ± 3.6
56.8 ± 16.2

*
56.6 ± 18.3

*

Valv (L) 3.9 ± 0.9 3.0 ± 0.6

KCO (mL·min-1·mmHg-1·L-1) 3.1 ± 0.9 3.3 ± 0.9
78.4 ± 21.0

*
77.4 ± 21.3

*

1 Data are presented as mean ± SD.

2
Abbreviations are as follows: FEV1 = forced expiratory volume in one second; FVC = forced vital capacity; FEV6 = forced expiratory volume in 

six seconds; PEF = peak expiratory flow; ; TLC = total lung capacity; PAO = alveolar-arterial oxygen tension difference; DLCO = diffusing 
capacity of the lung for carbon monoxide; Valv = alveolar volume; KCO = ratio between DLCO and alveolar volume. 1 mm Hg = 0.133 kPa.

*
Units are defined as % predicted.
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Table 5

Mean values for pulmonary function tests in the male population at the -20 and -6 loci in the LTRC and 

Spanish cohorts.
1

-20 AGT SNP in male LTRC Cohort

PHENOTYPE AA AC CC P-VALUE

FEV1 (L) 2.21 ± 0.52 2.47 ± 0.65 2.75 ± 0.21 0.0217 (M1)

FEV6 (L) 2.65 ± 0.55 2.95 ± 0.78 3.45 ± 0.35 0.012 (M1)

FVC (L) 2.71 ± 0.64 2.99 ± 0.56 3.45 ± 0.07 0.019 (M1)

KCO (mL·min-1·mmHg-1·L-1) 3.19 ± 0.84 3.04 ± 0.96 1.46 ± 0.34 0.0028 (M1)

-20 AGT SNP in male Spanish Cohort

PHENOTYPE AA AC CC P-VALUE

DLCO (% predicted) 57.4 ± 12.3 52.5 ± 16.9 51.6 ± 7.1 0.05 (M3)

KCO (% predicted) 81.3 ± 20.4 72.0 ± 21.2 73.4 ± 9.8 0.017 (M3)

-6 AGT SNP in male LTRC Cohort

GG GA AA P-VALUE

KCO (mL·min-1·mmHg-1·L-1) 3.23 ± 0.85 3.06 ± 0.96 3.05 ± 1.1 0.021 (M3)

-6 AGT SNP in male Spanish Cohort

PHENOTYPE AA AC CC P-VALUE

------ ------ ------ ------ ------

1
Data are presented as mean ± SD. Significant results are accepted with p < 0.025 (with Bonferroni correction).
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Table 6

Mean values for pulmonary function tests in the female population at the -20 and -6 loci in the LTRC and 

Spanish cohorts.
1

-20 AGT SNP in female LTRC and Spanish Cohort

PHENOTYPE AA AC CC P-VALUE

------ ------ ------ ------ ------

-6 AGT SNP in female LTRC Cohort

GG GA AA P-VALUE

FVC (L) 2.08 ± 0.58 2.19 ± 0.50 1.38 ± 0.33 0.0082 (M2)

VALV (L) 3.27 ± 0.54 3.20 ± 0.54 2.50 ± 0.69 0.022 (M2)

-6 AGT SNP in female Spanish Cohort

GG GA AA P-VALUE

DLCO (% predicted) 58.1 ± 15.9 56.4 ± 17.3 69.1 ± 13.4 0.011 (M2)

KCO (% predicted 77.7 ± 18.2 78.4 ± 20.2 90.6 ± 15.0 0.023 (M2)

1
Data are presented as mean ± SD. Significant results are accepted with p < 0.025 (with Bonferroni correction).
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