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α-Enolase is a key glycolytic enzyme in the cytoplasm of prokaryotic and eukaryotic cells and is considered a multifunctional
protein. α-enolase is expressed on the surface of several cell types, where it acts as a plasminogen receptor, concentrating proteolytic
plasmin activity on the cell surface. In addition to glycolytic enzyme and plasminogen receptor functions, α-Enolase appears
to have other cellular functions and subcellular localizations that are distinct from its well-established function in glycolysis.
Furthermore, differential expression of α-enolase has been related to several pathologies, such as cancer, Alzheimer’s disease, and
rheumatoid arthritis, among others. We have identified α-enolase as a plasminogen receptor in several cell types. In particular, we
have analyzed its role in myogenesis, as an example of extracellular remodelling process. We have shown that α-enolase is expressed
on the cell surface of differentiating myocytes, and that inhibitors of α-enolase/plasminogen binding block myogenic fusion in vitro
and skeletal muscle regeneration in mice. α-Enolase could be considered as a marker of pathological stress in a high number of
diseases, performing several of its multiple functions, mainly as plasminogen receptor. This paper is focused on the multiple roles
of the α-enolase/plasminogen axis, related to several pathologies.

1. Introduction

Enolase, also known as phosphopyruvate hydratase, was
discovered in 1934 by Lohman and Mayerhof. It is one of
the most abundantly expressed cytosolic proteins in many
organisms. It is a key glycolytic enzyme that catalyzes the
dehydratation of 2-phosphoglycerate to phosphoenolpyru-
vate, in the last steps of the catabolic glycolytic pathway
[1] (Figure 1). It is a metalloenzyme that requires the metal
ion magnesium (Mg2+) to be catalytically active. Enolase is
found from archaebacteria to mammals, and its sequence
is highly conserved [2]. In vertebrates, the enzyme occurs
as three isoforms: α-enolase (Eno1) is found in almost all
human tissues, whereas β-enolase (Eno3) is predominantly
found in muscle tissues, and γ-enolase (Eno2) is only found
in neuron and neuroendocrine tissues [3]. The three enolase
isoforms share high-sequence identity and kinetic properties
[4–6]. Enzymatically active enolase which exists in a dimeric

(homo- or heterodimers) form is composed of two subunits
facing each other in an antiparallel fashion [6, 7]. The
crystal structure of enolase from yeast and human has been
determined and catalytic mechanisms have been proposed
[8–10].

Although it is expressed in most of the cells, the gene that
encodes enolase is not considered a housekeeping gene since
its expression varies according to the pathophysiological,
metabolic, or developmental conditions of cells [11]. α-
Enolase mRNA translation which is primarily under devel-
opmental control is significantly upregulated during cellular
growth and practically undetectable during quiescent phases
[12, 13].

Recent accumulation of evidence revealed that, in addi-
tion to its innate glycolytic function, α-enolase plays an
important role in several biological and pathophysiological
processes: by using an alternative stop codon, the α-enolase
mRNA can be translated into a 37 kDa protein which lacks
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Figure 1: Summary of glycolytic metabolic pathway. Metabolic
chain reactions of glycolysis, the central pathway for the catabolism
of carbohydrates that takes place in the cytoplasm of almost all
prokaryotic and eukaryotic cells. The insert shows different enolase
isoenzymes in vertebrates.
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Figure 2: Interaction of α-enolase with other nuclear, cytoplasmic,
or membrane molecules. α-Enolase can directly interact with other
enolase isoforms (α, β, and γ) to form enzymatically active dimers,
other glycolytic enzymes as pyruvate kinase, phosphoglycerate
mutase and aldolase. It can also bind to microtubules network
proteins, as F-actin and tubulin, and it is localized on the cell
surface, interacting with other membrane proteins, where it binds
to plasminogen and plasmin.

the first 96 amino acid residues. This protein, named c-
myc promoter-binding protein 1 (MBP-1) is localized in
the nucleus and can bind to the c-myc P2 promoter and
negatively regulates transcription of the protooncogene [14].
α-Enolase has been detected on the surface of hematopoietic
cells such as monocytes, T cells and B cells, neuronal cells,

and endothelial cells as a strong plasminogen receptor,
modulating pericellular fibrinolytic activity. The expression
of α-enolase on the surface of a variety of eukaryotic cells
has been found to be dependent on the pathophysiological
conditions of these cells [15–19].

α-Enolase has also been described as a neurotrophic
factor [20], a heat-shock protein (HSP48) [21], and a
hypoxic stress protein [22]. Furthermore, α-enolase is part
of the crystallin lens of vertebrates [23], binds to fragments
of F-actin and tubulin [24], and has been detected associated
to centrosomes in HeLa cells [25]. α-Enolase also binds with
high affinity to other glycolytic enzymes: pyruvate kinase,
phosphoglycerate mutase, which are adjacent to enolase in
the glycolytic pathway, and to aldolase, which is known to
associate with cytoskeletal proteins [26] (Figure 2).

It has also been suggested that upregulation of α-enolase
contributes to hypoxia tolerance through nonglycolytic
mechanisms [27]. Increased expression of α-enolase has
been reported to correlate with progression of tumors,
neuroblastoma, and lung cancer, and enolase has been
considered to be a potential diagnostic markers for many
tumors [28–32].

Thus, α-enolase appears to be a “moonlighting protein,”
one of a growing list of proteins that are recognized as iden-
tical gene products exhibiting multiple functions at distinct
cellular sites through “gene sharing” [33, 34]. This paper is
focused on the multiple roles of the α-enolase/plasminogen
axis, related to several pathologies.

2. The Plasminogen Activation System

In multicellular organisms, extracellular proteolysis is impor-
tant to many biological processes involving a dynamic
rearrangement of cell-cell and cell-matrix interactions, being
the plasminogen activation (PA) system among the most
important extracellular proteases. The PA system comprises
an inactive proenzyme, plasminogen, and ubiquitous in
body fluid, that can be converted into the active enzyme,
plasmin, by two physiological activators (PAs): tissue-type
plasminogen activator (tPA) and urokinase-type plasmino-
gen activator (uPA). Inhibition of the plasminogen sys-
tem occurs at the level of the PA, by specific inhibitors
(PAI-1 and PAI-2), or at the level of plasmin, by α2-
antiplasmin (reviewed in [35]). The PA/plasmin system is
a key regulator in extracellular matrix (ECM) remodeling
directly by its ability to degrade ECM components, such as
laminin or fibronectin, and indirectly via activation of matrix
metalloproteinases (MMPs), which will degrade collagen(s)
subsequently. Furthermore, plasmin is able to activate latent
growth factors, such as transforming growth factor β (TGFβ)
and basic fibroblast growth factor (bFGF) (reviewed in [35]).

Work from numerous groups has clearly demonstrated
that the localization of plasminogen and its activators uPA
and tPA on the cell surface, though association to specific
cell membrane receptors, provides a mechanism for cells to
harness and regulate the activities of these proteases [36, 37].
Binding sites for plasminogen, tPA, and uPA have been
identified on a variety of cell types, including monocytes,
fibroblasts, and endothelial cells [38, 39]. uPA is recruited
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Figure 3: Schematic overview represents α-enolase/plasminogen interaction on the cell surface. α-Enolase enhances plasminogen activation
on the cell surface, concentrates plasmin proteolytic activity on the pericellular area and protects plasmin from its inhibitor α2-antiplasmin.
Once activated, plasmin can degrade most of the components of the extracellular matrix, directly or indirectly by activating metalloproteases.
It is also capable to activate prohormones of progrowing factors. Abbreviations: Plg, plasminogen; Pli, plasmin, α2-AP, α2-antiplasmin; uPA,
urokinase-type plasminogen activator, uPAR, urokinase-type plasminogen activator; ECM, extracellular matrix; MMPs, metalloproteases;
GF, growing factors.

to the cell membrane immediately after its secretion via a
specific uPA receptor (uPAR, CD87), expressed on the cell
surface, that localize extracellular proteolysis and induces
cell migration, cell adhesion, and proliferation (reviewed in
[40, 41]).

Described binding sites for plasminogen include α-
enolase [18, 42], annexin A2 [43], p11 [44], histone
H2B [45, 46], actin [47], gp330 [48], cytokeratin 8 [49],
histidine-proline rich glycoprotein [50], glyceraldehide-3-
phosphate dehydrogenase [51] gangliosides [18], and Plg-
RTK [52]. α-Enolase and most of these proteins have C-
terminal lysines predominantly responsible for plasminogen
binding/activation [53]. Notably, most of these proteins have
other described functions than plasminogen receptors, and
lack a transmembrane domain, Plg-RTK being an exception,
as it is a transmembrane receptor [52].

3. α-Enolase as a Plasminogen Receptor

We and others have previously identified α-enolase as a
plasminogen receptor on the surfaces of several diverse cell
types including carcinoma cells [42], monocytoid cells [15,
18], leukocytic cell lines [54], rat neuronal cells [16], and
pathogenic streptococci [1].

On the cell surface, interaction of plasminogen with α-
enolase enhances its activation by PAs, concentrates pro-
tease activity pericellularly [55–57], and protects plasmin
from inhibition by α2-antiplasmin [18, 58] (Figure 3). In
order to examine the role of α-enolase in the pericellular

generation of plasmin activity, we produced a monoclonal
antibody, MAb11G1, that specifically blocked plasminogen
binding to purified α-enolase [54]. MAb11G1 allowed us
to demonstrate that α-enolase occupancy by plasminogen
on leukocytoid cells and on peripheral blood neutrophils is
required for pericellular plasminogen activation and plasmin
generation [54].

Considering the extraordinarily high number of plas-
minogen binding sites/cells that have been described in
different cell types, no single surface protein can account
for all plasminogen binding sites, suggesting that different
receptors coexist on the cell surface [18]. Evidence from
monocytoid cells suggested that α-enolase was only one
of several plasminogen receptors and its contribution to
plasmin activation was only modest [18, 54]. Posterior
studies have emphasized the role of annexin A2 and histone
H2B as plasminogen receptors in the same cells [46],
suggesting a minor contribution of α-enolase as plasminogen
receptor. In more recent studies, the role of α-enolase has
been resurrected, showing a central role for α-enolase in
monocyte recruitment in inflammatory lung disease [59].
These results imply that different plasminogen receptors
could be targeted to regulate inflammatory cell recruitment
in a temporal-specific manner.

The α-enolase-plasminogen interaction is mediated by
binding of plasminogen kringle domains to the C-terminal
residues of α-enolase (K434) [15, 18]. Furthermore, inter-
action of plasminogen lysine binding sites with α-enolase
depends upon recognition of C-terminal lysines K420, K422,
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and K434, suggesting that amino acid residues upstream
and/or secondary structure may be responsible for the high
affinity of α-enolase for plasminogen [15, 18]. Another
putative plasminogen-binding motif has been proposed in
view of its crystal structure at position, 250FFRSGKY256, that
remains exposed when α-enolase forms a dimer, necessary
for its glycolytic activity [10]. Human α-enolase structure
has been determined and it has been found that it exhibits
specific surface properties that are distinct from those of
other enolases despite high-sequence similarity. These dif-
ferences in structure explain its various activities, including
plasmin(ogen) and DNA binding [10].

The mechanism by which α-enolase, that lacks a signal
sequence, is associated with the cell membrane remains
unknown. Some authors have speculated that a hydrophobic
domain within α-enolase might serve as an internal signal
sequence [60], while others suggest that posttranslational
acetylation [61] or phosphorylation [62] may control mem-
brane association. Nevertheless, α-enolase forms part of a
growing list of proteins that lack signal sequences, but are
transported to the cell surface by a yet unknown mechanism.

4. α-Enolase in Myogenesis and
Muscle Regeneration

Proteolysis associated with the cell surface is a usual mech-
anism in several physiological processes involving tissue
remodeling. Myogenesis is an example of tissue remodeling
in which massive extracellular matrix degradation takes
place. Components of the PA system play important, yet
distinct roles in muscle regeneration after injury. Using
genetically modified mice for uPA and plasminogen, we and
others have shown that loss of uPA-mediated plasmin activity
blunts muscle repair in vivo [63–66]. In contrast, a negative
role for PAI-1 in muscle regeneration was suggested [65].
The PA system has also been shown to have an increasingly
important role in muscular dystrophies. For example, greater
expression of uPA has been found in mdx muscle, the
mouse model for Duchenne muscle dystrophy (DMD).
Conversely, genetic loss of uPA exacerbated dystrophy and
reduced muscle function in mdx mice [66]. Satellite cells
derived from human DMD patients produce more uPAR
and PAI-1 and less uPA than normal satellite cells [67].
uPA and plasmin appear to be required for infiltration of
macrophages into the damaged or dystrophic muscle in mdx
mice. However, an interesting observation underpinning
these results was that genetic loss of the uPAR in mdx mice
failed to exacerbate muscular dystrophy, suggesting that uPA
exerts its proteolytic effects independently of its cell surface
receptor uPAR [66].

β-enolase is considered the specific muscular enolase iso-
form, it is expressed in proliferating adult myoblasts as well
as in differentiated myotubes [68]. It is upregulated in muscle
during embryogenic development and it is considered an
early marker of myogenesis [69]. The increase of the β-
isoform is accompanied by a decrease of the α and γ isoform;
the γ-isoform is completely absent in the adult muscle, but
the expression of the α-isoform is maintained in the adult
muscle and in muscular cells [70, 71]. Furthermore, we have

described that α-enolase is upregulated in murine myoblasts
C2C12 differentiation in vitro and in muscle regeneration in
vivo [72], thus raising the question of whether plasminogen
receptors may also function in myogenesis and skeletal
regeneration as a mechanism for regulating plasmin activity.

We have investigated the role of α-enolase plasminogen
receptor in muscle regeneration after injury, a process
involving extensive cell infiltration and ECM remodeling.
Injured wild-type mice and dystrophic mdx mice were
treated with inhibitors of α-enolase/plasminogen binding:
MAb11G1 (an inhibitory monoclonal antibody against α-
enolase) and ε-aminocaproic acid (EACA, a lysine ana-
logue). These treatments had negative impacts on muscle
repair by impairing adequate inflammatory cell infiltra-
tion and promoting extracellular matrix deposition, which
resulted in persistent degeneration. Furthermore, satellite
cell-derived myoblasts (i.e., MPCs) expressed α-enolase on
the cell surface, and this expression was upregulated during
myogenic differentiation, correlating with an increase of
plasminogen binding to the cell surface. We found that
both MAb11G1 and EACA treatments impaired satellite
cell-derived myoblasts functions in vitro in agreement with
blunted growth of new myofibers in vivo (Diaz-Ramos et al.,
unpublished results).

Loss of uPAR in vivo did not affect the degenera-
tion/regeneration process; in addition, cultured myoblasts
from uPAR-deficient mice showed efficient myoblast dif-
ferentiation and fusion [66, 73], indicating that uPAR is
dispensable for efficient muscle repair. This reinforces the
idea that α-enolase is the main functional plasminogen
receptor during muscle tissue remodeling. Altogether, these
results demonstrate the novel requirement of α-enolase for
restoring homeostasis of injured muscle tissue, by concen-
trating plasmin activity on the cell surface of inflammatory
and myogenic cells.

5. The α-Enolase Expression in
Injured Cardiac Muscle

The actuation of the PA system in tissue healing after a
cardiac failure, driving the degradation the ECM and scar
tissue after an ischemic injury and allowing the inflammatory
cell invasion, has been extensively demonstrated.

The regulation of α-enolase in cardiac tissue as regulator
of glucose metabolism has been analyzed by several authors.
A decrease of α-enolase expression in the aging heart of old
male monkeys has been described, paralleling left ventricular
dysfunction, and could be involved in the mechanism for
the cardiomyopathy of aging [74]. α-Enolase expression has
been identified as a strongly induced factor in response
to ischemic hypoxia and reoxygenation in rat hearts sub-
jected to ischemia-reperfusion [75]. Furthermore, α-Enolase
improved the contractility of cardiomyocytes impaired by
ischemic hypoxia [76]. α-Enolase has also been proposed as
a marker for early diagnosis for acute myocardial infarction
[77].

On the other hand, recent evidences indicates an involve-
ment of proteinases, including the PAs and MMPs sys-
tems, in the process of extracellular matrix degradation
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and cell migration during cardiac wound healing [78]. In
a recent study, Heymans et al. demonstrated that uPA-
deficient mice showed impaired infarct healing and were
completely protected against cardiac rupture after induction
of a myocardial infarction [79]. Wound healing after infarct
was abolished in plasminogen-deficient mice, indicating that
the plasminogen system is required for the repair process
of the heart after infarction. In the absence of plasmino-
gen, inflammatory cells did not migrate into the infarcted
myocardium, necrotic cardiomyocytes were not removed
and there was no formation of granulation tissue and fibrous
tissue [80]. Furthermore, PAI-1, which has been shown
to be expressed in mammalian cardiomyocytes [81], has
been implicated in the process of the cardiac remodeling by
inhibiting activation of MMPs as well as plasmin generation.
A dramatic induction of PAI-1 in a mouse model of infarct
has been described [82]. Experiments using mice deficient in
PAI-1 suggest that increased expression of cardiac PAI-1 may
contribute to the development of fibrous change after acute
myocardial infarction (AMI). In vivo studies also showed that
PAI-1 expression was induced in hearts under pathological
conditions as ventricular hypertrophy [83].

All these results demonstrate that the PA system plays a
role in ECM remodeling after a cardiac injury and allows
inflammatory cell invasion. Furthermore, it can also play a
role in cardiomyocyte survival. Cardiomyocytes, which are
terminally differentiated cells, cannot proliferate, even when
they are damaged; the damage can lead to cell death in the
case of serious diseases such as acute myocardial infarction
and myocarditis [84]. Recent studies have identified myocyte
apoptosis in the failing human heart [85, 86]. Plasminogen
could also drive cardiomyocyte apoptosis, because plasmin
induces cell detachment and apoptosis of smooth muscle
cells through its binding to the cell surface, although the
receptor responsable for plasminogen binding has not yet
been identified [87].

Knowing that the PA system has been associated with
cardiac remodeling, and that α-enolase is upregulated in
cardiac infarction, it is tempting to speculate that α-enolase
could act as plasminogen receptor, regulating PA activity
on cardiac cells. Previous results from our laboratory have
shown that plasmin activity is concentrated on the cell
surface of cardiac fibroblasts in a lysine-dependent manner,
and this binding capacity is increased by hypoxic conditions.
Furthermore, plasminogen binding drives the activation of
fibroblasts to myofibroblasts, the main cells responsible of
tissue remodeling after a cardiac injury (Garcia-Melero et al.,
unpublished results).

6. α-Enolase/Plasmin Role in Apoptosis

It has been described that plasminogen binding to the cell
surface and its further activation to plasmin induces cell
detachment and apoptosis in smooth muscle cells, neurons
and vascular myofibroblasts [88–90], although the molecular
responsible for plasminogen interaction with the cell surface
has not been identified.

Externalization of glycolytic enzymes is a common and
early aspect of cell death in different cell types triggered

to die with different suicidal stimuli [91]. Apoptotic cells
are recognized by phagocytes and trigger an active immuno-
suppressive response. The lack of inflammation associated
normally with the clearance of apoptotic cells has been linked
to inflammatory and autoimmune disease as systemic lupus
erythematosis and rheumatic diseases [92–95]. Regarding
apoptotic cell surface proteins, a new concept has been
defined, SUPER, referring to Surface-exposed (during apop-
totic cell death), Ubiquitously expressed, Protease sensitive,
Evolutionary-conserved, and Resident normally in viable
cells (SUPER), to emphasize defining properties of apoptotic
determinants for recognition and immune modulation.
Ucker et al. have recently demonstrated that almost all
members of the glycolytic pathway are enriched among
apoptotic cell membranes, with α-enolase being the more
abundant enzyme in the cell membrane, and considered
the most paradigmatic SUPER protein [91]. In the cell
membrane of apoptotic cells, α-enolase has lost its glycolytic
activity, but it acts as plasminogen receptor, coinciding with
the description of the association of plasminogen binding
with apoptotic cell death [96]. In contrast to α-enolase, other
molecular plasminogen receptors as annexin A2 [97] or H2B
[46], were not preferentially enriched on the apoptotic cell
surface.

7. α-Enolase in Cancer

Several reports have shown an upregulation of α-enolase in
several types of cancer [98–100]. The role of α-enolase as a
plasminogen receptor on cancer cells has been extensively
documented, where it acts as a key protein, promoting
cellular metabolism in anaerobic conditions, and driving
tumor invasion through plasminogen activation and ECM
degradation (reviewed in [101]).

Recently, an analysis of disease-specific gene network
identified desmin, interleukin 8, and α-enolase as central
elements for colon cancer tumorogenesis [102]. Knockdown
of α-enolase expression in different tumor cell lines caused a
dramatic increase in their sensitivity to microtubule targeted
drugs (e.g., taxanes and vincristine), probably due to α-
enolase-tubulin interactions [103], suggesting a role for α-
enolase in modulating the microtubule network. Downreg-
ulation of α-enolase gene product deceased invasiveness of
the follicular thyroid carcinoma cell lines [104]. α-Enolase
overexpression has been associated with head and neck
cancer cells, and this increase associated not only with
cancer progression but also with poor clinical outcomes.
Furthermore, exogenous α-enolase expression promoted cell
proliferation, migration, invasion, and tumorogenesis [105].

During tumor formation and expansion, tumor cells
must increase glucose metabolism [106]. Hypoxia is com-
mon feature of solid tumors. Consistent with this, overex-
pression of glycolytic genes has been found in a myriad of
human cancers [107]. In tumor cells, α-enolase is upregu-
lated and supports anaerobic proliferation (Warburg effect),
and it is expressed on the cell surface, where it promotes
cancer invasion. Thus, it seems that α-enolase is playing
a pleitropic role on cancer cell progression. Furthermore,
it has been demonstrated that α-enolase is upregulated
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in pancreatic ductal adenocarcinoma, where it is subjected
to a array of posttranslational modifications, namely acety-
lation, methylation, and phosphorylation [108]. Both, α-
enolase expression and posttranslational modifications could
be of diagnostic and prognostic value in cancer (reviewed in
[101]).

8. Posttranslational Modifications of α-Enolase

Posttranslational protein modifications, such as phosphory-
lation, acetylation, and methylation are common and impor-
tant mechanisms of acute and reversible regulation of protein
function in mammalian cells, and largely control cellular
signaling events that orchestrate biological functions. Several
posttranslational modifications have been described for α-
enolase. α-Enolase phosphorylation has been associated
with pancreatic cancer, and induces specific autoantibody
production in pancreatic ductal adenocarcinoma patients
with diagnostic value [109]. Lysine acetylated α-enolase has
been detected in mouse brain [110]. Nitration of tyrosine
residues in α-enolase has been detected in diabetic rat hearts,
contributing to the impaired glycolytic activity in diabetic
cardiomyopathy [111]. Phosphorylated α-enolase has been
detected in gastrocnemious muscle, and phosphorylation
decreased with age [112]. Furthermore, carbonylation of
α-enolase has been detected on human myoblasts under
oxidative stress [113].

It remains to be determined how the posttranslational
modifications of α-enolase can affect its catalytic activity,
localization of the cell, protein stability, and the ability
to dimerize or form a complex with other molecules.
Investigations of these modifications patterns in different
pathologies will provide insights into its important role in
pathophysiological processes.

9. α-Enolase in Rheumatoid Arthritis

The overexpression of α-enolase has also been found
associated with chronic autoimmune diseases like rheuma-
toid arthritis [19, 114], systemic sclerosis [115], and pri-
mary nephropathies [116]. Autoantibodies to α-enolase, are
present in the sera of patients with very early rheumatoid
arthritis and have potential diagnostic and prognostic value
[117]. Recently, citrullinated proteins have been considered
the main autoantigen of rheumatoid arhritis. Citrullination,
also termed deimination, is a modification of arginine
side chains catalyzed by peptidylarginine deaminase. This
posttranscriptional modification has the potential to alter
the structure, antigenicity, and function of proteins. α-
Enolase is abundantly expressed in the sinovial membrane,
and antibodies against citrullinated α-enolase were specific
for rheumatoid arthritis. Citrullination changes the confor-
mation of α-enolase and interferes with the noncovalent
interaction involved in the formation of the enolase dimer,
then results in an altered glycolytic activity and plasminogen
binding. It is likely that citrullination of cell-surface α-
enolase abrogates its plasminogen binding and activat-
ing function and contributes to the decreased fibrinolysis
observed in rheumatoid arthritis [118]. Curiously, other

glycolytic enzymes such as glucose phosphate isomerase and
aldolase also promote rheumatoid arthritis autoimmunity by
acting as autoantigens [119].

10. α-Enolase in Alzheimer’s Disease

Although γ-enolase is the specific neuronal enolase isoform,
α-isoform is also present in neurological tissues. Plasmin for-
mation enhanced by α-enolase has been proposed to enhance
neuritogenesis [16, 120]. Furthermore, cathepsin X cleavage
of C-terminal lysine of α-enolase impaired survival and
neuritogenesis of neuronal cells [121]. α-Enolase has been
reported as a strong plasminogen receptor within the brain;
it is known to be upregulated in the Alzheimer’s disease brain
and has been proposed as a promising therapeutic target for
this disease (reviewed in [122]). Glucose hypometabolism
and upregulation of glycolytic enzymes is a predominant
feature in Alzheimer’s disease [123], but accumulating results
suggest that α-enolase may have other functions that just
metabolic processing of glucose: plasminogen bound to α-
enolase stimulates plasmin activation of mitogen-activated
protein kinase (MAPK)/extracellular-signal regulated kinase
1/2 (ERK1/2) prosurvival factor and also can drive plasmin
degradation of amyloid-β (Aβ) protein, the main component
of amyloid plaques. Thus, α-enolase might play a neuro-
protective role through its multiple functions (reviewed in
[122]).

Recently, several posttranslational modifications to α-
enolase have been found in Alzheimer’s disease. Elevated
levels of glycosylated-α-enolase [124], oxidized [123], or glu-
tathionylated [125] have been found related to Alzheimer’s
disease. These modifications would render enolase catal-
lyticaly inactive, related to the metabolic deficit associated
to Alzheimer’s disease. The effect of these modifications in
other multiple functions of α-enolase is a subject of ongoing
experiments, but it is possible that α-enolase modifications
alter not only glucose metabolism, but also its role as
plasminogen receptor, controlling neuronal survival and Aβ
degradation.

11. Plasmin and Intracellular Signaling

Other than its role in concentrating proteolytic activity
on the cell surface, several recent studies have shown that
plasmin is able to activate several intracellular signaling
pathways, that led to the activation of several transcription
factors, in a cell surface binding dependent way. In most
of the cases, the molecular mechanism responsible remains
unknown: it could be due to the proteolytic activation of
a second factor or due to direct binding of plasmin(ogen)
to a specific receptor. Several pieces of work show that the
plasmin proteolytic activity is essential for the induction of
an intracellular response, as in monocytes, where plasmin
bound to the cell surface proteolytically activates annexin A2
and stimulates MMP-1 production through the activation
of ERK and p38 pathways [126]. The phosphorylation of
Janus Kinase 1 (JAK1)/Tyrosin Kinase 2 (TYK2) that drives
to the activation to the transcription factors AP-1 and
Nuclear Factor κB (NFκB), and the expression of several
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cytokines: interleukin-1α and-1β (IL-1α and IL-1β), tissue
factor (TF), and the Tumoral Necrosis Factor-α (TNF-α),
are a consequence of plasmin interaction with the cell
surface [127–129]. Plasmin promotes p38 and p44/42 MAPK
activation and fibroblast proliferation through Protease
Activated Receptor-1 (PAR-1) [130, 131]. Other authors
have described that plasminogen and plasmin regulate the
gene transcription of genes as c-fos, erg-1, and Eno1 in
mononucleated blood cells and fibroblasts, by activating the
MEK/ERK pathways [132, 133].

In most of the cases, the receptor responsible for this
cellular response remains to be identified. Most of the protein
candidates for plasminogen receptors are small proteins that
lack a transmembrane domain and are not able to induce
directly an intracellular response. Some work suggests an
association between the plasminogen receptor and other
membrane proteins, that could serve as molecular collab-
orators to induce the activation of intracellular signaling
pathways. Several proteins have been identified as such
molecular collaborators. For instance, plasmin can activate
PAR-1 in fibroblasts, by the phosphorylation of Erk [130];
plasminogen and plasmin activate the expression of several
genes in fibroblasts and monocytes through G-Protein
Coupled Receptors, (GPCR) [132, 133]; some integrins such
as α9β1 integrin in Chinese Hamster Ovary (CHO) cells
[134] and αvβ3 integrin, in vascular endothelial cells [135],
participate actively in plasmin-induced cell migration.

In none of these cases, the plasmin receptor associated
with these proteins have been identified. Some work have
identified annexin A2 as the receptor that concentrates plas-
min activity to the cell surface and drives a subsequent intra-
cellular response [127–129]. Other authors have described
a collaboration between α-enolase and GPCR in fibroblasts
and mononucleated blood cells [132, 133]. Plasmin induces
smooth muscle cell proliferation through extracellular trans-
activation of the epidermal growth factor receptor (EGFR)
by a MMP-mediated, heparin binding—epidermal growth
factor (HB-EGF-) dependent process [136]. Future studies
will be necessary to determine the molecular mechanism
of the plasminogen receptor on several cell types and the
putative proteins associated with it.

We have shown that plasmin activity is able to activate
MAPK/ERK and phosphatidyl-inositol 3-kinase (PI3K)/Akt
pathways in C2C12 murine myoblast cell lines and in
primary cultures of muscle precursor cells, and that intra-
cellular activation depends on plasmin activity, but also on
plasmin(ogen) binding to the cell surface in a lysine binding
sites dependent way (Roig-Borrellas et al., unpublished
results), although the receptor responsible and the molecular
mechanism remains to be elucidated.

12. Concluding Remarks

Recently, a proteomic meta-analysis of 169 published articles,
including differently expressed 4700 proteins, based on
2-dimensional electrophoresis analysis of human, mouse,
and rat tissues, identified α-enolase as the first protein
differentially expressed in mice and the second in human
pathologies, regardless of the tissue used and experiment

performed [137], suggesting that α-enolase could be part of
a group of universal cellular sensors that respond to multiple
different stimuli. Thus, α-enolase could be considered as a
marker of pathological stress in a high number of diseases.
The importance of α-enolase as plasminogen receptor has
been determined in several pathologies such as cancer, skele-
tal myogenesis, Alzheimer’s disease, and rheumatoid arthri-
tis, among others. α-Enolase upregulation has also been
described in a myriad of other pathologies, as inflammatory
bowel disease [138, 139], autoimmune hepatitis [140], or
membranous glomerulonephritis [141], not discussed in this
paper, although its role on concentrating plasmin activity on
the cell surface has not always been stablished. It will not be
surprising that in many of these pathologies, α-enolase could
exert one of its multiple functions, mainly as a plasminogen
receptor, focalizing plasmin activity on the cell membrane
and promoting ECM degradation/remodeling, but also
activating intracellular survival pathways and controlling
survival/apoptosis of cells.

Further studies of posttranslational modifications of
α-enolase and its implications on α-enolase subcellular
distribution and function, especially interaction with other
proteins will be necessary. Also, the role of α-enolase as
activator of intracellular signaling pathways, probably in
collaboration with other membrane proteins, will serve to
elucidate the multiples roles of this functionally complex
protein.

Unexpectedly, other glycolytic enzymes have been
described as having other nonglycolytic functions in tran-
scriptional regulation (hexokinase-2, HK; lactate dehydroge-
nase A, LDH; glyceraldehydes-3-phosphate dehydrogenase,
GAPDH), stimulation of cell motility (glucose-6-phosphate
isomerase), and regulation of apoptosis (glucokinase, HK
and GAPDH), indicating that they are more complicated,
multifunctional proteins rather than simply components of
the glycolytic pathway (reviewed in [142]).

Some of the more interesting and challenging issues,
regarding α-enolase multifunction that need to be addressed
are (i) the mechanism of its export to the cell surface, (ii)
the role of α-enolase as an inductor of intracellular signaling
pathways, and (iii) the role of posttranslational modifications
of α-enolase and implications on its subcellular distribution
and function. Investigations of these subjects in different
human pathologies will provide insights into its important
role on pathophysiological processes and it would make this
protein an interesting drug target for different diseases.
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Foundation fellow. A. Roig-Borrellas is a registered student
in the PhD Doctorate Program in Biochemistry, Molecular
Biology and Biomedicine of the Universitat Autònoma de
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A hit parade of repeatedly identified differentially expressed
proteins,” Proteomics, vol. 8, no. 9, pp. 1744–1749, 2008.

[138] C. Roozendaal, M. H. Zhao, G. Horst et al., “Catalase and α-
enolase: two novel granulocyte autoantigens in inflammatory
bowel disease (IBD),” Clinical and Experimental Immunology,
vol. 112, no. 1, pp. 10–16, 1998.

[139] N. Vermeulen, I. Arijs, S. Joossens et al., “Anti-α-enolase
antibodies in patients with inflammatory bowel disease,”
Clinical Chemistry, vol. 54, no. 3, pp. 534–541, 2008.

[140] E. Ballot, A. Bruneel, V. Labas, and C. Johanet, “Identification
of rat targets of anti-soluble liver antigen autoantibodies by
serologic proteome analysis,” Clinical Chemistry, vol. 49, no.
4, pp. 634–643, 2003.

[141] M. Bruschi, M. L. Carnevali, C. Murtas et al., “Direct char-
acterization of target podocyte antigens and auto-antibodies
in human membranous glomerulonephritis: alfa-enolase and
borderline antigens,” Journal of Proteomics, vol. 74, no. 10, pp.
2008–2017, 2011.

[142] J. W. Kim and C. V. Dang, “Multifaceted roles of glycolytic
enzymes,” Trends in Biochemical Sciences, vol. 30, no. 3, pp.
142–150, 2005.


	Introduction
	The Plasminogen Activation System
	bold0mu mumu ----Enolase as a Plasminogen Receptor
	bold0mu mumu ----Enolase in Myogenesis andMuscle Regeneration
	The bold0mu mumu ----Enolase Expression inInjured Cardiac Muscle
	bold0mu mumu ----Enolase/Plasmin Role in Apoptosis
	bold0mu mumu ----Enolase in Cancer
	Posttranslational Modifications of bold0mu mumu ----Enolase
	bold0mu mumu ----Enolase in Rheumatoid Arthritis
	bold0mu mumu ----Enolase in Alzheimer's Disease
	Plasmin and Intracellular Signaling
	Concluding Remarks
	Acknowledgments
	References

